Causes of Pipeline Failure Fracture

  • Upload
    biginch

  • View
    230

  • Download
    1

Embed Size (px)

Citation preview

  • 8/10/2019 Causes of Pipeline Failure Fracture

    1/60

    toI

    UI

    to

    Figure 2-19. Earthquakes In and Near Alaska-Th rough 1974 (Barnes & Hopkins, 1978)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    2/60

    15000 148.00 146.00 144.00 442.OO 140.0072.00

    70.00

    68.00 .

    66.00

    I I I I

    200 M

    lsobath (M)

    t Thrust Fault

    -& Anticline

    -Syncline4 ---

    *-

    R

    \

    c--

    +-+e- Structural TectonicTerrace

    Boundary

    /c--c--,

    . 72.00

    I

    I

    70.00

    68.00

    66.00

    t48.00 46.00 144.00 f 42 OO 140.0050.00

    Epicenters (t) located by the localseismographic network having rm sof travel- t ime residuals Sl . 5 s e c

    plot ted on an overlay of the struc-tur al tr ac es in northeast Alaska.Epicenters shown north of 7 N.

    latitude are f rom Canadian catalog.

    Figure 2-20. Northeast Alaska Earthquakes--1976-1977 Biswas, 1977)

    2-53

  • 8/10/2019 Causes of Pipeline Failure Fracture

    3/60

    e p i c e n t e r s a n d o t h e r t e c t o n i c f e a t u r e s i n n o r t he a s t e r n Alaska.

    The a v a i l a b l e e a r t hq u a ke d a t a r e p r e s e n t too s h o r t a t i m e

    i n t e r v a l t o d e t er m i n e r e c u r r e n c e r a t e s f o r seismic e v e n t s

    greater than magni tude 5 . 0 i n t h e area . However, t h e data

    are i n d i c a t i v e of t h e need t o d e si g n s t r u c t u r e s able t o w i t h-

    s t a n d g ro un d v i b r a t i o n s f rom a s h a l l o w e a r t h q u a k e of magni tude

    a t l e a s t 6 . 0 (Barnes and Hopkins , 1978). A r e c e n t s t u d y pre-

    pa red f o r t h e Alaska S u b a r c t i c O f f s h o r e Committee by Woodward-

    C l y d e C o n s u l t a n t s (1978) examined po ten t i a l g round mot ion

    c h a ra c t e r i s t i c s t h a t might be a s s o c i a t e d w i t h e a r t h q u a k e s i n

    t h e Beaufor t Bas in a rea . I n t h i s s t u d y , a random earthquake

    s o u r c e w a s assumed, and ground motion parameters w e r e computed

    on t h e b a s i s of a h y p o t h e t i c a l seismic e v e n t w i t h a magni tudeof 6 . 5 and a r e c u r r e n c e i n t e r v a l of 100 y e a r s . I t w a s found

    t h a t such an ea r thqu ake would p roduce g round acc e l e r a t io ns on

    t h e order of 0.05 g w i t h assoc ia ted maximum velocit ies of 3 . 1

    cm/sec

    ( 1 . 2 i n / s e c ) . However, t h e au thors warn t h a t t h e ana ly-

    sis is v e r y s e n s i t i v e t o t h e s e i s m i c i t y l e v e l an d, s h o ul d

    l a r g e r m a g n i t u d e e v e n t s o c c u r , t h e a c c e l e r a t i o n s and v e l o c i t i e s

    c o u l d be a l t e r e d ap p rec i ab ly .

    T he l i m i t e d da t a a v a i l a b l e c o n c er n in g t h e r e g i o n ' s seis-m i c i t y appear t o i n d i c a t e t h a t t h e seismic h a z a rd t o p i p e l i n e s

    is probabl y s l i g h t a n d c o n f i n e d t o a r a t he r s m a l l area of t h e

    B e au f o r t S h e l f . However, a d d i t i o n a l d a t a a re r e q u i r e d f o r

    p rec ise d e l i n e a t i o n of t h e o f f s h o r e t e c t o n i c s t r u c t u r e and t o

    compute r e l i a b l e r e c u r r e n c e r a t e s f o r l a rger seismic e v e n t s .

    I t s h o u l d a l so be n ot ed t h a t e p i s o d i c mot ions of smal l magni-

    t u d e s e v e n t u a l l y may add up t o s i g n i f i c a n t gr ou nd d i s p la c e me n t s

    o v e r a l e n g t h y p e r i o d of t i m e . L i n e a r s t r u c t u r e s , s u c h as

    p i p e l i n e s , c o u l d be t h r e a t e n e d by t h i s cu mu la ti ve movement and

    may need a p p r o p r i a t e d e s i gn p r o v i s i o n s t o accommodate these

    d i sp l ac em en t s i n s e i s m i c a l l y- a c t i v e areas .

    2-54

  • 8/10/2019 Causes of Pipeline Failure Fracture

    4/60

    D . OTHER ENVIRONMENTAL CONCERNS

    The . P o r e g o i n g p a r t s o f S e c t i o n I 1 h a ve f o c u s e d o n t h e

    p r i n c i p a l i s s u e s i n t h e d e s i g n o f A r c t i c o f f s h o r e p i p e l i n e s .

    T h e r e a r e s e v e r a l a d d i t i o n a l e n v i r o nm e nt a l f a c t o r s wh ic h must

    b e c o n s i d e r e d i n t h e t o t a l d e s i g n f r a m e w o r k and w hich pose

    f o r m i d a b l e c h a l l e n g e s i n t h e c o n s t r u c t i o n and o p e r a t i o n o f

    s uc h p i p e l i n e s . I t is t h e r e f o r e a p p r o p r i a t e t o review t h e s e

    f a c t o r s f o r a n o v e r a l l a p p r e c i a t i o n o f t h e p o t e n t i a l d i f f i -

    c u l t i e s i n s u ch a n e nd ea vo r .

    1. L o c a t i o n

    Re mo te ne ss a nd i n a c c e s s i b i l i t y a r e f u n d a m e n t a l c h a r a c-

    t e r i s t i c s o f t h e Al a sk an A r c t i c . T h e n o r t h e r n c oa s t a l areas

    a r e s e v e r a l h un dr ed m i l e s f rom i n d u s t r i a l a nd s u p p ly c e n t e r s

    a nd t h e f ew r o u t e s o f t e n a re made impassable by w e a t h e r . A s

    a c on se qu en ce o f t h i s i s o l a t i o n , l o g i s t i c e f f o r t s w i l l r e q u i r e

    e x c e p t i o n a l p l a n n i n g a n d s c h ed u l i n g t o e n s u r e t h a t n e ce s sa r y

    s u p p l i e s a nd e qu i pm en t a r e a v a i l a b l e when n e ed e d. P r e s e n t l y ,

    m o s t l a r g e and heavy i t e m s must b e t r a n s p o r t e d t o t h e N or th

    S l o p e by b a r g e d u r i n g t h e b r i e f o pe n- w at e r p e r i o d . T h i s mode

    o f t r a n s p o r t i s e n t i r e l y d e p en d en t upon t h e n or t h wa r d r e t r c a t

    o f p a c k i c e w hich a l l o w s b a r g e t r a f f i c t o move a r o u n d P o i n t

    B a r r o w a n d c o n t i n u e eastward t o t h e main s t a g i n g areas a t

    P r u d h o e Ba y . The r e t r e a t o f t h e p ac k i c e is v e r y u n p r e d i c t a b l e

    as is t h e d u r a t i o n of t h e o p en- w at er p e r i o d a l o n g t h e c oa s t .

    Wester ly summer storms c an d r i v e t h e p a ck i c e b a c k i n t o t h e

    coast i n a mat ter o f h ou r s . I f t h i s o c c u r s t ow ar d t h e e nd of

    t h e summer s e a s o n , t h e p ac k i c e may remain c l o s e t o s h o r e

    t h r ou gh t h e w i n t e r a nd p re v e n t f u r t h e r n a v i g a t i o n .

    The i s o l a t i o n o f t h e Be a u f o r t coas t u n d o u b t e d l y w i l l

    a f f e c t p i p e l i n e d e ve lo pme nt s t r a t e g i e s i n many o t h e r w a ys .

    The a b i l i t y t o r e s p o n d t o e m e r g e n c i e s , f o r e x am p le , w i l l be

    i m p a i r e d b y t h i s f a c t o r . C on se qu en t l y , i t may be n e c e s s a r y

    2- 55

  • 8/10/2019 Causes of Pipeline Failure Fracture

    5/60

    t o s to ck a v e r y e x t e n s i v e s u p p l y of s p a r e p a r t s on t h e N or th

    Slope t o p r o v i d e a more t i m e l y r e s p o n s e t o breakdowns, l e a k s ,

    e t c . From a d e s ig n s t a n d p o i n t , p i p e l i n e s e q ui pp ed w i t h h i g h l y

    r e l i a b l e o r redundant components are a l s o i m p o r t a n t i n t h i s

    r e g a r d .

    2. Weather

    The seve re Arc t i c w e a t h e r is a major obs tac le t o p ipe-

    l i n e c o n s t r u c t i o n a nd m ai n te na nc e. G e ne r a l c l ima t i c condi-

    t i o n s a re charac te r ized by co ld te mpe ra t ur es (b ot h summer and

    w i n t e r ) , s m a l l a nn ua l p r e c i p i t a t i o n , a nd s t r o n g p e r s i s e n t

    winds. The a b i l i t y of humans and machinery t o f u n c t i o n e f f i-

    c i e n t l y u nd er t hese c o n d i t i o n s is i m p a i r e d g r e a t l y .

    Tempera ture i s p robably t h e s i n g l e g r ea t e s t f a c t o r which

    a f f e c t s Arc t i c work ing co nd i t io ns and human e f f i c i en cy . Tab le

    2-3 i l l u s t r a t e s t y p i c a l t e mp er a t ur e c on d i t io n s a t t h r e e N o r t h

    Sl o p e c oa s t a l l o c a t i o n s .

    Th e s u b- f r e e z i n g t e m p e r a t u r e s w h i c h e x i s t t h r o u g h most

    of t h e y e a r are e x a gg e r a te d s e v e r e l y by p e r s i s t e n t w in ds which

    make the e q u i v a l e n t c h i l l temperature much lower. A t B a r r o w ,

    f o r example, calm c o n d i t i o n s a re o b s e rv e d o n l y 1 . 3 percen t of

    t h e t i m e . F i g u r e 2-21 is a series of p r o b a b i l i t y c u r v e s f o r

    e q u i v a l e n t c h i l l t e m p e r a t u r e s i n each month. T h e s e c u r v e s

    were d e v e l o p e d u s i n g h o u r l y v a l u e s of t e m p e ra t u r e a n d corres-

    ponding s u r f a c e wind r ep o r t s f o r B a r r o w . However, t h e y are

    g e n e r a l l y a p p l i c a b l e t o most Nor th Sl o p e co as t a l areas . The

    c u rv e s i l l u s t r a t e t h e h i g h p r o b a b i l i t y of e n c o u n t e r i n g d a ng e r -

    o u s t e m p e ra t u r e s a t a l l t i m e s of t h e year .

    With respect t o p i p e l i n e development , l o w t e m p e r a t u r e s ,

    o r l o w e f f e c t i v e t e m pe r a t ur e s , ha ve s e v e r a l i m p l i c a t i o n s . The

    s e l e c t i o n of m a t e r i a l s , f o r example, may be i n f l u e n c e d b y t e m-

    p e r a t u r e b ec aus e of p o t e n t i a l prob lems w i t h b r i t t l e f r a c t u r e .

