55
CDC Summary Shoji Uno (KEK) July-8, 2009

CDC Summary

  • Upload
    jerome

  • View
    72

  • Download
    0

Embed Size (px)

DESCRIPTION

CDC Summary. Shoji Uno (KEK) July-8, 2009. Baseline Design. sBelle. Belle. Tentative drawing by Kohriki-san. Connection regions 1. Endplate and Outer cylinder. Main and Conical (Backward). Connection regions 2. Main and Conical. Backward. Forward. Connection regions 3. - PowerPoint PPT Presentation

Citation preview

Page 1: CDC Summary

CDC Summary

Shoji Uno (KEK)    

July-8, 2009

Page 2: CDC Summary

Baseline Design

Belle

sBelle

Page 3: CDC Summary

Tentative drawing by Kohriki-san

Page 4: CDC Summary

Connection regions 1

Endplate and Outer cylinder Main and Conical (Backward)

Page 5: CDC Summary

Main and Conical

Connection regions 2

Forward Backward

Page 6: CDC Summary

Conical and Small cell

Small cell and Inner cylinder

Connection regions 3

Page 7: CDC Summary

Wire tension and gravity sag

Nanae Taniguchi (KEK)

Page 8: CDC Summary

8

sag calculation

tension(total

tension)

80g(4.4 ton)

100g(5.2 ton)

120g(6.2 ton)

sag(field) - sag(sense) 84.8μm 28.4μm -9.2μm

sense wire : 30μm, 50gw

wire length : 2.4 m

y

horizontal cell

Page 9: CDC Summary

9

wire tension and gravity sag

Current Belle CDC

• wire tension is determined to keep the gravity sag of sense and field wire same

• 50gw for sense wire and 120gw for field wire

• total tension = (50gw x 8400) + (120gw x 8400 x 3) = 3.4 ton

Belle-II

• number of sense wire: 8400 →15104

• total tension = (50gw x 15104) + (120gw x 15104 x 3) = 6.2 ton @ same weight

• reduce total tension : 120gw → 80gw (base line design) , 6.2 ton → 4.4 ton

• however difference of gravity sag is larger

Page 10: CDC Summary

10

HV=2.3kV (sense wire)B = 1.5 T

C2H5:50% He:50%

simulation using Garfield

10

±0.1mm

Page 11: CDC Summary

11

current Belle position resolution

~ 100μm

-0.1mm

+0.1mm

tension(total tension)

80g(4.4 ton)

sag(field) - sag(sense) 84.8μm

sense wire : 30μm, 50gw

(x: distance from sense wire at nominal case)

Page 12: CDC Summary

Mechanical calculations of the

CDC end-plates

KEK H. Yamaoka

July 8th, '09KEK H. Yamaoka

Page 13: CDC Summary

0.3

kg/mm1073.0EEE

:Al

0.3

kg/mm769G

kg/mm101.1E

kg/mm100.2E

kg/mm102.0E

Cyl.r Outer/Inne:CFRP

12

0.3

5769kg/mmG

kg/mm100.2E

kg/mm100.2E

kg/mm101.5E

Plates End:CFRP

xy

24zr

xy

2xy

24z

24

24r

xy

2xy

24z

24

24r

xy

rxy

EG

Material propertiesLoad conditions

Constraints

R: Free: FixedZ: fixedRotR: FixedRot: FreeRotZ: fixed

Total: 3725kg

Definitions for FEM

No inner cylinder

Page 14: CDC Summary

2.9mm 2.7mm

31MPa

Results - End-plates: 10mm-thick(Al), Outer-cylinder(CFRP): 5mm-thick.

Deformation

Stress

Deformation

Stress

<107Mpa : allowed limit

<5mm : Belle-CDC

Page 15: CDC Summary

Material: CFRP

Dia. 340mm

Length: 1000mm E : 110GPa : 0.3

2322kg

4.54.01702

2

:load Buckling

545.4

170

4.0101.16.035.01

170

4.0

105.1

6.0C

0.35

is , therefore425, 170/0.4R/t

fig.10 from Determined :

buckling elasticfor 1 :

stress Buckling :

2

4

24

c

crcr

ccr

cr

ccr

rtP

MPammkg

R

EtC

mmR

mmt

mmkgE

R

EtC

12474kg

6.148.01702

2

:load Buckling

14614.6

170

8.0101.16.047.01

170

8.0

105.1

6.0C

0.47

is , therefore212.5, 170/0.8R/t

fig.10 from Determined :

buckling elasticfor 1 :

stress Buckling :

