CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

Embed Size (px)

Citation preview

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    1/49

    LECTURE 3

    F lexural Analys is of Prestressed Beams-I I

    CE 407-Prestressed Concerte Structures

    1

    PRESTRESSED CONCRETE STRUCTURES

    (CE 407)

    سم ا لرحن لرحيم

     By

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    2/49

    Contents

    2016CE 407-Prestressed Concerte Structures

    2

    Objectives of the present lecture

    Cracking load and cracking moment

    Flexural strength analysis

    Failure of Prestressed beams

    Flexural strength estimation by strain compatibility  Unbonded tendons

     Approximate equations for unbonded tendons

    Code provisions for bonded tendons

    Further reading

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    3/49

    Objectives of the Present lecture

    2016CE 407-Prestressed Concerte Structures

    3

    To calculate cracking moment at a given section ofa prestressed concrete beam.

    To estimate flexural strength of prestressed

    concrete beams.

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    4/49

    Cracking Load

    2016CE 407-Prestressed Concerte Structures

    4

    The relation between applied load and steel stress in a typical well- bonded pretensioned beam is shown in a qualitative way.Performance of a grouted post-tensioned beam is similar.

     When the jacking force is first appliedand the strand is stretched betweenabutment, the steel stress is f  pj . Upon

    transfer of force to the concretemember, there is an immediatereduction of stress to the initial stresslevel f  pi , due to elastic shortening ofthe concrete. At the same time, theself weight of the member is caused toact as the beam cambers upward. It

     will be assumed here that all time-dependent losses occur prior tosuperimposed loading, so that thestress is further reduced to theeffective prestress level f  pe.

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    5/49

    Cracking moment

    CE 407-Prestressed Concerte Structures

    5

     

      

     

    2

    21r 

    ec

     A

     P 

    c

    e

    h

    e

    ct

    c b

    1

    1

    2

    r  f  

    2

    e P 

    cr e   M  P  

    Concretecentroid

    0

    The moment causing cracking may easily be found for a typical beam by writing the equation for the concrete stress at the bottom face, based on thehomogeneous section, and setting it equal to the modulus of rupture:

    b

    cr 

    c

    e  f  S 

     M 

    ec

     A

     P  f    

     

      

     

    2

    22 1

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    6/49

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    7/49

    Problem-1

    CE 407-Prestressed Concerte Structures

    7Calculate the cracking moment and find the

    factor of safety against cracking for thesimply supported I-beam shown in crosssection and elevation. The beam has to carrya uniformly distributed servicesuperimposed load totaling 8 kN/m over the12 m span, in addition to its own weight.Normal concrete having density of 24kN/m3 will be used. The beam will bepretensioned using multiple seven-wirestrands; eccentricity is constant and equalto 13.2 cm. The prestressing forceimmediately after transfer (after elasticshortening loss) is 750 kN. Time –

    dependent lasses due to shrinkage, creep,and relaxation total 15% of the initialprestressing force. Find the concrete flexuralstresses at mid span and support sectionsunder initial and final conditions.The modulus of rupture of the concrete is2.4 MPa.

     P 

    105

    10

    15

    15

    5

    10

    30

    centroidConcrete

    centroidSteel

    2.13

    Dimensions in cm

    2.13e

    kN/m8   l d    ww

    m21

     P P 

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    8/49

    Solution

    CE 407-Prestressed Concerte Structures

    8

    For pretensioned beams using stranded cables, the difference betweensection properties based on the gross and transformed section is usuallysmall. Accordingly, all calculations will be based on properties of thegross concrete section. Average flange thickness will be used.

    23

    3

    92

    369

    49453

    23

    232

    mm106.4210110

    1069.4

    mm106.151030

    1069.4

    mm1069.4cm1069.4351012

    1

     

    )2/5.125.17(5.12305.123012

    12

    mm10110cm11001035)5.1230(2

    :PropetiesArea

     

     

     

     

     

      

     

    c

    c

    ct b

    c

    c

    c

     A

     I r 

    c

     I  Z  Z 

     I 

     I 

     A10

    5

    10

    15

    15

    5

    10

    30

    centroidConcrete

    centroidSteel

    5.12

    5.17

    5.17

    5.12

    2.13

    60

    Dimensions in cm

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    9/49

    Contd.