    2-56

  • 8/10/2019 Causes of Pipeline Failure Fracture

    6/60

    T a b l e 2-3. North Slope Temperatures

    S u m m e r W i n t e r

    Daily Daily Daily Daily Mean Numberof Days

    Record Below

    OC

    (OF) Annual

    Seasonal Seasonal Seasonal Seasonal Record

    FreezingMaximum Minimum Maximum Minimum High Low

    0 0C ( F )Location OC ( O F ) OC ( O F ) OC ( O F ) OC ( O F )

    tu

    Barter Island 9 ( 4 8 ) -8 (16 ) -5 ( 2 3 ) -32 (- 26) 24 (75) -50 (-59) 311n

    -3

    U m i a t 18 ( 6 4 ) -10 (13) -6 ( 2 1 ) -38 (- 36) 29 (85) -53 (- 63) ---

    Barrow 7 (45 ) -10 ( 1 3 ) 6 (21 ) - 31 (- 24) 25 (78)-

    49 (-56) 324

    Source: Swift et al, 1974

  • 8/10/2019 Causes of Pipeline Failure Fracture

    7/60

    60

    50

    40

    30

    20

    10

    cr

    0

    -10

    - 2 0

    - 30

    -40

    -50

    -60

    -70

    -800.5 5 10 20 50

    Figure 2-21. Percent Probab

    Equivalent Chill Temperature at Barrow,

    2-58

    80 98

    Iity of Occurrence --

    99 .9

    Alaska Searby & Hunter, 1971)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    8/60

    O pe r a t i ng m ac h ine ry s uc h as pumps, compr es s or s , and v a l v e s

    l i ke w i s e must ha ve l ow- t e m p e r a t u r e c a p a b i l i t y a n d d e m o n s t r a t e d

    r e l i a b i l i t y f o r Arct ic u s e . P i p e l i n e c o n s t r u c t i o n w i l l be

    s t r o n g l y i n f l u e n c e d by t e m p e r a t ur e . D u ri n g w i n t e r , w o r ke r s

    mu st b e p r o t e c t e d a g a i n s t extremes t h ro u gh t h e u s e of e nc l o-s u r e s a ro un d work areas o r w i t h b u lk y c l o t h i n g i n e xp os ed

    l o c a t i o n s . The l a t t e r s o l u t i o n t e n ds t o r e d u c e e f f i c i e n c y

    a nd may r e qu i r e a d d i t i on a l m e a su r e s t o e n s u r e a d eq u at e q u a l i t y

    c o n t r o l .

    A f i n a l c on ce rn r e g a r d i n g Arc t i c weather r e l a t e s t o

    weather f o r e c a s t i n g . R e l i a b l e f o r e c a s t i n g i s most i m por t a n t

    f o r summer l o g i s t i c s a nd d u r i n g t h e c o n s t r u c t i o n p e r i o d . Un-

    f o r t u n a t e l y , p r e s e n t s t a n d a r d s f o r Arc t i c f o r e c a s t i n g a re v e r ypoor i n c om pa ri so n w i t h temperate r e g i o n s . H i s t o r i c a l weather

    d a t a are i ncomple t e and there is a l a c k of r e p o r t i n g meteoro-

    l o g i c a l s t a t i o n s , e s p e c i a l l y o f f s h o r e . F ur th er mo re , remote

    s e n s i n g s y s te m s , c a p a b l e o f o b t a i n i n g h i g h r e s o l u t i o n da ta

    u n de r c o n d i t i o n s of c l o u d s an d d a r k n e s s p r e v a l e n t i n t h e

    Arc t ic , h av e n o t b e en d e p l o ye d i n o p e r a t i o n a l we a t h er s a t e l-

    l i t e s (Weeks, 1 9 7 8 ) .

    3 . Low V i s i b i l i t y and O p t i c a l Phenomena

    A major f a c t o r wh ic h i n f l u e n c e s b o t h s u r f a c e an d a i r

    l o g i s t i c s i n t h e Arct ic is v i s i b i l i t y . Low v i s i b i l i t y due t o

    d a r k n e s s , c l o u d s , f o g , a n d o t h e r opt i ca l phenomena i s a common

    c o n d i t i o n a l o n g t h e Arct ic c oa s t .

    Dur ing t h e w i n t e r m on th s, t h e s un is c o n t i n u o u s l y below

    t h e h o r i z o n from mid-November t o mid- J a nua ry . D ur ing t h e l a t e

    f a l l a nd e a r l y s p r i n g m on th s, d a y s a r e c o m p a r a t i v e l y s h o r ta l t h o u g h t h e r e is s u f f i c i e n t t w i l i gh t t o c a r r y o n a number of

    a c t i v i t i e s w i th o u t a r t i f i c i a l l i g h t .

    C l o u d i n e s s is a p r e v a l e n t c o n d i t i o n a l o n g t h e e n t i r e

    Arct ic coas t . More t h a n 60 p e r c e n t of t h e days a r e c l oudy o n

    2-59

  • 8/10/2019 Causes of Pipeline Failure Fracture

    9/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    10/60

    I

    o nl y i n areas s u c h as Barrow and Prudhoe Bay where t h e r e is a

    s i g n i f i c a n t a m o u n t of m a r i ne s h i p p i n g . S i n c e i t is a n t i c i p a t e d

    t h a t m o s t , i f n o t a l l , Arctic s u bm ar i n e p i p e l i n e s w oul d be

    b u r i e d , t h e t h r e a t of danger appea rs min ima l .

    Danger from m a r i n e l i f e such as whales a l s o would a p p e a r

    t o pos e a v e r y remote t h r ea t t o p i p e l i n e s . Al though t h e r e are

    cons ide rab le numbers of w h a l e s found i n t h e Arct ic d u r i n g

    summer months, they are an u nl i k e l y t h r e a t for b u r i e d p i p e l i n e s .

    E . SUMMARY

    Arc t i c p i p e l i n e s face a number of p o t e n t i a l h a z a r d s

    un ique t o t h e r e g i on i n a d d i t i o n t o t h e normal hazards encoun-

    t e r e d i n temperate l a t i t u d e s . The p rob l em s w hi ch p o s e t h emost s e r i o u s e n gi n e e r i n g c h a l l e n g e s i n c l u d e i c e scour , pe rma-

    f r o s t , f r o s t h ea ve , s t r u d e l s c o u r , a nd coas t a l e ro s i o n . Se v-

    e r a l of t he s e problems s u c h as p e r ma f r o s t and f r o s t heave have

    been en cou n t e r e d i n Arc t i c t e r r e s t r i a l p i p e l i n e p ro je c t s and

    appropr i a t e e n g i n e e r i n g s o l u t i o n s h a v e be en d e ve l op e d t o d e a l

    w i t h them. The remaining problems can be m i t i g a t e d or, i n some

    i n s t a n c e s , a v oi d ed c o mp l et e l y by j u d i c i o u s r o u t e s e l e c t i o n .

    Pr obl ems i n common w i t h t empe ra t e zones i nc l ude wave andc u r r e n t a c t i v i t y , s e i s m i c i t y , a nd s ed im en t g e o t e c h ni c a l p ro pe r -

    t ies s u c h as i n s t a b i l i t y . The o ce a no g ra p hi c h a z ar d s i n t h e

    Arct ic h av e no t b ee n e v a l u a t e d f u l l y b u t appear t o b e s ubs t a n-

    t i a l l y less s e v e r e t h a n t h o s e i n t h e Gulf of Mexico, f o r

    example. The most r e c e n t seismic h i s t o r y of t h e area shows

    t h a t there have been some moderate e ar t hq ua ke s i n t h e v i c i n i t y

    of t h e proposed Be au for t lease area. A n a l y s i s of t h e s e ear th-

    q u a k e s i n d i c a t e s t h a t t h e y would produce s m a l l a c c e l e r a t i o n s

    and o t h e r low-magni tude ground mot ions wi th in t h e lease areab o u n d a r i e s . L imi t ed g e o t e c h n i c a l i n f o r ma t i o n s u g g e s t s t h a t

    there a r e no major hazards for p i p e l i n e c o n s t r u c t i o n . The

    n e a r - s u r f a c e s e d i m e nt s h a ve h i g h l y - v a r i a b l e e n g i n e e r i n g proper-

    t i e s , b u t appear to be g e n e r a l l y s t a b l e .

    2-61

  • 8/10/2019 Causes of Pipeline Failure Fracture

    11/60

    111. PIPELINE SYSTEMS FAILURE ANALYSIS

    A . INTRODUCTION

    The f a i l u r e d a t a a d dr e ss e d i n t h i s sect ion is a s s o c i a t e d

    w i t h b o t h o n s h o re a n d o f f s h o re o i l / g a s p i p e l i n e s . The b u l k o ft h e d a t a r e f l e c t s t h e on sh or e h i s t o r y . The o f f s h o r e d a t a are

    l i m i t e d and are on ly f rom t h e Gulf of Mexico. An overview of

    t h i s i nf or m at i on w a s a ss em b le d be c a u se many o f t h e s e f a i l u r e

    modes could occur i n a d di t io n t o t h e p o s tu l a t e d f a i l u r e modes

    u n i q u e t o Arctic o f f s h o r e p i p e l i n e s ( d i s cu s s ed i n S e ct i o n 1V.D

    w i th p r i n c i p a l ones d e p i c t e d i n F i g u r e 4-5).

    The p r im ar y c a us e s o f p i p e l i n e f a i l u r e s i n t h e U ni t ed

    S t a t e s , as c l a s s i f i e d by t h e Dep art men t o f T r a n s p o r t a t i o n ,are o u t s i d e f o r c e s , corrosion, c o n s t r u c t i o n d e f e c t s , material

    f a i l u r e s , a nd o t h e r r e as o ns . The f a i l u r e i nf o rm at io n i n t h i s

    s e c t i o n i n c l ud e s d a t a from d i f f e r e n t sources which cannot be

    p r e c i s e l y compared because o f r e p o r t i n g d i f f e r e n c e s . However,

    t h e i n f o r m a t i o n d o e s p r o v i d e a gene ra l background o f causes of

    p i p e l i n e f a i l u r e s .

    1. T yp es o f Fa i l u r e s R e p or t e d

    B e fo r e t h e f a i l u r e s ca n b e d i sc u s s e d , i t is essent ia l t o

    d e f i n e t h e t y p e o f p i p e l i n e f a i l u r e s r e p o r t ed . The US D ep ar t-

    ment of T ra ns po r t a t io n r e q u i r e s c e r t a i n p i p e l i n e f a i l u r e s t o

    b e r e p o r t e d .

    G a s P i p e l i n e s . F o r gas t r a n sm i s si o n p i p e l i n e s and cer-

    t a i n gas g a t h e r i n g s y s te m s w i t h i n m ost c i t y l i m i t s , f a i l u r e s

    m e e t i n g t h e c r i t e r i a i n t h e T i t l e 49 o f t h e Code o f F e d e ra l

    Regu la t i ons (CFR) P a r t s 191 . 5 and 191 .15 mu s t b e r e p o r t e d onForm DOT-F-7100.2. These p a r t s c a l l for t h e t e l e ph o n i c n o t i c e

    a nd t h e w r i t t e n f ol lo w- u p , r e s p e c t i v e l y , a n d a gas p i p e l i n e

    f a i l u r e is d e f i ne d un de r t h e s e p a r t s g e n e r a l l y as any l e ak t h a t :

    3-1

  • 8/10/2019 Causes of Pipeline Failure Fracture

    12/60

    c au se d d e a t h o r p er s o na l i n j u r y r e q u i r i n g

    h o s p i t a l i z a t i o n ; o r

    r e q u i r e d t a k i n g a n y segment of a t r a n s m i s s i o n

    l i n e ou t of s e r v i c e ; o r

    r e s u l t e d i n g a s i g n i t i n g ; or

    caused es t imated damage of $5,000 o r mo re; o r

    i n t h e ju dg me nt o f t h e o p e ra t o r w a s s i g n i f i c a n t

    en ough f o r t e l e p h o n i c not ice even though not

    meeting any c r i t e r i a i n a-d above; or, as p a r t

    o f t h e w r i t t e n r e p o r t ;

    r e q u i r e d i mm ed ia te r e p a i r o f a t r a n s m i s s i o n

    l i n e ; o rw a s a t e s t f a i l u r e w h il e t e s t i n g for gas or

    another medium.

    I t s h o ul d b e n o t ed t h a t t h e a bo ve i n d i v i d u a l l e a k or

    test f a i l u r e r e p o r t s h av e be en u s e d i n t h i s r e p o r t t o c ompare

    t o t h e i n d i v i d u a l o f f s h o r e l e a k r e p o r t s f rom t h e Gulf o f

    Mexico. There i s a l s o an Annua l Report of Gas Transmis s ion

    and Gathering Systems (DOT-F-7100.2-1) which w a s used i n p r e-

    p a r i n g Tab le 3-

    1.