2

4

24

c

crcr

ccr

cr

ccr

rtP

MPammkg

R

EtC

mmR

mmt

mmkgE

R

EtC

t=0.4mm t=0.8mmBuckling strength: Inner cylinder

Wire tension: 371kg

Safety Factor : 6

Page 16: CDC Summary

Readout board spaceTest board 16ch 48ch(~300boards in total)

20cm

17.5

cm

Should be fit in volume

Page 17: CDC Summary

CDC readout system status

MT 2009 July 7

Page 18: CDC Summary

Test board for test(prototype readout card will be designed based on this.)

Small tube chamber (tungsten wire)Fe55 5.9 keV X-rayGas(Ar90%+CH410%), P10 Gas

1.65kV

16ch

Ampshaper

AD9212x2

TDC&L1 buf

RocketIO

RMS=0.47ns

This AmpShaper was developed for other application.Modification will be done by Dr. Taniguchi.

FPGA-TDC has been used for J-PARC.

Firmware design will be done by Dr.Uchida

PCB was designed by Mr. Saito and Mr. Ikeno

RocketIO will be tested by Dr. Igarashi

Page 19: CDC Summary

FPGA Block diagram

FADC I/FADC

TDC ASD

Ring buffer

5usec500nsec window

ReadoutFIFO

Q(sum)&

Data formatter

SiTCPOr

RocketIOI/F

Slow controlDAC, ADC, Ring buffer etc

Trigger

Page 20: CDC Summary

Pre-AMP test

Nanae Taniguchi (KEK)

Page 21: CDC Summary

21

pre-Amplifier

Hybrid(NEW+)

Rise time is limited by chamber signal → not need to be so fast → lower electric power

The modified PZC cause noise

Found overshoot

Page 22: CDC Summary

22

set upsmall tube chamber

• p10 gas (Ar 90% + CH4 10%)

• Fe55 5.9 keV X ray (~3xMIP)

• HV = 1.575 kV (below saturation point)

make uniform each pulse height

Page 23: CDC Summary

23

signal shape

Belle AMP

12dB 13dB 3dB1dB

Hybrid(NEW+)

make uniform each pulse height with attenuator

Page 24: CDC Summary

24

definition

Resolution =

Noise level =

Fit to Fe55 data with Double Gaussian

Fit to pedestal data with Single Gaussian

pedestal(random TRG)

Fe55

Page 25: CDC Summary

25

comparison

AMP resolution[%] noise level[%]

7.58 1.64

8.10 0.61

7.46 0.41

8.57 1.11

7.74 1.16

Hybrid(NEW+)

3rd and 4th Hybrid AMP have lower noise

Noise level is enough low

• resolution is worse in actual situation

Page 26: CDC Summary

26

set up

Timing resolution measurement with pulse generator

TDC

• 500ns range

• 0.125ns/ch

start

stop

51Ω1kΩ

0.1μF

Page 27: CDC Summary

27

Resolution

Fit to data with Double Gaussian

Resolution is calculated as weighted sigma

TDC

• range 500ns

• 0.125ns /ch

TDC distribution

Page 28: CDC Summary

28

comparison Resolution [ns]

AMP rise time ~20ns ~ 40ns

0.64 1.53

0.73 1.76

0.64 1.54

0.79 1.91

0.65 1.59

Hybrid(NEW+)

4th Hybrid AMP is comparable with (better than) Belle AMP

Page 29: CDC Summary

Summary of ADC/TDC measurement

4th Hybrid AMP is usable for base design

We discuss about parameters for prototype of ASIC AMP with T-Taniguchi-san (electronics group)

• We will have meeting again before making ASIC pre-AMP

another plan of TDC measurement using laser @ TUAT

• signal from chamber

• master student is working for the test

Finally, We must do beam test with ASIC AMP

• MIP signal and He/C2H6 gas

Page 30: CDC Summary

Schedule(short term)Firmwarew/o rocket IO

Amp shaper

Test with rocket IO

End of Aug.

prototyping

End of Sept. Nov.

modification

Preparation for beamtest

Design and feedback submission

PCB design

Uchida

Taniguchi, Shimazaki

Nakao, Igarashi

Saito, Ikeno

Page 31: CDC Summary

My Personal Plan for Construction

Page 32: CDC Summary

Backup

Page 33: CDC Summary

Main parameters Present Future

Radius of inner boundary (mm) 77 160Radius of outer boundary (mm) 880 1096

Radius of inner most sense wire (mm) 88 168Radius of outer most sense wire (mm) 863 1082