    CE 407-Prestressed Concerte Structures

    9

    kN.m1.212 N.mm101.2121068.1741044.37

    132300

    106.42105.637106.154.2

    kN5.63775085.085.0

    666

    336

    2

     

      

     

     

      

     

    cr 

    b

    ebr cr 

    ie

     M 

    ec

    r  P  Z  f  M 

     P  P 

    14.1144

    052.471.2120

     isloadlivein theincreaseanrespect towithexpressedcracking,againstfactorsafetyThe

     Dcr 

    d  Dcr cr 

     M 

     M  M 

     M 

     M  M  M  F 

     kN.m52.47

    8

    1264.2

    8

    kN/m2.64241010110kN/m24weightself 22

    0

    -6330

    l w M 

     Aw

     D

    c

    kN.m1448

    128

    8

    load)livetodueisloaddsupeimposeentirethat the(assumedkN/m8

    22

    l w M 

    w

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    10/49

    CE 407-Prestressed Concerte Structures 10

    Flexural Strength Analysis…..

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    11/49

    Stress-strain curve for Prestressing steel

    CE 407-Prestressed Concerte Structures

    11

    In the absence of a well-defined yield stressfor prestressing steels of wire and strandtype, the yield stress is defined as the stressat which a total extension of 1% is attained.For alloy bars, the yield stress is taken asequal to the stress producing an extensionof 0.7%.

     f  pe, ε pe = stress and strain in the steel due to effectiveprestress force P e after all losses.

     f  py, , ε py = yield stress and yield strain f  pu, ε pu=ultimate tensile strength and ultimate strainof the steel f  ps, ε ps = stress and strain in the steel when the beamfails.

    Prestressing steels do not show a definite yield plateau. Yielding develops graduallyand , in the inelastic range, the stress-strain

    curve continues to rise smoothly until thetensile strength is reached.

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    12/49

    Failure of Prestressed Beams

    CE 407-Prestressed Concerte Structures

    12

    For under-reinforced beams, failure is initiated by yieldingof the tensile steel.The associated large tensile strains permit widening of flexuralcracks and upward migration of the neutral axis.

    The increased concrete stresses acting on the reducedcompressive area result in a “secondary” compression failure ofthe concrete, even though the failure is initiated by yielding.The stress in steel at failure will be between points A and B.The large steel strains produce visible cracking and considerabledeflection of the member before the failure load is reached. Thisis an important safety consideration.

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    13/49

    Failure of Prestressed Beams (contd.)

    CE 407-Prestressed Concerte Structures

    13

    Over-reinforced beams fail when the compressive strainlimit of the concrete is reached (0.003 according to ACI andSBC), at a load when the steel is still below its yield stress,

     between points O and A.This type of failure is accompanied by a downward movementof the neutral axis, because the concrete is stressed into itsnonlinear range although the steel response is still linear. Thistype of failure occurs suddenly with little warning.

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    14/49

    computation of nominal moment resistance, Mn

    CE 407-Prestressed Concerte Structures

    14

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    15/49

    Minimum reinforcement for flexural members

    CE 407-Prestressed Concerte Structures

    15

    Minimum reinforcement for flexural members

    For statically determinate members with a flange of width b in tension, ACI specifies that

    bw in the equation giving As,min shall be replaced by b or 2bw whichever is smaller. When

    the flange is in compression, bw is sued.

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    16/49

    Flexural Strength EstimationBy Strain-Compatibility 

    The variation of strain on the cross-section is linear i.e.strains in the concrete and the bonded steel are

    calculated on the assumption that plane sectionsremain plane.