    L i q u i d P i p e l i n e s . With r e g a r d t o l i q u i d p i p e l i n e s , a

    f a i l u r e t h a t r e s u l t s i n a l o s s of commodi ty re su l t ing i n any

    o f t h e f o l lo w in g g e ne r a l s i t u a t i o n s f u r t h e r d e fi n e d i n P a r t

    195.50 m u s t . b e r e p o r t e d on DOT Form 7000-1:

    ( a ) e x p l o s i o n or f i r e n ot i n t e n t io n a l l y set by

    t h e carr ie r

    (b) l o s s o f 50 or m o r e b a r r e l s of l i q u i d

    ( c ) e s ca p e t o t h e a tm os ph er e o f more than 5 b a r r e l s

    a day o f h i gh l y v o l a t i l e l i q u i d s

    3-2

  • 8/10/2019 Causes of Pipeline Failure Fracture

    13/60

    ( d ) dea th

    ( e ) bodi ly harm

    ( f ) p roper ty damage of a t least $1,000 t o o t h e r

    than t h e c a r r i e r ' s f a c i l i t i e s

    ( g ) p roper ty damage of a t o t a l of $5,000 or more

    t o ca r r i e r ' s and others .

    I t should be noted t h a t t he re are a l so a d d i t i o n a l te le-

    phonic not ice repor t ing requi rements fo r l i q u i d releases t h a t

    p o l l u t e any stream, r i v e r , l a ke , r e s e r v o i r , or o t h e r s imi la r

    body of water. However, t he re are no annua l repor t ing requi re-

    m e n t s fo r l i q u i d p i p e li n e s and th er ef or e no annual t o indiv id -

    u a l leak comparisons are made i n t h i s r e po r t f o r l i q u i d

    p i p e l i n e s .

    2 . Information Sources

    Because of a l a c k o f f a i l u r e h i s t o r i e s a v a i l a b l e concern-

    . i ng t h e f e w kilometers of Arctic subsea pi pe l i ne s now i n place,

    d a t a on o t h e r US p i p e l i n e s are p resented t o g ive a h i s t o r i c a l

    background on f a i l u r e s . I t should n o t be construed t h a t t h e

    causes of f a i l u r e of t h e temperate zone p i p e l i n e s mentioned

    i n t h i s s e c t i o n are necessar i ly app l i cab le t o cur r en t o r f u t u r ep i p e l i n e s i n t h e Arctic. However, there is a s t r o n g i n d i c a t i o n

    t h a t t h e same problems a f f e c t a l l p i p e l i n e s w i t h t h e degree of

    s e v e r i t y dependent on locat ion and t y p e of commodity t r a n s -

    por ted .

    and t r a n sm i s s i o n (gas ) o r g a t h e r i n g a n d t r u n k ( l i q u i d o i l )

    p i p e l i n e s i n t h e US .

    A l l f i g u r e s c i t ed i n t h i s s e c t i o n apply t o ga the r ing

    Offshore . O ff s h o re gas and o i l f a i l u r e data are from U S

    Geological Survey (USGS) f o r t h e Gulf of Mexico area. F a i l u r ecauses appear i n t h e USGS data verbatim from leak repor t forms.

    For t h e charts appea r ing in t h i s s e c t i o n , t h e of f sho re causes

    were d i v i d e d i n t o categories s imi lar t o t h o s e i n t h e DOT f i g u r e s .

    3-3

  • 8/10/2019 Causes of Pipeline Failure Fracture

    14/60

    The number o f o f f s h o r e f a i l u r e s p e r y e a r f rom 19 70 t o 1978,

    i n c l u s i v e , range from 10 t o 31 which is n o t a l a rge enough

    f i e l d t o e s t a b l i s h m ea ni ng fu l t r e n d s . T h i s can b e compared

    agains t combined i n d i v i d u a l o n sh o re o i l a nd g a s p i p e l i n e

    f a i l u r e r a t e s ( i n c l u d i n g t e s t f a i l u r e s ) whi ch r a n g ed f r om 700

    t o 1 ,0 18 pe r yea r between 1971 and 1976, i n c l u s i v e . Conse-

    q u e n tl y , t h e o f f sh o r e f a i l u r e s h ave s t a t i s t i c a l l y much l ess

    s i g n i f i c a n c e . A l s o , t h e USGS f i g u re s d o n o t c o v e r a l l o f f-

    s h o r e p i p e l i n e s i n t h e G ul f of M exico. S t a t e g o ve rn me n ts a nd

    t h e US Bureau of Land Management have j u r i s d i c t i o n over about

    7 ,300 m i l e s o f t h e a pp ro x i ma t e l y 1 2 , 0 0 0 m i l e s of p i p e l i n e s i n

    t h e G u l f .

    G a s P i p e l i n e s . C o m p i l a t i o n s of DOT Forms F7100.2

    ( i n d i v i d u a l l e a k o r t e s t f a i l u r e r e p o r t ) a nd d a t a p re s e nt e d

    i nAn A n a l y s i s o f R e po r ta b le I n c i d e n t s f o r Natural G a s Trans-

    m i s s i o n and Gat her i ng L in es 1970 Through 1975 by t h e American

    Gas A s s o c i a t i o n (AGA) p ro v i d e f a i l u r e t o t a l s , c a u s e s a n d o t h e r

    d a t a c o n c e r ni n g g a s l i n e f a i l u r e s .

    O ns ho re g a s p i p e l i n e m il e ag e f i g u r e s are b a se d o n AGA

    d a t a . D i f f e r i n g mileage f i g u r e s were p u b l i s h e d by t h e AGA

    ( i n its p u b l i c a t i o n , G a s F a c t s ) , by t h e O i l and G a s J ou r n a l

    (OGJ) i n i ts August 13, 1 9 7 9 i s s u e , a n d b y DOT i n 7100.2-

    1

    d a t a . I t a p p e a r s t h a t t h e OGJ f i g u r e s are based on o n l y 103

    o f t h e a p p r ox i m at e ly 150 p i p e l i n e s i n s e r v i c e . The DOT gas

    t r a n sm i s s i o n m i l e a g e s t a t i s t i c s are w i t h i n 2 p e r c e n t of t h e

    AGA f i g u r e s b u t t h e DOT g a t h e r i n g l i n e mileage is only abou t

    35 p e r c e n t o f t h e A G A ' s f i e l d and g a t h er i ng t o t a l . I t a p p e a r s

    t h a t t h e l a t t e r d i s c r e p a n c y is c au se d by t h e l i m i t e d e x t e n t

    of t h e j u r i s d i c t i o n a l a u t h o r i t y o f t h e DOT. Consequen t ly ,

    AGA g a s p i p e l i n e mi le ag e f i g u r e s are u se d i n t h i s r e p o r t .

    L iq ui d P i p e l i n e s . F or l i q u i d l i n e s , summaries o f DOT

    Form 7000-1 f ro m 19 70 t o 1 9 76 , i n c l u s i v e , and d a t a i n a special

    s t u d y by t h e N a t i o n a l T r a n s p o r t a t i o n S a f e t y Boar d (NTSB) t i t l e d

    3-4

  • 8/10/2019 Causes of Pipeline Failure Fracture

    15/60

    Sa f e

    S e r v i c e L i f e fo r Liqu id Pe t ro leum Pipe l ines" are used.

    Mileage data are from t r i e n n i a l DO1 Mineral Indust ry and DOE

    Energy Data r e p o r t s .

    3. F a i l u r e s P e r 1 , 00 0 Mi1,es

    Fig u re 3-1 shows p i pe l i ne mileage i n t h e Un it ed S t a t e s .

    The t o t a l number of f a i l u r e s per year and t h e mi le ag e f o r t h a t

    year h av e been t r a n s l a t e d i n t o f i g u r e s r e p r e se n t i n g f a i l u r e

    t o t a l s p er year p e r 1 ,00 0 m i l e s o f p i p e l i n e (F ig u re s 3-2, 3-3,

    3- 4). The f i gu re s permit a rough comparison of t h e th r ee

    ca t ego r ie s (o f f shor e gas and l i qu i d , onshore gas , and onshore

    l i q u i d l i n e s ) . However, t h e f a c t t h a t t h e r e a r e d i f f e r e n t

    criteria f o r d e f i n i n g and r e p o r t i n g l e a k s i n g as an d l i q u id

    l i n e s cannot be overlooked.

    Onshore. Gulf of Mexico gas and l i q u i d l i n e s show an

    in cr ea si ng number of f a i l u r e s between 1974 and 1978 with a

    sharp peak i n 1975 t o 4 . 4 f a i l u r e s p e r 1 ,0 00 m i l e s (F ig u re

    3-2). Offshore mi leage f i gu re s bef o re 1974 are not immediately

    a v a i l a b l e .

    G a s Pip e l ine s . Onshore gas l i n e s show a high of 2 .21

    and a l o w o f 1 . 52 f a i l u r e s p e r 1,000 m i l e s i n t h e p e r io d 1970-76. An overa l l d e c l i n e i n f a i l u r e s p e r 1 ,0 00 m i l e s occurred

    dur ing the 1970-76 per iod (F ig ure 3-3).

    L iq ui d P i p e l i n e s , Onshore l i q u i d o i l p i p e l i n e s a l s o

    show a. s t e a d y d e c l i n e s i n c e 1970 (F ig u re 3-4) r each in g a l o w

    o f 0 . 93 f a i l u r e s p e r 1 ,0 00 m i l e s i n 1976.

    3-5

  • 8/10/2019 Causes of Pipeline Failure Fracture

    16/60

    5

    4

    3

    2

    330 ,

    325

    320

    t

    -I--*---

    /

    0

    -1

    --

    '70 ' 71 I 72 '73 ' 74 ' 75 I76 I77 I78

    Onsh or e Gas Gatheri ng and Transmi ssi on Pipel ines (AGA, 1979)

    DataUnavailable

    / *

    *

    @

    mmm@

    )O

    e**

    1

    3ct.

    2 30

    225

    220

    215

    3-6

  • 8/10/2019 Causes of Pipeline Failure Fracture

    17/60

    4.0

    3.5

    3.0

    W

    I

    2.5

    2.0

    1.5

    1974

    888888888888888888

    8881

    1975 1976 1977 197

    '::USGS

    approved lines,Gulf of Mexico

    Figure 3-2. Offshore" Gas and Oi l Pipel ine Failure s per 1,000 Mi les (USGS,1979)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    18/60

    Failures per 1,000 miles-_

    -

    w

    I

    00

    Figure3-3, Onshore Gas Pipeline Failures per 1OOO Miles (DOT, 1978; AGA, 1979)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    19/60

    Failur.esper 1, 000 miles

    1.6

    1.5

    1.4

    1.3

    w

    I

    c 1.2

    1.1

    1.0

    0.91970 1971 1972 1973 1974 1975

    Figure 3-4. Onshore Liquid Oil Pipeli ne Failures per 1,000 Miles

    (DOT, 1979; DO1 , 1968, 1974; DOE, 1977)

    19

  • 8/10/2019 Causes of Pipeline Failure Fracture

    20/60

    B. MODES OF FAILURE

    1. Major Cau ses o f Fa i lu r e

    Outs ide force ( a l s o descr ibed as equipment rupture) ,

    co r r o s io n , an d tlunknownttor " other " r easo n s are t h e three

    leasing c a us es of p i p e l i n e f a i l u r e ( F i g ur e s 3-5, 3-7 and 3-

    8).

    Sin ce 19 70 , o u t s id e f o r c e is c l e a r l y t h e dominant cause of

    o ns ho re ga s a nd l i q u i d p i p e l i n e f a i l u r e s b u t fo r o f f s h o r e gas

    and l i q u i d l i n e s , t h e three l e a d i n g c a t e g o r i e s o f c a u se s v ar y

    i n r a n k in g from ye a r t o y e a r .

    a. Outside Forces . P i p e l i n e r u p t u r es , a lmo st wi th

    excep t ion generated by m a n ' s a c t i v i t i e s , are a major cause

    of p i p e l i n e f a i l u r e s . T y p i c a l examples o f ou ts id e fo rc esare: onshore , excavat ing equ ipment, and o f f sho re , sh ip

    an ch o r s an d f i sh in g t r a w l boards . For subsea Arctic app l i-

    c a t i o n s , e x t e r n a l i m p a c t s c o u l d be l i m i t e d r easonab ly t o i ce

    s c ou r a nd, t o a lesser e x t e n t t h a n i n temperate w a t e r s , s h i p

    anchors .