Number of layers 50 58Number of total sense wires 8400 15104

Effective radius of dE/dx measurement (mm) 752 928Gas He-C2H6 He-C2H6

Diameter of sense wire (m) 30 30

Page 34: CDC Summary

Introduction

Mechanical calculations of CDC end-plates was carried out. Load: Wire tension ~4000kg in total. Material: Outer cylinder CFRP End plates Aluminum, CFRP Assumption: All wire tension is supported by the outer cylinder.

CDC

End-plate

Deformation(< 5mm), Stress?Buckling strength?

~R

109

0

~2400

Page 35: CDC Summary

Wire configuration Given by Taniguchi-san

Page 36: CDC Summary

Distributions of wire tension in R-direction

Page 37: CDC Summary

37

Wire tension and gravity sag

small gravity sag, large total tension

distance between sense wire and field wire has z-dependence

asymmetric electric field

• asymmetric X-t curve

same distance from sense wire(x), different drift time

affect the position resolution

gravity sag

field

sense

field

r

horizontal cell

Page 38: CDC Summary

38

δx nominal

move sense wire position by amount of +/- 0.1mm

put an electron along x-axis

calculate the distance from sense wire and drift time

obtain X-t curve

calculate δx

• δx is difference of x at same timing

Page 39: CDC Summary

39

current Belle position resolution

~ 100μm

-0.5mm

+0.5mm

-1.0mm

+1.0mm

-0.1mm

+0.1mm

tension(total tension)

80g(4.4 ton)

sag(field) - sag(sense) 84.8μm

sense wire : 30μm, 50gw

(x: distance from sense wire at nominal case)

Page 40: CDC Summary

Calculation of deformation and etc

Deformation of Aluminum endplateThickness of endplate 10mm

Tension of field wire 120g 80gGravitational sag, Sense : 190m(50g),

Field:300m(80g)Unequal sag Nane-san’s talk

Total tension ~4ton Deformation Yamaoka-san’s talk  

   Stress calculation

Thickness of outer cylinder CFRP : mm  Transition structure between endplate and

outer cylinderBucking calculation for inner cylinder

Larger tension for many wires ( ~400kg) Yamaoka-san’s talk

Page 41: CDC Summary

WeightEndplate  

Al, Thickness : 10mm 110kgx2 = 220kg Outer Cylinder

CRRP, Thickness : 5mm 210kg

Electronics Board G10, 48ch/board

0.3kgx315 = 95kg

Page 42: CDC Summary

Wire configurationSo far,

8(A),6(U),6(A),6(V),6(A),6(U),6(A),6(V),8(A), 58 layers in total

But, Readout board 64ch/board 16x4 No good

assignment 48ch/board 16X3

8(A) 2(A)+6(A) inner most super layer2(A) special treatment 160x2=320 :

48x7=336 8(A) 6(A) outer most super layer

56 layers in total Good assignment Other good idea is highly welcome.

Page 43: CDC Summary

Calculations of buckling strengthRef: E.H.Baker, et. al. 'STRUCTURAL ANALYSIS OF SHELLS'

The buckling strength of the outer/inner cylinder is calculated.

Page 44: CDC Summary

Assumptions

Material: CFRP

Dia. 2190mm

Length: 2328mm

E : 110GPa

: 0.3

315039kg

9.130.510902

2

:load Buckling

13913.9

1090

4.0101.16.046.01

170

5

101.1

6.0C

0.46

is , therefore218, 1090/5.R/t

fig.10 from Determined :

buckling elasticfor 1 :

stress Buckling :

2

4

24

c

crcr

ccr

cr

ccr

rtP

MPammkg

R

EtC

mmR

mmt

mmkgE

R

EtC

8218kg

2.10.110902

2

:load Buckling

121.2

1090

0.1101.16.02.01

1090

0.1

101.1

6.0C

0.2

is , therefore1090, 1090/1.0R/t

fig.10 from Determined :

buckling elasticfor 1 :

stress Buckling :

2

4

24

c

crcr

ccr

cr

ccr

rtP

MPammkg

R

EtC

mmR

mmt

mmkgE

R

EtCIf t=5.0mm

If t=1.0mm

Wire tension: 3725kg

Buckling strength: Outer cylinder

Page 45: CDC Summary

Outer Cyl.

