13
Cavity Optimization for Compact Accelerator-based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma, J. Urakawa KEK: High Energy Accelerator Research Organization P. Karataev John Adams Institute at Royal Holloway, University of London G. Naumenko, A. Potylitsyn, L. Sukhikh Tomsk Polytechnic University K. Sakaue Waseda University

Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Embed Size (px)

Citation preview

Page 1: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Cavity Optimization for Compact Accelerator-based

Free-electron MaserDan Verigin

TPUIn collaboration with

A. Aryshev, S. Araki, M. Fukuda, N. Terunuma, J. UrakawaKEK: High Energy Accelerator Research Organization

P. KarataevJohn Adams Institute at Royal Holloway, University of London

G. Naumenko, A. Potylitsyn, L. SukhikhTomsk Polytechnic University

K. SakaueWaseda University

Page 2: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Compact Accelerator-based Free-Electron Maser

A.P. Potylitsyn, Phys. Rev. E 60 (1999) 2272.

Page 3: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

LUCX, compact linear accelerator

Energy 30 MeV ( = 62)

Intensity 1 nC/bunch

Num. of Bunches 100

Bunch spacing 2.8 ns

Bunch length <10 ps

Repetition rate, nominal 3.13 Hz

Emittance (round) 5 π mm•mrad

σx σy in SCDR chamber 200 μm, 200 μm

S. Liu, M. Fukuda, S. Araki, N. Terunuma, J.Urakawa, K. Hirano, N. Sasao, Nuclear Instruments and Methods A 584 (2008) 1-8.

Page 4: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Diffraction Radiation

Diffraction radiation (DR) appears when a charged particle moves in the vicinity of a medium

IDR ~ Ne

-20 -10 0 10 200.0

0.2

0.4

0.6

0.8

1.0

Nor

mal

ized

mic

row

ave

pow

er,a

rb.u

nits

M irrror orien tation an gle, deg

Page 5: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Coherent Diffraction Radiation

CDR is generated by sequence of charged bunches

ICDR ~ Ne2

Page 6: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

CDR on LUCX

2 6-way crosses2 4D vacuum

manipulation systems

2 aluminum mirrors

Page 7: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

CDR on LUCX: Cavity length scan

405 410 415 420 425 430 4350.02

0.03

0.04

0.05

0.06

0.07

0.08

No

rma

lize

d m

icro

wa

ve p

ow

er,

arb

. un

its

Distance between mirrors, mm

openedclosed

Page 8: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Transmission calculation

i

2

2 21 p

2

2 2

p

2 2

2 21

1p

2

2 21

p

2

*0

ep

N e

m

M.I. Markovic, A.D. Rakic. Determination of optical properties of aluminium including electron reradiation in the Lorentz-Drude model. Opt.and Laser Tech., v. 22, No. 6, 394-398, 1990.R.T. Kinasewitz, B.Senitzky. Investigation of complex permittivity of n-type silicon at millimeter wavelengths. J. Appl. Phys., v. 54, No. 6, 3394-3398, 1983.

2 2 Re( )n k 2 Im( )nk

22

2

1cos 1 sin

1cos 1 sin

i i

s

i i

nn

R

nn

1s sT R 2

0 2 2(1 2 cos )

ATT

A R AR

Al

Si

Page 9: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Mirror test bench

MaterialTransmission coefficient

Experiment TheoryAluminized mirror 0 0Doped silicon 0.42 0.42Normal silicon 0.45 0.42

5mm

ope

ning

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0

0

2 0

4 0

6 0

8 0

1 0 01 0 0 m m , f la t m ir ro r 5 0 m m , S ig m a -K o k i

P M H -5 0C 0 5 -10 -6 /1 8 m ir ro rS ilic o n p la te s

Tra

nsm

issi

on, %

M ir ro r p o s itio n , m m

p u re S iD o p e d S i

1 5 m m h o le in A l la y e r

Page 10: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

New mirror design

Aluminum, nm

Silicon, mkm

Transmission coefficient, %

2 100 6.5150 5.3300 4.0

3 100 3.4150 2.7300 2.1

4 50 2.7100 2.0150 1.6

1 2 3 4 5 6 7 8mm0.0

0 .2

0 .4

0 .6

0 .8

1 .0Tos

h 100 mkmSi

1 2 3 4 5 6 7 8, mm

0 .02

0 .04

0 .06

0 .08

0 .10

0 .12

0 .14

Tos

h 2 n m

Al

Mirrror diameter = 100 mmThickness of Si substrate should be more than 100 mkm for durability

Page 11: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Stimulation

ESCDR = a ECav – addition to electric field by stimulation (depends on electric field stored in cavity)

EDR – electric field generated by single bunch d – loss in resonator Etot,2 = d EDR + EDR + ad EDR = EDR (1 + d (1+a)) = EDR (1+b) – electric field

in resonator after second bunch Etot,i = EDR (1-bi)/(1-b) – electric field in resonator after i-th bunch

0 5 10 15 20 25

0

10

20

30

40

50

60

70

SB

D s

ign

al t

ail

inte

gra

l, a

rb. u

nits

Number of bunches

Equation y = A1*exp(x/t1) + y0

Adj. R-Squar 0.9202

Value Standard Err

C y0 0 0

C A1 1.9685 0.16468

C t1 6.9106 0.20078

0 5 10 15 20 25

0

200

400

600

800

Inte

nsi

ty, a

rb.u

nits

number of bunches

Model ExpGro1

Equationy = A1*exp(x/t1) + y0

Reduced Chi-Sqr

70,85437

Adj. R-Squa 0,99887

Value Standard Er

B

y0 -108,382 9,35563

A1 82,11966 5,68071

t1 9,49871 0,24892

Chitrlada Settakorn, Michael Hernandez, and Helmut WiedemannStanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, SLAC-PUB-7587 August 1997

Page 12: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

0 5 10 15 20 2540

60

80

100

120

140

160

180

200

220

Inte

nsi

ty, a

rb.u

nits

number of bunches

Model ExpDec1

Equationy = A1*exp(-x/t1) + y0

Reduced Chi-Sqr

4,97298E-28

Adj. R-Square 1

Value Standard Error

Intensity, arb.units

y0 -5,58956E-14 6,70031E-14

A1 217,47945 5,62185E-14

t1 16,4154 9,8284E-15

Cavity decay

Etot,i = EDR (1-bN)/(1-b) di-N – where N is number of bunches in train (i>N)

-20.0

n

0.0

20.0

n

40.0

n

60.0

n

80.0

n

100.0

n

120.0

n

0.00

0.02

0.04

0.06

0.08

0.10

Equation y=y0+A*exp(-x*t)

Adj. R-Square 0.9778

Value Standard Error

peakY y0 -8.64E-4 1.28E-4

peakY A 0.09063 0.0029

peakY t 2.95327E7 1.14E6

SBD signal On resonance SBD signal Off resonance Cavity free run Peaks Exponential decay fit

SB

D s

ign

al,

V

Time, s

A. Aryshev, et. al., IPAC’10, June 2008, Kyoto, Japan, MOPEA053

Page 13: Cavity Optimization for Compact Accelerator- based Free-electron Maser Dan Verigin TPU In collaboration with A. Aryshev, S. Araki, M. Fukuda, N. Terunuma,

Thank you for attention