    Gas P i p e l i n e s . A University of Oklahoma report for

    t h e DOT, "Analysis and Management of a P i p e l i n e S a f e t y I n f o r -

    Mation System," concluded t h a t fo r onshore gas t r an smis s io nl i n e s , o n e o u t s id e force ( o r e x t e r n a l impact) l eak is equiva-

    l e n t t o ap pr ox ima tely 95 co r r o s io n leaks i n terms o f p o t e n t i a l

    danger . The conclus ion w a s based on a comparison of individ-

    ual and annual DOT inc ide n t r e po r t s f rom 1970 t o 1973 a n d .

    involved a weigh t ing fa c t o r formula t oo complex t o be d esc r ib ed

    here. The 1 : 9 5 r a t i o w a s determined by d i v i d i n g t h e weigh t ing

    f ac tor o f o u t s i d e f o r c e (18 .0) by t h a t o f co r r o s io n ( 0 .1 9 ) i n

    Table 3-1.

    L iq u id P ip e l i n es . Cor ro s io n w a s t h e l ead in g cau se

    and equ ipment rup tur ing l ine w a s t h e second lead ing cause of

    o ns ho re l i q u i d p i p e l i n e f a i l u r e s ( F ig u r e 3-8).

    3-10

  • 8/10/2019 Causes of Pipeline Failure Fracture

    21/60

    w

    I

    c

    c

    Percentage ofannua1 failure totals

    70

    60%

    50%

    4@ 0

    3w0

    20%

    10%

    0

    b

    44

    b b

    4

    b

    b

    4

    4

    4

    *

    b

    4

    4

    4

    0

    b

    \

    X

    b

    4

    b

    4

    0

    4

    0

    4

    0.4

    4

    P

    4

    *.

    .'.,

    4

    4 .

    4

    4

    4

    0

    0

    0

    4

    .

    z

    E

    %

    ++++

    Corrosion

    *****- Outside Force

    -

    UnknownLJ

    zero readings may indicate a lack of reports and not necessarily a lack of failures

    1970 1971 1972 1973 1974 1975 1976 1977 -1978-

    XUSGS

    approved line s, Gulf of Mexico

    Figure 3-5. Major Causes of Offshor e' Gas and Oil Pip eline Fail ures (USGS, 1979)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    22/60

    Percentage ofannual,failure totals

    25%

    20%

    15%

    I

    10

    5%

    0

    -Mater ia l Fai lu re

    - . - Other

    -Actual or SuspectedWeather Damage

    -- Constr ucti on Defecfailures

    1970 1971 1972 1973 1974 1975 1976 1977 1978

    'kUSGS

    approved l ines, Gulf of Mexico

    F i g u r e 3-6. M i n o r Causes of Offshore" Gas and Oil Pipeline Failur es (USGS, 1979)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    23/60

    0

    1970 1971 1972 1973 1974 1975

    Outside Force........

    Material Failure- _

    +++++ Corrosion

    i c

    Other-

    A Const ruct ion Defec

    Figure 3-7. Causes of Onsho re Gas Pipe line Failures (DOT, 1977)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    24/60

    Percentage ofannual failure totals

    oTo It

    1970 1971 1972 1973 1974 1975 1976

    .* .0

    Equipment

    +++++ Corrosion

    Rupturing Line

    Other

    Defective Pipe

    - .-

    --Defective Welds

    - - - Incorrect,Operations

    Figure 3-8. Causes of On shore Liquid Pipeline Fai lures (DOT, 1978)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    25/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    26/60

    Liqu id P i p e l i n e s . Onshore petroleum l i n e d a t a i n d i-

    cate a d e c l i n i n g corros ion- c a u s e d f a i l u r e r a t e , Corros ion

    f a i l u r e s f o r 1978 are about h a l f of t h e 1970 r a t e ( F i g u r e 3- 8).

    Summaries of DOT Form 7000-1 e x t e r n a l c o r r o s i o n d a t a from 1970

    t o 1977 show mixed r e s u l t s when var io us means of co r ro s i on

    p r o t e c t i o n are compared. Coated pi pe w i t h c a t h o d i c p r o t e c t i o n

    an d b a r e p ip e w i t h c a t h od i c p r o t e c t i o n h av e t h e h i g h e s t p er -

    cen tag es of e x t e r n a l c o r r o s i o n f a i l u r e s f o r 1974 t h ro ug h 1 97 8.

    N o d a ta on t h e number of m i l e s of each t y p e of co r ros i on p ro-

    t e c t i o n is a v a i l a b l e n or are e x p l a n a t i o n s o f why t h e r e s u l t s

    d i f f e r from t h e g a s l i n e da t a above .

    c .Unknown

    and "Other " Causes. A s t h e l a s t o f t h e

    l e a di n g c a us es of p i p e l i n e f a i l u r e s , unknown and o t h e r

    c a u s e s a r e , by n a t u r e , t h e most d i f f i c u l t t o d et e rm in e b ec au se

    of a l a c k of d a t a .

    Of f shore . A s shown i n Fi gur e 3-5, unknown causes

    vary f rom 8 p e r c e n t t o 40 p e r c e n t an nu a l l y . However, t h e

    small number o f i nc id en ts r epo r te d (see Subsec t ion 2 , I n f o r -

    mation Sources) makes c on cl us io ns d i f f i c u l t , i f n o t imp o s s ib l e .

    G a s P i p e l i n e s . Unknown o r o t h e r cau s es are n o t

    a major cause o f onshore gas l i n e f a i l u r e s .

    L iq ui d P i p e l i n e s . F a i l u r e s a t t r i b u t e d t oo t h e r

    c a u s e s a r e i n c r ea s in g an d are t h e t h i r d l a r g e s t c au se of

    f a i l u r e s from 1 970 t o 19 76 . .

    2 . Minor Causes of Fai lure

    Material f a i l u r e , i n c o rr e c t o pe r at i on fly carrier per-

    s o n n e l , c o n s t r u c t i o n defects, weather , d e f e c t i v e w e l d s and

    . other (gas and o f f s h o r e o n l y ) each account for approximately

    20 p e r c e n t or less o f o n sh or e and o f f s h o r e p i p e l i n e f a i l u r e s

    ( F i g u r e s 3-6, 3-7 and 3-8). Offshore o t h e r cau s es are l i s t e d

    i n Tab le 3-2w i t h v e r b a t im d es c r ip t io n s f r o m a U S G S Gulf of

    3-16

  • 8/10/2019 Causes of Pipeline Failure Fracture

    27/60

    Table 3-2. Offshore O i l / G a s P i p e l i n e "Other " Causes

    Desc r ip t ions of causes from USGS records f o r Gulf of Mexico

    Year N o . o f Fa i l u r e s D e s c r i n t i o n of Cause

    1970 0

    1971 1 Severe ly k inked. Sp l i t a t kink.

    1972 2 1) G a s reg ula tor malfunct ioned. H.P.P. malfunct ioned. Pipe

    rup tured .

    2 ) Suspect pre viou s damage t o f / l due t o c o n s t ru c t i o n .

    1973

    1974

    1975

    1976

    1977

    1978

    2 1) Bul l p lug cove r ing 1/2 needle va lve in open posi t ion had

    a h o l e i n i t . Poss ib ly caused by t ra wling.

    2 ) Abrasion - rubb ing aga ins t ano the r p ipe .A t l a n t i c R i c h f i e l d ' s 8 l i n e r i p pe d o f f t h e C obi a l i n e a t t h e

    subsea t i e- i n .

    1) P / 1 k in k a f t e r t r y i n g t o move it away from 0 deco s w e l l

    6 i n SS Block 119.

    2 ) Mechanical f a i l u r e .

    3) Lack of communication between operator.

    ( i l l e g i b l e )

    P a r a f f i n p l u g p i p e l i n e s .

  • 8/10/2019 Causes of Pipeline Failure Fracture

    28/60

    Mexico f a i l u r e r e p o r t c o m p i l a ti o n . I n F ig u r e 3- 6 , t h e p e rc en t-

    a g es o f m inor c a u s e s o f o f f s h o r e f a i l u r e s f l u c t u a t e wi d el y.

    When co n s id e r in g d a t a on o f f s h o r e l i n e s p r e s en ted h e r e , t h e

    cau t io n g iv en e a r l i e r a bo ut t h e t o t a l number of f a i l u r e s n o t

    b e i n g l a rge enough t o e s t a b l i s h a t r en d s h o u ld b e k ep t i n mind.

    C . FAILURE COUNTERMEASURES FOR SUBSEA ARCTIC APPLICATIONS

    S ub sea g a s and l i q u id p e t r ol eu m p i p e l i n e s i n t h e Arc t i c

    are l i k e l y t o have c o r r os i o n a nd o u t s i d e f o r c e as t h e p r ime

    p o t e n t i a l c a us e s of f a i l u r e . Because o f envi ronment- r e la ted

    d i f f i c u l t i e s menti oned elsewhere i n t h i s r e p or t ( S e c t i on s I 1

    and I V ) , f a i l u r e s i n subsea Arct ic areas are m o r e d i f f i c u l t

    t o c on te nd w i t h t h a n i n t empera te areas . Consequent ly , pre-

    v en t io n of f a i l u r e s c o u l d be of utmost impor tance . Prompt

    d i s co v er y o f f a i l u r e s t h a t o c c ur d e s p i t e p r e c a u t i o n s a l so

    would be of va l ue . However, i t is beyond t h e scope o f t h i s

    r e p or t t o e va l u t e any t r a d e o f f s between env i ronmen ta l p ro tec-

    t i o n an d p ip e l in e eco n o mics .

    1. I mp ac t P r o t ec t io n

    Ice s c o u r is t h e most f o r midab le imp ac t h aza r d a f f e c t in g

    a s u b s e a p i p e l i n e . A s d i s c u s s e d i n S e c t i o n 11, t h e d e p t h ,f requency and locat ion o f s co u r in g is not known f u l l y . Pre-

    v en t i o n of p i p e l i n e impact fr om i c e cou ld be accomplished b y

    t r e n ch i n g b e lo w t h e a n t i c i p a t e d s co u r d ep t h ( S e c t i o n 1 V . D ) .

    More r e se ar ch on sco ur dep t hs wou ld be of va lu e. Damage from

    a n c ho r s and f i s h i n g a c t i v i t i e s pr o ba b l y would be small because

    of t h e i ce cover which pre ve nt s s h i p movement f o r much of each

    y e a r . During the open-water season , sea t r a f f i c is no t ex-

    p ec t e d t o be of major consequence. Marking of p i p e l i n e l o ca-

    t i o n s on maps shoul d be s u f f i c i e n t w a r n i n g .

    3-18

  • 8/10/2019 Causes of Pipeline Failure Fracture

    29/60

    2 . Corros ion P revent ion

    Coa t i ng a nd c a t hod i c p ro t e c t i on , as r e q u i r e d i n Par t s

    192 and 195 s i nc e t h e e a r l y 7 0 1 s would be e s s e n t i a l for sub-

    sea Arctic steel p i p e l i n e e x t e r n a l c o r r o s i o n p re ve n t i on . The

    p o t e n t i a l f o r e x t e r n a l c o r r o s i o n would be similar for both gas

    and l i q u i d pet roleum pi pe l i ne s . Arguments between impressed

    cur ren t and s a c r i f i c i a l anode c a t h o d i c p r o t e c t i o n q u a l i t y are

    moot because of t h e mai nt en an ce d i f f i c u l t i e s t h a t would be

    encountered i f an impressed current s y s t e m were chosen. O t h e r -

    wise , ex te rn a l cor ros ion probably would no t be aided o r hinder -

    ed by t h e subsea Arct ic environment as compared t o a temperate

    z on e l o c a t i o n . Although d i f f i c u l t t o accomplish, a s a t i s f ac to r y

    e l ec t r i ca l ground for c o r ros i on c on t ro l c a n be ob t a i ne d i n

    pe rmaf ros t .

    I n t e r n a l c o r ros i on and erosion problems would be s i m i l a r ,

    i f n o t i d e n t i c a l , t o c on t e mpora ry i n s t a l l a t i ons ;in tempera te

    areas. Analyses of t h e commodity t o be car r i ed would be valu-

    a b l e i n de t ermi ni ng t h e need, i f a n y , f o r i n t e r n a l p r o t e ct i o n .

    I n t e r n a l p ipe c oa t i ng , a nd / o r sweeteningt1 of sour gas or o i l

    before c o n t a c t w i t h t h e p i p e l i n e are p o t e n t i a l s o l u t i o n s i n

    c u r r e n t p rac t ice .