CFRP Thikness Deformation Stress Deformation Stres5mm 2mm 17.6mm 312MPa 13.0mm 616MPa

5 3 11.6 180 8.3 3275 4 8.6 118 6.0 1935 5 6.8 85 4.7 1235 6 5.5 66 3.7 865 7 4.6 53 3.1 735 8 3.8 44 2.6 635 9 3.3 37 2.2 555 10 2.9 32 1.9 48

1 10 3.5 33 2.5 512 10 3.0 33 2.2 503 10 3.2 33 2.0 504 10 3.0 32 2.0 49

End Plates(Al) End Plates(CFRP)

Tensile(t) N/mm2

Yeild(σy) N/mm2

F -1 F-1=σy 205 195 205F-2 F-2=0.7*σt 280 161 364F Smaller value 205 161 205

Allowable stress(MPa)Long Short Long Short Long Short

Tension ft=F/1.5 137 205 107 161 137 205

Shearing fs=F/(1.5√ 3) 79 118 62 93 79 118

Bending fb=F/1.3 158 237 124 186 158 237

Hertz stress fp=F/1.1 186 280 146 220 186 280

Bolt(Tension) ft=F/2 103 154 81 121 103 154

Bolt(Shear) fs=F/(1.5√ 3) 79 118 62 93 79 118

Bolt(Hertz) fp=1.25F 256 384 201 302 256 384

Roller fp=1.9F 390 584 306 459 390 584

Welding(PT) fs=F/(1.5√ 3) 79 118 62 93 79 118

Welding(No PT) fs=0.45F/(1.5√ 3) 36 53 28 42 36 53

Long term:

Short term:

400220

230195

520205

StainlessMaterial SS400

SUS304AluminumA5052-H32

Conditions

Static load

Seismic, Thermal load

Long x 1.5

Calculation results in various parameters

Allowable stress ( Japanese: Koukozo sekkei kijun ) This criterion was used for the mechanical design of the Belle.

Page 46: CDC Summary

- If deformation has to keep less than 5mm,thickness of end-plates should be thicker than 7mm(Al). Calculation at the practical configuration will be necessary.- To know the mechanical properties of CFRP is important, We have contacted to a CFRP fabricator.

Configuration

END

ConclusionMade by Kohriki-san

http://wiki.kek.jp/display/~yamaokah/CDC

Page 47: CDC Summary

層 R(mm) Z+(mm) Z-(mm) 数   角度 1 A 172.0 602.6 -337.9 160 0.0 2 A 182.0 635.3 -355.2 160 0.0 3 A 192.0 668.0 -372.6 160 0.0 4 A 202.0 700.7 -389.9 160 0.0 5 A 212.0 733.4 -407.2 160 0.0 6 A 222.0 766.1 -424.5 160 0.0 7 A 232.0 798.8 -441.8 160 0.0 8 A 242.0 831.5 -459.2 160 0.0 9 U 266.0 910.0 -500.7 160 37.0 10 U 282.0 962.4 -528.4 160 37.1 11 U 298.0 1014.7 -556.2 160 37.3 12 U 314.0 1067.0 -583.9 160 37.4 13 U 330.0 1119.4 -611.6 160 37.4 14 U 346.0 1171.7 -639.3 160 37.5 15 A 368.0 1441.4 -641.4 192 0.0 16 A 384.0 1444.1 -644.1 192 0.0 17 A 400.0 1446.9 -646.9 192 0.0 18 A 416.0 1449.7 -649.7 192 0.0 19 A 432.0 1452.4 -652.4 192 0.0 20 A 448.0 1455.2 -655.2 192 0.0 21 V 464.0 1458.0 -658.0 224 -36.9 22 V 480.0 1460.7 -660.7 224 -38.1 23 V 496.0 1463.5 -663.5 224 -39.3 24 V 512.0 1466.3 -666.3 224 -40.4 25 V 528.0 1469.0 -669.0 224 -41.6 26 V 544.0 1471.8 -671.8 224 -42.7 27 A 562.0 1474.9 -674.9 256 0.0 28 A 580.0 1478.0 -678.0 256 0.0 29 A 598.0 1481.1 -681.1 256 0.0 30 A 616.0 1484.3 -684.3 256 0.031 A 634.0 1487.4 -687.4 256 0.0 32 A 652.0 1490.5 -690.5 256 0.0 33 U 670.0 1493.6 -693.6 288 46.8 34 U 688.0 1496.7 -696.7 288 47.9 35 U 706.0 1499.8 -699.8 288 49.0 36 U 724.0 1502.9 -702.9 288 50.1 37 U 742.0 1506.0 -706.0 288 51.2 38 U 760.0 1509.1 -709.1 288 52.3 39 A 778.0 1512.3 -712.3 320 0.0 40 A 796.0 1515.4 -715.4 320 0.0