    G e n e r a l l y , t h e ma jo r d i f f e r e n c e i n c o r r o s i o n p r e ve n t io n

    between temperate zone p i p e l i n e s and t h o s e b en ea th t h e Arctic

    seas would be t h e p o s s i b l e desire t o r ed uc e t h e frequency of

    corrosion- c a u s e d f a i l u r e s i n t h e l a t t e r as low as pos s ib le .

    Judging from t h e h i g h i nc idence of cor ros ion- c au se d f a i l u r e s

    i n t h e US , and presumably elsewhere i n temperate areas , con-

    s iderab le p r og re s s coul d be real ized i n t h i s f i e l d .

    3. Inspect ion and Moni tor ing

    Reduction, i f no t p r e ve n t i on , of p i p e l i n e f a i l u r e s can

    be aided by s c r up u l ou s i n s p e c t i o n d u r i n g f a b r i c a t i o n an d

    3-19

  • 8/10/2019 Causes of Pipeline Failure Fracture

    30/60

    i n s t a l l a t i o n and by f r equen t and thorough monitoring of t h e

    s y s t e m d u r i n g o p e r a t i o n . A w e l l-p l an ned program f o r preven-

    t i v e maint en an ce is neces sa ry t o con t inued suc ces s fu l opera-

    t i o n . Un f o rtu n a t e ly , env i ro nmen tal co n d i t i o n s and t r enched

    l i n e s , i f u sed , gr e a t l y hamper monitoring and maintenance

    e f f o r t s . Such cons ide ra t ion s may j u s t i f yoverdes ign ing

    and excess ive care d ur i ng i n s t a l l a t i o n of p i p e l i n e s t o com-

    pe ns a t e f o r t h e po ss ib le lack of access d u r in g o p e r a t i o n .

    E x i s t i n g an d proposed changes i n inspec t ion and moni to r ing

    requirements appear i n S e c t i o n V I of t h i s r e p o r t .

    3-20

  • 8/10/2019 Causes of Pipeline Failure Fracture

    31/60

    I V . UNIQUE REQUIREMENTS OFARCTIC OFFSHORE PIPELINES

    The Arctic env i ronmen t , d i scussed i n S e c t i on 1 1 , p r e s e n t s

    some u n iq ue r e qu i re m en t s f o r o f f s h o r e p i p e l i n e d e s i g n , con-

    s t r u c t i o n and o p e ra t i o n . The d i s c u s s i o n i n t h i s s e c t i o n is arev iew of key requirements which , i f n o t c o n s i d e r e d i n a p ipe-

    l i n e p r o j e c t , c ou ld a f f e c t i t s s t r u c t u r a l i n t e g r i t y , s a f e t y

    and environmental impact. The d isc uss ion o f t h e s t a t e- of- t h e-

    a r t o f Arctic o f f s h o r e p i p e l i n e s p r e s e nt e d i n S e c t i on I covered

    p r e s e n t t echnology and some o f t h e problems encounte red , and

    r e f e r e n c e w i l l be made t o t h a t a n d o t h e r s e c t i o n s where

    a p p r o p r i a t e .

    A . MATERIALS

    S t e e l is t h e p r e f e r r e d mater ia l f o r Arctic a p p l i c a t i o n s

    because of h i g h s t r e n g t h , s u i t a b l e low- t emp er atu re p r o p e r t i e s

    ( r e s i s t a nc e t o crack p r opag a t i on ) and g o o d w e ld ab i l i t y . T i t l e

    4 9 ( P a r t 1 9 5. 1 12 ) p e r mi t s o n ly s t e e l f o r new l i q u i d p i p e l i n e s ;

    however, f o r gas p i p e l i n e s ( P a r t 192) t h e r e g u l a t i o n w i l l

    allow t h e u s e of cast i r o n o r d u c t i l e i r o n p i p e s , a l though

    t h e u s e i s p r i m a r i l y i n gas d i s t r i b u t i o n s y st e m s. O th er

    a l l o y s are n o t co mp e t i t i v e w i th s t e e l f o r l a rge d iameter orh i g h p r e s s u r e p i p e . Although aluminum a l l o y s and t i t a n i u m

    a l l o y s ca n h av e t h e same t o u g h n e s s r a t i o as s t e e l , t h e i r

    s t r e n g t h is much lower a t co mp ara t ive l e v e l s . Th e r e f o r e ,

    t h i c k w a l l s are r e q u i r e d for large a luminum pipes because

    t h e s t r e n g t h is about h a l f t h a t of h igh- grade s t e e l , and t h e

    t h e r m a l e x p a n s i o n c o e f f i c i e n t is t h ree t i m e s as grea t , l e ad -

    i n g t o a p o t e n t i a l l y- h i g h t h e r m a l stress. Also , weld ing o f

    aluminum p i pe l i ne se c t io ns wou ld be more d i f f i c u l t and c o s t l y .

    I n a d d i t i o n t o t h e u s u a l s p e c i f i e d minimum y i e l d stress

    ( SMYS ) , t h e s a f e t y s t a n d a r d s f o r Arctic p i p e l i n e s should con-

    s i d e r s t e e l behav io r a t low tempera tu res . Once i n s t a l l e d on

    t h e sea bot tom, such p i p e l i n e s w i l l en co u n te r a r e l a t i v e l y

    4-1

  • 8/10/2019 Causes of Pipeline Failure Fracture

    32/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    33/60

    impacted by a c a l i b r a t e d pend ulu m. An a b s o r b e d f r a c t u r e

    impact energy of 205 (15 f t- l b ) g e n e r a l l y is c o ns i de r ed t o

    be t h e minimum a c c e p t a b l e l e v e l f o r p l a i n carbon s t e e l s a t

    some s p e c i f i e d t e m p e ra t u r e ( s e e Fi g u r e 4- 1). However, t h e

    Charpy acceptance test h a s be en f o un d t o be l i m i t e d i n evalu-a t i n g materials s u s c e p t i b i l i t y t o p rema ture b r i t t l e f r a c t u r e .

    The re are cases where s t e e l s were c o n s i d e r e d t o b e d u c t i l e

    a t a g i v e n s e rv i c e t e m p e ra t u r e b e c a u s e t h e Ch arpy s p e ci m en s

    e xh i bi t ed d u c t i l i t y a t t h i s t em pe ra tu re . I n s e r v i c e , b r i t t l e

    f r a c t u r e o f t h e s t e e l o c c u r r e d . The d i f f e r e n c e w a s e x p l a i n e d

    on t h e b a s i s t h a t s t a n d a r d Charpy t e s t i n g may n o t a c c u r a t e l y

    d e te r mi n e t h e d u c t i l e - t o -b r i t t l e t r a n s i t i o n t e m p e r a t u r e . To

    compensa te , t h e Charpy test s pe ci me n h a s be e n f a t i g u e p r e -

    c r ac ke d t o b e t t e r r e l a t e r e s u l t s t o t h e n i l - d u c t i l i t y tempera-

    t u r e (NDT), which is d e f i n e d i n ASTM STDE208-69.

    The NDT is d e f i n e d t o b e t h e t e m p e r a t u r e a t which a

    s m a l l f l aw may pr op aga te a t stresses n ea r t h e y i e l d stress.

    NDT+60F (NDT+15'C)

    i s cons ide r ed t h e t empera t u re above which

    no u n s t a b l e c l e a v a g e c r a c k p r o p a g a t i o n c a n oc c u r a t stresses

    a p p ro a c h i n g t h e SMYS. O t h e r b r i t t l e - f r a c t u r e criteria used

    i n c o n j u n c t i o n w i t h t h e C h a r p y test are ba sed on f r a c t u r e

    appea rance such as t h e d ro p w e i g h t t ea r test (DWTT); l i n e a r

    e l a s t i c f r a c t u r e m ec ha ni cs s u c h as t h e c r i t i c a l stress i n t e n-

    s i t y v a l u e ; o r e l a s t i c -p l a s t i c f r a c t u r e mechanics such as t h e

    J- i n t e g r a l or c r i t i c a l cr ac k ope ning disp lac emen t (COD).

    Charpy-V Notch and DWTT impact tests w e r e u s e d i n t h e

    s e l e c t i o n o f mater ia l f o r t h e T r a n s A l a s k a P i p e l i n e Sy s t e m

    from Prudhoe Bay t o P or t Valdez ( O i l and G a s J o u r n a l , 1 9 7 4 ) .

    P a n a r c t i c G a s L i n es r e q u i r e d a 345 ( 2 5 f t - l b ) Charpy impact

    v a l u e a t minus 50C (minus6 0 F )

    (Pa lmer , 1979) .

    Two i mp or ta nt f i e l d o p e r a t i o n s i n p i p e l i n e c o n s t r u c t i o n

    w i l l b e a f f e c t e d by Arc t i c e n vi ron m en t : p i p e b e n d i ng a nd g i r t h

    w e l d in g . To m in im iz e t h e e f f e c t o f l ow t e m p e ra t u r e s , s uc h

    4-3

  • 8/10/2019 Causes of Pipeline Failure Fracture

    34/60

    Transition ,Zone

    Increasing Temperatu re->

    Figure 4-1. Charpy Transi ti on Temperatur e (Azmi, 1978)

    4-4

  • 8/10/2019 Causes of Pipeline Failure Fracture

    35/60

    opera t ions usua l ly have been per fo rmed w i t h a prehea ted p i p e

    or i n a p r o t e c t i v e e nc l osu r e (Hanamoto, 1978, TAPS experience.).

    In view of t h e p a r t i c u l a r importance of flaw-free bends and

    welds f o r Arctic o f f sh o r e p ip e l in es , and t h e d i f f i c u l t y of

    access, 100-percent non- d es t r uc t iv e t e s t i n g o f b o th sh o uld be

    r eq u i r ed .

    The s a f e t y s t an d a r d s fo r Arctic o f f s ho r e p i p e l i n e material

    sh o u ld sp ec i f y a des ign requi rement f o r c rack -propagat ion resis-

    t a n c e a t t h e lowest an t i c i pa te d s er v i ce tempera tu re (LAST) and

    a t t h e h i g h e s t stresses encountered du r ing pi pe handl ing and

    f i e l d operations. However, t h e des igner shou ld be free t o

    select t h e mater ia l- acc ept anc e method, and a way should be l e f t

    open f o r f u t u r e material improvements.

    B. PRESSURE-TEST PROCEDURES

    P r e s s u r e- t es t p rocedures f o r milder cl imates are w e l l -

    e s t a b l i s h e d from experience w i t h many thousands of m i l e s of gas

    and o i l p i p e l i n e s b u i l t bo th onshore and of f sho re . Spec i a l

    p r o v i s i o n s must be made, however , f o r p ressu re- t es t in g under

    Arctic co n d i t i o n s su ch as those exper ienced dur ing t h e TAPS

    an d Pan a r c t i c p i p e l i n e c o n s t r u c t i o n s .

    Because t h e s h o r t Arct ic summer p e r i o d is t h e only t i m e

    when temperatures are above f reezing, many construct ion and

    i n s t a l l a t i o n a c t i v i t i e s , i nc l ud in g p i p e l i n e pr e ss u re t e s t i n g ,

    w i l l ha ve t o be done i n win ter a t sub- f r eez ing tempera tu res .

    P a s t e x pe r i en c e on i n s t a l l e d p i p e l i n e s i n d i c a t e s t h a t a 24-hour

    h y d ro t e s t is p r e f e r a b l e t o a gas t e s t when o pe ra ti ng above t h e

    NDT. Compared t o gases, non- compress ible l i qu i ds p rov ide

    greater test s a f e t y , easier leak d e t e c t i o n , a n d smaller p r e s s u r e

    va r i a t io ns when sub jec te d t o t e m p e r a t u r e d i f f e r e n t i a l s . If

    water is u se d f o r t e s t i n g a t s ub - z e r o t emp er a tu r e s , it must i n-

    c l u d e a f r eez ing-po int de pr es san t . c o n s i d e r a t i o n should be

    given t o any environmental impact r e s u l t i n g f rom t h e d i s p o s a l

    o r storage of t h a t medium.

    4-5

  • 8/10/2019 Causes of Pipeline Failure Fracture

    36/60

    I n a d d i t i o n t o any onshore pressure- t e s t of p i pe s e c t i o n s ,

    a p i p e l i n e i n s t a l l e d i n a t r ench shou ld be tested a f t e r b e i ng

    covered w i t h f i l l material. Cons idera t ion also should be given

    t o an a d d i t i o n a l p r e s s ur e t e s t before t h e p i pe is covered.