層 R(mm) Z+(mm) Z-(mm) 数   角度

41 A 814.0 1518.5 -718.5 320 0.0 42 A 832.0 1521.6 -721.6 320 0.0 43 A 850.0 1524.7 -724.7 320 0.0 44 A 868.0 1527.8 -727.8 320 0.0 45 V 886.0 1530.9 -730.9 352 -56.0 46 V 904.0 1534.0 -734.0 352 -56.9 47 V 922.0 1537.2 -737.2 352 -57.9 48 V 940.0 1540.3 -740.3 352 -58.9 49 V 958.0 1543.4 -743.4 352 -59.9 50 V 976.0 1546.5 -746.5 352 -60.8 51 A 994.0 1549.6 -749.6 384 0.0 52 A 1012.0 1552.7 -752.7 384 0.0 53 A 1030.0 1555.8 -755.8 384 0.0 54 A 1048.0 1558.9 -758.9 384 0.0 55 A 1066.0 1562.0 -762.0 384 0.0 56 A 1084.0 1565.2 -765.2 384 0.0 57 A 1102.0 1568.3 -768.3 384 0.0 58 A 1120.0 1571.4 -771.4 384 0.0

張力分布 ( リスト )

Z+

1

X

Y

Z

End plates(Al): t10mm, Outer cyl.(CFRP): t5mm

JUN 23 200914:13:28

NODES

内筒なしZ+

R+(X+)

Page 48: CDC Summary

Prototype CDC readout card (FY2009)# of channels(Total: ~ 15000)

48 ~ 64ch/boardAmp shaper

Shaping time: ~ 100nsecGain: ~ 1V/1pC ( TBD)

Dynamic range:2pC ( TBD)TDC FPGA TDC

Timing resolution:1nsecADC

Resolution:10bitSampling rate: ~ 32MHz

L1 bufferDepth:5usec max

Test board was developed to determine above paramsusing test chamber.

Page 49: CDC Summary

Specification of Test board(detail)Analog(Amp-shaper for DB-decay exp)

Peaking time: ~ 50nsec OKPulse width: ~ 200nsec OKGain : 8V/pC 1 ~2 V/pC

Dynamic range : 2V max OKNoise : ~ 2500 e @ 40pF OK

FunctionADC 10bit 32MHz

TDC 1nsecL1 buffer : 5usec max

Two modes for data formatWaveform data readout mode

Compression mode Timing and Q

These values will be confirmed by beam test

BLR modification has been done

Page 50: CDC Summary

Amp shaper modification

CMOS digital

BLR

Analog buffer

Amp shaper

Bias circuit

Present Amp shaper

We started development of Amp-shaper for BELLEII CDC.

Page 51: CDC Summary

FunctionL1 buffer length : 5usec Max variable

Newold

Trigger

Window(for Q info:) 500nsec variable

Timing data and Q or waveform data areTransferred to external interface

ADC waveform

Comparator output

Data format will be determined within a month

Page 52: CDC Summary

52

AMP study

Determine parameters for prototype of ASIC AMP

• Test some kinds of Hybrid AMP before making ASIC

• Compare with current Belle AMP

Belle-II AMP is required to be comparable or better than current one

purpose

Page 53: CDC Summary

53

signal shape

Belle AMP

12dB 13dB 3dB1dB

each pulse height corresponds to that of Fe55 X-ray signal at 1.575 kV

rise time ~ 20ns and ~ 40ns

Hybrid(NEW+)

pulse generator (reverse)

same pulse for all AMP

Page 54: CDC Summary

conclusion

parameters of prototype ASIC are almost decided

base design of Wire tension are determined

structure analysis by H. Yamaoka-san

Wire configuration and Endplate

under discussion now

Plan structure test of CFRP

Page 55: CDC Summary

conclusion

parameters of prototype ASIC are almost decided

base design of Wire tension are determined

structure analysis by H. Yamaoka-san

Wire configuration and Endplate

under discussion now