    Although t h e a d d i t i o n a l t e s t would involve increased cost and

    r e q u i r e a d d i t i o n a l t i m e , i t may be desirable i n v iew of t h e

    d i f f i c u l t i e s i n vo lv ed w i t h p o s s i b l e r e p a i r s of a b u r i e d p i p e .

    Ice cover and l i m i t e d a c c e s s i b i l i t y w ar ra nt t h a t a l l r easonab le

    s teps be t a k en pr omp tl y du r i n g p i p e l i n e i n s t a l l a t i o n t o a s s u r e

    t r o u b l e- f r e e f u t u r e o p e r a t i o n s . S a f e t y s t a n d a r d s for Arctic

    o f f s h o r e p i p e l i n e s s h o u l d re f lec t appropr ia te p r e s s u r e- t e s t

    requirements .

    C . PIPELINE DES IGN AND CONSTRUCTION

    Environmental hazards d i scu s sed i n Sec t io n 1 1 , and

    specia l c o n s t r u c t i o n a nd i n s t a l l a t i o n p r oc e du re s prepared by

    R . J . Brown and Associates, and adopted on th e Pana rc t i c o f f-

    shore gas l i n e i n t h e Canadian Arctic Sea d i scu s sed i n Sec t io n

    I , g ave an i n s i g h t i n to p ro blems p e cu l i a r t o t h e design and

    co n s t r u c t io n o f Arctic o f f sh o r e p i p e l i n e s .

    In view of these , requirements f o r p i p e l i n e d e s i g n , con-

    s t r u c t i o n and i n s t a l l a t i o n must c o n si d e r :

    0 Unique heat t r a n s f e r probl ems a s s o c i a t e d with

    of f sho re and onshore permaf ros t (Sec t i on 11.

    C.2).

    0 A d e t a i l e d and r e a l i s t i c l o g i s t i c s p la n f o r

    unexpected con t in genc ies due t o remoteness

    of t h e a r e a , t r a ns p o rt a t i o n d i f f i c u l t i e s

    a n d s c a r c i t y of l oca l manpower and equipment.

    0 The e f f e c t of h o s t i l e environment (low t e m-

    p e r a t u r e , poor v i s i b i l i t y ) on o pe r at o r

    e f f i c i e n c y and a b i l i t y t o perform work under

    4-6

  • 8/10/2019 Causes of Pipeline Failure Fracture

    37/60

    u n p ro t ec t ed co n d i t i o n s . T h e re f o r e , t r a i n i n g

    programs more s t r i n g e n t t h an t h o s e fo r s imilar

    work i n temperate climates might be necessary .

    The need f o r special equipment f o r permaf ros t

    t r en ch in g , for some d i ve r l es s oper a t i ons , and

    f o r i ce c u t t i n g , may r e q u i r e e a r l i e r des ign

    and development.

    U s e of s t r i n g e n t s a f e t y m ea sur es t o p re ve nt

    f i r e and /or exp los ion i f heated en c lo su r es

    are used f o r some operat ions .

    Ut i l i z a t i o n o f advanced n o n- des t ruc t ive

    i n s p ec t i o n t ec hn iq ue s u s i n g h y d r o s t a t i c t e s t s ,

    such as aco u s t i c emis s io n as a means of loca t-

    i n g defects and e s t i m a t i n g t h e l e v e l o f s e v er -

    i t y of t h e defect.

    p i p e l i n e c o n s t r u c t o r w i t h U n i t e d Sta tes and/or Canadian

    Arctic ex p e r i en ce b u i ld in g a p i p e l i n e would be cognizant of

    t h e sp ec i a l r eq u i r emen t s l i s t e d above. In t h a t case, a l l t h a t

    migh t be r e q u i r e d i n t h e s a f e t y s t a n d a r d s would be a g en e r a l

    i n t r o d u c to r y comment r eg a r d in g t h e items mentioned above.

    D. EXTERNAL LOADS

    I n d i s c u s s i n g e x t e r n a l loads on Arct ic of fshore p i p e l i n e s ,

    a t t e n t i o n w i l l be focused on t h e effects of pe r ma f r os t , ice-

    imposed l o a d s , wave an d cu r r en t ac t i o n , s e i smic i ty , and thermal

    expansion or c o n t r a c t i o n . (The l a s t cou ld be cons idered e i t h e r

    a n e x t e r n a l o r an i n t e r n a l l o a d . ) Each of these loads may add

    t o t h e r ad i a l and/or ax i a l stresses i n t h e p ipe an d th e r e f o r eshou ld be c o n s i d e r e d i n t h e p i p e l i n e d es ig n .

    4-7

  • 8/10/2019 Causes of Pipeline Failure Fracture

    38/60

    1. Permafrost

    The d i scu s s io n o f su bsea pe r maf r os t i n t h e Beauf o rt Sea

    ( Sec t io n I I . C . 2 ) noted t h a t ice- r ich permafros t e x i s t s i n a

    non- con tinuous f ash ion i n t h e sha l low waters of t h e Arctic

    Ocean, and t h a t i t becomes cont inuous and close t o t h e s u r f a c e

    nea r and on t h e shore . Consequen t ly , an o f f s hore Arctic pipe-

    l i n e i n s t a l l e d i n a tr en ch may enco unter dis con tin uous perma-

    f r o s t w i t h i n t h e dep th of t h e t r e n c h i n s h a ll o w waters and

    w i l l cr oss con t inuous permafros t i n its onshor e approach. The

    s u bs e a p e rm a fr o st , b e i n g c l o s e t o 0 C (32F) ( sea water temper-

    a t u r e is approximately minus 1 . 8 O C ) , is n e a r i ts thawing point

    and its eq u i l i b r iu m is determined by temperature and water

    s a l i n i t y . T h u s , a small amount of heat a d d i t i o n or e x t r a c t i o nmay change t h e p h y s i c a l cha r ac t e r i s t i c s o f t h e permafros t

    d r a s t i c a l l y , making i t t h e most d i f f i c u l t t e r r a i n problem

    (Phukan, 1979). I n g en e r a l , d i s tu r b ed p e r maf r o s t e i t h e r w i l l

    thaw i f heat is added ( a s w i t h a heated o i l p i p e ) , or w i l l

    grow by f r e e z i n g i f heat is e x t r a c t e d ( w i t h a c h i l l e d - g a s

    p i p e l i n e , f o r i n s t a n c e ) .

    The t hawing of ice- rich f ine- g ra in ed s o i l s u s u a l l y is

    accompanied by su r fa ce weaken ing and se t t l emen t . The se t t l e-ment w i l l be caused by t h e volume decrease of ice thawed i n t o

    water and by t h e t h a w c o n s o l i d a t i o n of t h e s o i l . Thaw con-

    s o l i d a t i o n h a s been c a l c u l a t e d ( C r o r y , 1973) from measured

    v a l u e s o f specific weight of dry- frozen, and dry- thawed s o i l .

    The r e s u l t i n g s u bs i d en c e ca n create down-drag loads on a p ipe

    and must be cons idered i n p ip e l in e des ign (Huck, 1979). I n

    d i sco n t in u o u s ice- r ich s o i l s i t u a t i o n s , a w a r m o i l p i p e cou ld

    behave l i k e a beam immersed i n a d e n s e f l u i d w i t h suppor t a t

    i n t e r v a l s a l o n g its l e n g t h (Walker, 1978). The l e n g t h of t h e

    unsupported p i p e spans , and t h e d e f l e c t i o n of t h e p i p e w i l l

    determine t h e r e s u l t i n g stresses. A mathematical model of

    such a p i p e has been de sc r ibe d (Walker, 1 9 7 8 ) , and p ipe stresses

    4-8

  • 8/10/2019 Causes of Pipeline Failure Fracture

    39/60

    due t o bending, s a g , temperature d i f f e r e n t i a l , and i n t e r n a l

    p r e s s u r e were c a l c u l a t e d .

    If th e thawing of permafrost r e su l t s i n formation of

    s l u r r y w it h a very l o w shea r stress, a gas p ipe o r an empty

    o i l p i p e l i n e may have a p o s i t i v e buoyancy and, wi thout adequate

    overburden weight, w i l l t end t o f l o a t and move upward. To

    prevent t h i s , a p ipe may be anchored t o t h e sea bottom o r pro-

    vided with weight coa t ing (usua l ly concrete) s u f f ic i e n t t o

    i n s u r e a ne gat iv e buoyancy under t h e most a dverse co ndit ions .

    A p o t e n t i a l thaw subsidence problem w a s encountered i n

    t h e c o n s tr u c t i on of t h e T ra n s Alaska p ip e l i ne . There, i n

    regions of p o t e n t i a l l y u ns t a b l e permafros t , t h e p ipe w a s ele-

    va t ed on ve r t i ca l suppor t members which were cooled by heat

    p ipes t o prevent loca l permafrost degradat ion, A s imi la r

    s o l u t i o n may not be p os s i b l e f o r Arctic o f f s h o r e p i p e l i n e s .

    Other means, s uch as p ipe i n s u l a t i o n o r gr anu la r bedding

    material ( J a h n s , 1973) would have t o be provided f o r p i p e l i n e

    s a f e t y when cross ing thaw- sensi t ive s o i l d . The effect of p ipe

    insu l a t i on on t h e s ize of a thaw plug forming around a p ipe is

    i l l u s t r a t e d i n F igu re 4-2. The importance of thaw subsidence

    on pipe i n t e g r i t y can be i l l u s t r a t e d by a n i n c i d e n t w i t h t h eTrans Alaska O i l Pipeline. Thawing of a n ice l e n s below t h e

    d i t c h i n one of its bur ied s e c t i o n s r e s u l t e d i n a sagging of

    t h e p ip e , followed by wrinkl ing and r u p t u r e ( O i l and G a s

    Journal , Ju ly 1979) .

    Frost heave can occur when a p i p e l i n e , having a tempera-

    t u r e below f re ez ing , crosses s a t u r a t e d s o i l s w i t h high water

    pore pr essu res . Any unfrozen Water w i l l t en d t o freeze around

    t h e p ipe forming a f r o s t bulb. The increase i n t h e volumewith phase change from water t o i c e , and t h e migrat ion of water

    t o t h e f r o zen / u n f r o zen i n t e r f a c e , may cause formation of segre-

    gated i ce l e n s e s , as shown i n t h e upper p a r t of Figure 4-3,

    and r e s u l t s i n f r o s t heave. The increase i n ice volume would

    4-9

  • 8/10/2019 Causes of Pipeline Failure Fracture

    40/60

    E

    s

    E 50

    0

    4

    3

    2

    1

    0

    F i g u r e 4 - 2 . Depth of Thaw for Insulated

    4-10

    and Bare Pipe at 2 and 3 Years

    (Jahns, 1973)

  • 8/10/2019 Causes of Pipeline Failure Fracture

    41/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    42/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    43/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    44/60

    (see Sec t io n I ) , may n o t be feas ib le i n those p a r t s of t h e

    Beaufor t Sea no t p ro tec ted by o f f s h o r e i s l a n d s .

    I n t h e sp r in g b reak - u p p e r io d , or i n t h e freeze- up dur ing

    t h e f a l l , a c c e s s i b i l i t y by barges is n o t p rac t ica l . Thus,

    p ipe- l a y in g i n t h e Arctic o f f s h o r e r e q u i r e s c a r e f u l p l a n n i n g

    and prov is ion of contingency f o r many op er at i on s. These in-

    c l u d e t r a n s p o r t a t i o n , f i e l d work, p i p e l i n e i n s t a l l a t i o n , and

    check-out procedures. The t echno logy t o do t h e work is a v a i l-

    ab le , b u t it shou ld be used i n an imagina t ive , innovat ive and

    well-planned manner.

    Ice s c o u r , d i s c u s s e d i n d e t a i l i n S ec t io n I I . B , is a rea l

    hazard t o p i p e l i n e s i n sha l low p a r t s of t h e Beaufor t Sea. As

    i l l u s t r a t e d i n Fi gu re 2-

    7 ( Sec t io n I I . B . 3 ) , t h e dep th o f s cour

    and its frequency are a f u n c t i o n of water de pt h, sc ou rs becom-

    i n g deeper b u t less f r eq u en t i n deeper waters. Some o f t h e

    moving blocks of i ce , w i t h large mass and i n e r t i a , c o u ld scrape

    t h e sea bot tom, a f f e c t i n g t h e s a f e t y o f p i p e l i n e s a nd cables

    u n l e s s spec ia l p r o t e c t i o n is provided ( Sec t i on I ) .

    Ice a c c r e t i o n , as related t o p i p e l i n e s y s t e m s , may affect

    t h e o p e r a t i o n of pumping s t a t i o n s by b locking compressor i n l e t s ,

    a problem en co u n te r ed i n t h e Prudhoe Bay development. The r a t e

    of i c e accret ion depends on a i r , on sea water temperature and

    o n t h e wind force, as shown i n Fi gur e 4-4. Ice accret ion is

    d i sc u ss e d f u r t h e r i n pa r t 5.2 of t h i s s e c t i o n . P i p e l i n e f a i l -

    ure modes due t o permafrost and i ce a re shown i n Fig u r e 4-5.

    3 . Waves and Cu r r en t s

    Waves and currents i n t h e Beaufor t Sea w e r e d i s c u s s e d i n

    Sec t io n I I . A , which s a i d t h e normal waves and currents are

    small when compared w i t h mi d- l a t i t u d e areas. Table 2-1 shows

    estimates of maximum (storm) wave h e i g h t s for v a r i ou s r e t u r n

    pe r io ds . These v a lu es are a l s o c o n s id e r a bl y lower than those

    4-14

  • 8/10/2019 Causes of Pipeline Failure Fracture

    45/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    46/60

    Ice Scour\

    ;(-' I- - --I' \.\- - ---

    Frost Heave

    1

    I . . . Frozen- Soil

    IceImpact

    at Shoreline

    I * .

    Subsidence

    - .

    Figure 4-5. Arctic Offshore Pipeline Failure Modes Due to Ice and Permafrost

  • 8/10/2019 Causes of Pipeline Failure Fracture

    47/60

    expe cted i n o t h e r OCS locat ions . P i p e l i n e b u r i e d i n t h e gr ound

    or o t h er w i se p r o t e c t e d a g a i n s t i ce f o r c e s woul d n o t b e a f f e c t e d

    by waves and c u r r e n t s ex ce p t i n t h e s u r f zone . Here, a p i p e

    may b e s u b j e c t e d t o s o i l mass movement or ve r t i c a l erosion o f

    s e v e r a l f e e t p e r y e a r , as r e p o r t e d i n t h e Outer C o n t i n e n t a l

    Shelf Environmental Assessment Program (OCSEAP Synthesis Report,

    1978) . I n t h e n e ar - shore area o f f t h e s u r f z o n e , waves a l s o

    may induce cyc l i ng stresses i n t h e sea bottom whi ch may ca us e

    a p r o g r e s s i v e b u i l d u p of p o re p r e s s u r e , l e a d i n g t o s o i l l i q u e-

    f a c t i o n and l o s s o f s u pp o rt f o r a p i p e c r o s s i n g such a r e g i o n

    (Seed and Rahman, 19 77) . Cons eque ntl y, du ri ng i ts p e r i o d of

    o p e r a t i o n al l i f e , t h e b u r i a l d ep th must be l a r g e enough t o

    p r e v e n t p i p e exposure i n a l l s u c h l o c a t i o n s .

    P e r h a p s t h e most s i g n i f i c a n t e f f e c t o f waves and c u r r e n t s

    w ou ld b e d u r i n g t h e p i p e- l a y i n g o p e ra t i o n . The t e c h no l o g y o f

    d e a l i n g w i t h t h i s pr ob lem w a s e s t a b l i s h e d i n t h e Gu lf of Mexico

    a nd N or th S ea o p e r a t i o n s . The a d d i t i o n a l h a z ar d o f f l o a t i n g

    ice i n t h e Arct ic o f f s h o r e may r e q u i r e some f u r t h e r p r e c a u t i o n s

    and con t ingency measures.

    4 . S e i s m i c i t y

    The seismic c h a r a c t e r i s t i c s of t h e B ea u fo r t S ea o f f s h o r e

    have been reviewed i n S e c t i o n I I . C . 4 . I n t h e s o u th e r n p a r t o f

    Alaska ( t h e Anchorage, Por t Va ldez area) h i g h- i n t e n s i t y , seis-

    m i c e v e n t s w e r e r e c o rd e d , and h ad t o be c o n s i d e r e d i n t h e

    d e s i g n of t h e T r a n s A l a s k a p i p e l i n e . On t h e o t h e r h and , t h e

    e s t i m a t e d s e i s m i c i t y o f t h e B e a u fo r t Sea i s of low magnit ude,

    w i t h a p r e d i c t e d 100-year return period and maximum l a t e r a l

    a c c e l e r a t i o n s o f o n l y 0 . 12 g ( E I A , 1 9 7 9 ). No a c t i v e f a u l t s

    w e r e i d e n t i f i e d i n t h e B e a uf o r t S e a o f f s h o r e . C o ns e qu e nt l y,p i p e l i n e s d es ig n ed t o w i t hs t a nd t h e e x t e r n a l l o a d s di s c u s s e d

    p r e v i o u s l y sh ou l d b e able t o resist p r e d i c t e d seismic e v e n t s .

    4-17

  • 8/10/2019 Causes of Pipeline Failure Fracture

    48/60

    5 . Thermal Expansion or Contract ion of a Pipe

    Although thermal expansion or contraction may not be

    considered an e x t e r n a l l o a d i n a bu r i ed and r e s t r a i n e d p i p e ,

    such stresses w i l l be generated as a r e s u l t of p ipe- t o- so i l

    in te rac t ion . Luscher e t a1 (1979) ana lyzed the case of f u l l y-

    r e s t r a ined , the rma l ly- expanding p ipe l ine s . The l o n g i t u d i n a l

    force F1 genera ted in such a case is:

    F1 = As x ( E x u x AT -V X U H + 0 . 5 x U H )

    F1

    =

    As (EaAT

    - v u H + 0 . 5aH)

    As - Pipe w a l l cross- sec t ion area

    E - Pipe material modulus of e l a s t i c i t y

    a - Pipe material c o e f f i c i e n t of thermal expansionAT - Temperature d i f f e r e n t i a l

    v - Poi s son ' s r a t i o

    aH

    - Hoop stress caused by a n e t i n t e r n a l p r es s u re

    The first t e r m i n t h e above equation represents thermal

    f o r c e , t h e second t h e Poisson ' s r a t i o effect, and t h e t h i r d

    t h e ax ia l f o r ce caused by i n t e r n a l p r e s s u r e .

    As a r e s u l t o f t h e longi tudina l compress ive force , a

    p ipe may buckle i n t h e d i r e c t i o n o f l eas t r e s t r a i n t . The

    i n t e r a c t i o n of t h e surrounding s o i l dur ing t h e overbending,

    sidebending and sagbending of a p ipe has been s tudied (Luscher

    e t a l , 1979). The p i p e movement w i l l be r e s t r a i n e d by t h e

    combination of i ts own w e i g h t , t h e overburden weight, and by

    s o i l shear strength. Once a bend starts i n a b u r i ed p i p e l i n e ,

    large r ad ia l forces can develop which are resisted by t h e

    surrounding s o i l . To quote Luscher e t a1 (1979):

    4-18

  • 8/10/2019 Causes of Pipeline Failure Fracture

    49/60

    I

    ...as r a d i a l disp lacements occur a t t h e b en d,t h e p i p e t e n d s t g move lon gi tu di na l l y through

    t h e s o i l toward t h e bend, and i n so doing

    mobilizes l o n g i t u d i n a l s h e a r stresses which

    reduce t h e long i tud ina l and hence t h e t r a n s-

    v e r s e force at t h e bend. S a t i s f a c t o r y des ign

    of t h e bends r e q u i r e s t h a t t h e a c t u a l r a d i a l

    bend force is i n e q u i l ib r i u m w i t h t h e resist-

    i n g forces provided by t h e sur rounding s o i l ,

    a nd t h a t p i p e stresses and p i p e s t r a i n s are

    with in a l lowable l i m i t s f o r r easo n ab le p i pe

    displacements.

    Should t h e compressive stresses i n t h e bend exceed t h e

    y i e l d s t r e n g t h of t h e p i p e mater ia l , a wr in k l in g of t h e p i p e

    may occur . US s a f e t y s tandards a l low no wr ink le bends in

    h ig h ly- s t r e s sed p i pe s (above 30% of SMYS, Sec. 192.315 and

    above 20% of SMYS , Sec. 195.212) . T h er e f o r e , s a f e design must

    en su r e a maximum bend curvature below t h e c r i t i c a l c u r v a t u r e

    of wrink l ing . For such a n a n a l y s i s , s o i l p r o pe r t i e s and t h e

    l o c a t i o n of p o s s i b l e thaw su b s id en ce ( o r f r o s t heave) areas

    must be known.

    In a r e c e nt f a i l u r e i n v e s t i g a t i o n of t h e TAPS ( O i l and

    G a s J o u r n a l , J u l y 1 9 7 9 ) , i t w a s p o s t u l a t e d t h a t t h e l i n e s ag ge d,

    wr inkled and f r a c t u re d because o f t h e e x i s t e n c e of unknown ice

    lenses below t h e p i p e . These thawed even tua l ly , and t h e p i p e ,

    covered w i t h a heavy overburden, sagged and buckled.

    The geometry of a n unbur ied p i p e u s u a l l y a l l o w s s u f f i -

    cient movement s o t h a t thermal stresses are n o t s i g n i f i c a n t .

    I n a coo led p i p e ( p ip e t emper a tu re lower i n o p e r a t i o n

    t h a n d u r i n g i n s t a l l a t i o n ) t h e first t e r m i n t h e e q u a t i o n i n D 5

    w i l l be n eg a t iv e . T h e r m a l l y induced compressive stresses i n

    t h e p i p e then w i l l be lower o r even may disappear . Thus, t h e

    4-19

  • 8/10/2019 Causes of Pipeline Failure Fracture

    50/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    51/60

    The co n s t r u c t io n o f t h e TAPS and t h e Pru dhoe Bay p ro-

    d u c t i o n f a c i l i t i e s h a s p r o v i d e d v a l u a b l e e x p e r i e n c e i n Arctic,

    l o g i s t i c s ( Jah ns , 1978) . Mar ine t r an sp or t by barges th rough

    t h e Beaufo r t Sea is economica l , bu t it r e l i e s on an ice-free

    water p a t h i n summer. I n some y e a r s , t h i s may n o t o c c u r .

    For b a r g e unload ing , causeways may provide the sa fe s t and

    l eas t economica l ly damaging means o f heavy l oad t r a n s f e r t o

    onshore si tes.

    Both f ixed wing a i r c r a f t ( H e r cu le s 130, Twin O t t e r ) and

    This mode

    h e l i c o p t e r s ( B e l l 205) f r e q u e n t l y were used f o r t r a n s p o r t o f

    l o a d s ( up t o 20 t o n s i n t h e case of t h e H e r c u l e s ) .

    is e x pe n si v e , r e q u i r e s c o n s t r u c t i o n of l a n d i ng s t r i p s or p ads ,

    and is s e n s i t i v e t o weather c o n d i t i o n s .

    R o l l i g o n s are t h e o ff - road veh ic le s most u sed on t h e

    North S lope . They can c r o s s t h e t u n dr a a f t e r i t d r i e s , a n d

    c a n o p e r a t e o n i ce as t h i n as 0.6m ( 2 f t ) because of t h e low

    g r o u n d p r e s s u r e t h e y e x e r t .

    E xc ep t f o r l i m i t e d us e o f t h e Canadian B e l l Voyager and

    a i r- cu s h ion ed b a r g es , a i r - c u sh i on v e h i c l e s( A C V ' s )

    have had

    r e l a t i v e l y l i t t l e u s e i n A las kan o i l / g a s o p e r a t i o n s .

    E x i s t i n g t r a n s p o r t a t i o n m e a n s are now adequa te t o suppor t

    e xp lo ra t or y a c t i v i t i e s , b u t are n o t s u f f i c i e n t f o r year - round

    s u p p o r t o f o p e r a t io n s i n o f f s h o r e o i l / g a s f i e l d s . For t h a t

    pu rpose , c o n s t r u c t i o n of ad d i t io na l permanent r oad s , causeways ,

    and perhaps a w i de r u s e of m ore r e l i a b l e A C V ' s would be r equ i red .

    Tab le 4- 1 p r e s e n t s a l i s t i n g o f t r a n s p o r t a t i o n m e a n s , concerns ,

    and gaps s t i l l e x i s t i n g i n t e chn o lo g y an d b a s e l in e d a t a .

    Summarizing t h e t r an s p o r t a t i o n p ro blem, f o u r modes of-

    t r a n s p o r t c an be co n s id e r ed :

    4-21

  • 8/10/2019 Causes of Pipeline Failure Fracture

    52/60

    TYPE

    MARINE

    ICESURFACE

    AIR

    AMPHIR

    rous

    A L L -

    WEATHERYEAR -

    AROUND

    EXAMPLES

    SURVEY SI.iIF S0

    SUPPLY BARGES

    0 TRUCKSSLEDS

    0 ROLLIGON

    F t X E D - W I N G

    0 I-1ELICOPTER

    0 ACV

    0

    CAUSEWAYS

    Table 4-1. Logistics Support

    CONCERNS

    0 SUMMERICE0 ODER. COST

    HAZARDS

    0 ICE THICKNESS@ SNOW DRIFTING

    ICEMOVEMENTRIDGING

    0 RUNWAY0 WEATHER

    DOWNTIMECOST

    0 RELLABILITY0 I E RIDGE

    CROSSING

    0fCE PRESSURE

    0 ICE OVERRIDE0 WAVE EROSION0 GRAVEL AVAIL.

    MAR INE BIOTA

    0

    11IDGE-C;ROSSIN GTECHNIQUES

    0 IMPROVE13

    0

    RE L I ARJL I T Y

    INCR EASF; >GND. CLEARANCE

    JMP14OVED

    I C E

    FORECAST

    0

    I E PJIESS

    O V ill R I I)EO C E A N O -

    C R A '1 11C

    LIFE

    a U E N T H I C

  • 8/10/2019 Causes of Pipeline Failure Fracture

    53/60

    I

    0 Marine, By Sh ip s, Barges and Tan ker s. The

    co n s t r a i n t on t h i s mode is t h e s h o r t s ea so n

    (approx imate ly 60 d ay s ) and t h e s h a l lo wn es s

    of t h e water i n t h e g e n t l y s l o p i n g B ea u fo r t

    Sea which p ut s a l i m i t a t i o n on t h e d r a f t o ff l o a t i n g v e ss e l s .

    0 T e r r e s t r i a l- Over land , There are c o n s t r a i n t s

    on t h i s mode of t r anspor ta t ion . F rom l a t e

    s p r i n g u n t i l t h e e a r l y f a l l ( June t o e a r l y

    O ct ob er ) t r a v e l a c r o s s t h e t u nd r a w i t h ' heavy-

    wheeled a n d t r a c k e d v e h i c l e s is n o t p e r m i t t e d .

    The f r a g i l i t y of t h e thawed ac t i ve vegega t ion

    layer above t h e permafros t would be a f f e c t e dby t h e passage o f any high-ground-pressure

    wheels or t r a c k s . Only a i r cu s h io n v eh ic l e s

    an d s p ec i a l l o w-ground-pressure r o l l i g o n s

    cou ld be cons idered .

    0 T e r r e s t r i a l Over Snow or Ice . T h i s mode of

    t r a n s p o r t a t i o n is p o s s i b l e i n w i n t e r when t h e

    sea ice is t h i c k enough t o sup por t moving

    loads . Add i t iona l suppor t a l s o may be ga ineda t some l o c a t i o n s by c o n s t r u c t i n g i ce roads

    or i c e ag g r eg a t e p ad s p e r mi t t i n g w i n t e r t r a n s-

    p o r t a t i o n of equipment and s u p p l i e s .

    0 A i r . One c o n s t r a i n t i n t h i s mode of t r a n s p o r -

    t a t i o n us ing f ixed -wing a i r c r a f t or h e l i c o p t e r s

    i s weather ( v i s i b i l i t y , wind, p r e c i p i t a t i o n ) .

    A second is t h e a v a i l a b i l i t y of landing and

    t a ke o ff s t r i p s , f o r fi xed -wing a i r c r a f t , whichi n w i n t e r c o u ld be b u i l t on i c e , b u t i n summer

    would require a subs tan t ia l amoun t of sand and

    g r a v e l .

    4-23

  • 8/10/2019 Causes of Pipeline Failure Fracture

    54/60

    G . COMMUNICATIONS

    The communication between of f shore and onshore f a c i l i t i e s

    r e l a t ed t o p i p e l i n e o p e r a t i o n concerns s a f e t y and s t r u c t u r a l

    i n t e g r i t y of p i p e l i n e and a s s o c i a t e d equipment; p i p e l i n e per-

    formance and o i l / g a s f low con t r o l ; and per sonnel s a fe t y and

    h e a l t h .

    In view of t h e d i f f i c u l t y i n t r a n s po r t a t i on and accessi-

    b i l i t y discussed above , r e l i a b l e communication channels, im-

    perv ious t o Arct ic weather cond i t ions are impor tant . Because

    of t h i s , i t would be prudent t o prov ide a backup t o t h e p r i m a r y

    communications system, an approach usually taken by p i p e l i n e

    o p e r a t o r s . For i n s t a n c e , t h e TAPS communications s ys t e m con-

    sists of p r imary microwave s ta t ions , a network backed up w i t h

    s a t e l l i t e- t r a n s m i t t e d s i g n a l s ( M e r r e t t , 1 9 7 9 ) , and radio. I n

    t h e proposed Alaskan Arctic G a s P i p e l i ne p r o j e c t , t h e communi-

    cation concept used microwave s ys t e m s c o n s i s t i n g of f i v e

    primary communication sites and four repeater si tes , one

    located between each o f t h e p r ima ry s i t e s (Alaskan Arctic Gas

    P i p e l i n e C o . 1974) . A s i mi l a r a p p r o a c h , u t i l i z i n g some of t h e

    microwave chann els of t h e TAPS w a s proposed by Alcan G a s .

    I n t h e ope ra t i on of pumping s t a t i o n s , development is

    under way t o automate some of t h e f u n c t i o n s t o r e d u c e t h e

    number of pe rson nel i n remote out po st s (Schaferman, 1974) .

    Any automated f u nc t i o n would need r e l i a b l e t r an smis s io n of

    s i g n a l s t o and from a c o n t r o l c e n t e r .

    The r equ i red technology and exper ience i n communications

    i n t h e Arctic environment is a v a i l a b l e , a n d i t would be desir-

    able f o r p i p e l i n e s a f e t y s t a n d a r d s t o emphasize t h e importance

    of t h i s f u n c t i on and t o stress t h e r e l i a b i l i t y aspects .

    4-24

  • 8/10/2019 Causes of Pipeline Failure Fracture

    55/60

    I

    H . SURVEILLANCE AND MONITORING

    The s t a t u s o f t ec hn ol og y f o r s u r v e i l l a n c e a nd mo n it o ri n g

    w a s d e s c r i b e d b r i e f l y i n S e c t i o n I . F . P er fo rma nc e o f t h e s e

    f u n c t i o n s f o r Arctic o f f s h or e p i p e l i n e s is c ons t r a i ne d by

    se ver e envi ronmenta l con di t ion s . Approximately 80 pe r ce n t of

    t h e t i m e , t h e Beaufor t Sea is covered w i t h non- s t a t i ona ry i ce .

    Consequent ly , t h e most p r a c t i c a l way t o p er f or m s u r v e i l l a n c e

    f o r any leaks is by a e r i a l means. However, g a s le ak ag e from

    a p i p e would no t be v i s i b l e u n l e s s i n s u f f i c i e n t l y l a r g e

    volume t o form a vapor c l oud c a pa b l e o f fo r c i n g i t s way through

    ice cracks. A n o t h e r p o s s i b i l i t y is t h a t a v i s i b l e d e p r e s s i o n

    might be formed i f t h e leakage w a s s u f f i c i e n t t o r up t ur e t h e

    i c e . M oni t or i ng o f p r e s su r e and f l ow- ra te measurements onb o t h a n of f sho re p l a t fo rm a nd a n onshore gas r e c e i v i n g p o i n t

    a l s o would i n d i c a t e a ma j o r l e a k , bu t no t i ts l oc a t i on . P rob-

    ably minor gas leaks would no t be de tec ted i n w i n t e r and would

    no t be found u n t i l unde rw a te r i n s pe c t i on w a s feasible.

    O i l leakage would be eas i e r t o detect even i n t h e w i n t e r

    se a son , If t h e i ce cover is porous and s u b j e c t t o c r a c k l i n g

    d u r i n g i t s movement, o i l cou ld f in d i ts way t o t h e su r f a c e and

    be v i s i b l e u n t i l covered b y snow. O i l accumulated under i c ewould be detectable i n t h e f u t u r e when i n f r a- r e d s e n s o r s , r ad a r ,

    or s o n i c d e v i ce s are deve loped more f u l l y .

    The effect o f c o r r o s i o n can be monitored by pumping a

    p ig w i t h t h e f l u i d , e qu ip ped w i t h s e n s o r s t o meas ur e w a l l

    t h i c kne s s . Reduct ion i n t h i c k n e s s t h u s can be d e t e c t e d b e f o r e

    c a us i ng t h e l e ak .

    During summer months (August, September) ice-free waters

    may e x i s t in t h e p i p e l i n e c o r r i d o r s . I n t h e f o r e s e e a b l e

    f u t u r e , s u c h areas would be c on f i ne d t o s ha l l ow waters u p t o

    a 20m (66 f t ) de p t h . These are t h e t r a c t s earmarked by the

    fe de ra l government t o be so l d by t h e s t a t e of Alaska i n t h e

    4-25

  • 8/10/2019 Causes of Pipeline Failure Fracture

    56/60

  • 8/10/2019 Causes of Pipeline Failure Fracture

    57/60

    I

    expec ted du r ing wh ich a l a y b a r g e can be u s ed ( F ig u r e 2- 4).

    If t r ench ing and p ipe- l ay in g i s done from i c e , t h e o p e r a t i o n .

    w i l l b e l i m i t e d by i ce movement which i n c r ea s e s i n mag n i tu d e

    w i t h t h e d i s t an ce f r o m t h e s h o r e l i n e ( S e c t i o n 1 I . B ) . I n t h e

    Nor th Sea , p i pe- l a y i n g o p e r a t i o n s f r e q u e n t l y are cu r t a i l ed by

    s to r ms , b u t a warning of s e v e r a l h o u r s u s u a l l y is p rovided .

    On t h e o t he r hand, i ce movement i n t h e Arctic canno t ye t be

    p r e d i c t e d w i t h s u f f i c i e n t a c c ur a c y, a nd t h e warning t i m e may

    be s h o r t or n i l .

    The same comments apply t o o p e r a t i o n a l p i p e r e p a i r s .

    Equipment r equ i red sho u ld be immedia tely av a i l ab l e t o t ake

    advantage of t h e f r ee water i n summer o r t h e n e a r - s t a t i o n a r y

    t h i c k ice i n t h e l a t e w i n t e r . In some cases a p i p e may n o t

    b e r e p a i r e d f o r a p e r i o d o f weeks o r mo nths , and t h i s s h o u ld

    be t a k e n i n t o a cc ou nt i n c o n s i d e r i n g t h e economics of an

    Arctic o f f s h o r e p i p e l i n e . Dua l p i p e l i n e s m ig ht be j u s t i f i e d .

    I n summing u p, t h e t ec hn ol o gy f o r p i p e l i n e i n s t a l l a t i o n

    i n t h e Arctic o f f s h o r e is a v a i l a b l e , b u t c a r e f u l p l a nn i ng and

    l o g i s t i c s u p p o r t is n eces s a r y f o r s a f e and economic p e r f o r -

    mance.

    J. ENVIRONMENTAL CONSIDERATIONS

    1. G a s and O i l Leaks

    The e n vi r o nm e nt a l i mp ac t of p i p e l i n e i n s t a l l a t i o n ,

    o p e r a t i o n , and p o s s i b l e g a s or o i l leaks caused by a f a i l u r e

    i n t h e p i p e l i n e i s c o n s i d e r e d f o r a l l US o f f s h o r e p i p e l i n e s .

    The un ique p rob lem assoc ia ted w i t h Arct ic o f f s h o r e i n s t a l l a-

    t i o n s is t h e d e t e c t i o n , c on ta in me nt a nd c o l l e c t i o n of any o i l

    l e a k i n i ce- covered or i c e- i n