    Concrete carries no tensile stress, i.e. the tensilestrength of the concrete is ignored.

    The stress in the compressive concrete and in the steelreinforcement are obtained from actual or idealizedstress-strain relationships for the respective materials.

    CE 407-Prestressed Concerte Structures

    16

     ASSUMPTIONS

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    17/49

    Notations

    CE 407-Prestressed Concerte Structures

    17

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    18/49

    Notations

    CE 407-Prestressed Concerte Structures

    18

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    19/49

    Notations

    CE 407-Prestressed Concerte Structures

    19

    ACI Code Provisions for Tension-Controlled, Transition, and Compression-Controlled

    Sections at Increasing Levels of Reinforcement

    Sections are tension-controlled when the net tensile strain in the extreme tensionsteel is equal to or greater than 0.005 just as the concrete in compression reachesits assumed strain limit of 0.003

    Sections are compression-controlled when the net tensile strain in the extremetensile steel is equal to or less than the 0.002 at the time the concrete incompression reaches its assumed strain limit of 0.003

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    20/49

    Idealized Stress Diagram

    CE 407-Prestressed Concerte Structures

    20

    '85.0 c f 

     ps f  

    cu 

    c

     ps 

    a

    b

     pd  Axis

     Neutral 

    ' A

     ps f 

    c1  

    2/a

    Section Strain Actual stresses Idealized stresses(ACI 318 )

    '

    c f  

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    21/49

    CE 407-Prestressed Concerte Structures 21

    In the above figure, an under-reinforced section at the ultimate moment isshown. The section has a single layer of bonded prestressing steel. At theultimate moment, the extreme fiber compressive strain εcu is taken in ACI318 to be 003.0cu 

     85.065.0

    MPa2856MPafor65.0)28(0.008-0.85

    MPa56for65.0MPa....28for85.0

    astaken bemayandstrengthconcrete

     on thedepends parameterThe.0.85isintensitystressuniformtheand

     is blockstressrrectangulasACI318'theof depthThe

    1

    1

    11

    1

    1

      

      

        

      

      

    c

    c

    c

    c

    ' c

     f   f  

     f   f  

     f  

    c

    '85.0 c f 

     ps f  

    cu 

    c

     ps 

    a

    b

     pd  Axis

     Neutral 

    ' A

     ps f  

    c1  

    2/a

    Section Strain Actual stresses Idealized stresses(ACI 318 )

    '

    c f  

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    22/49

    CE 407-Prestressed Concerte Structures 22

    cb f C 

    cb f C 

    c

    c

    1

    '

    1

    '

    0.85

    )(0.85areahatchedstress

     block stressrrectangulatheof VolumeforceecompressivResultant

      

      

    C  will act at the centroid ofthe hatched area A’.

     

      

     

    2 :strengthflexuralnominalThe  a

    d  f  ATl  M   p ps pn

     tendons. bondedin thestress  where     ps p ps   f  A f T 

    .controlledtensionismemberfor0.9318,ACIIn

    factor reductionCapacity;:momentdesignthend

     

          n M  M  A

    '85.0 c f 

     ps f  

    cu 

    c

     ps 

    a

    b

     pd  Axis

     Neutral 

    ' A

     ps f  

    c1  

    2/a

    Section Strain Actual stresses Idealized stresses

    '

    c f  

     p A

    005.0 ps 

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    23/49

    CE 407-Prestressed Concerte Structures 23

     

      

     

    2 :strengthflexuralnominalThe  a

    d  f  ATl  M   p ps pn

    '85.0 c f 

     ps f  

    cu 

    c

     ps 

    a

    b

     pd   Axis Neutral 

    ' A

     ps f  

    c1  

    2/a

    Section Strain Actual stresses Idealized stresses

    '

    c f  

     p A

    Assuming sectional and material properties are given, above equation contain

    three unknowns, a, and Mn ps f  

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    24/49

    Strains and stresses as beam load isincreased to failure

    CE 407-Prestressed Concerte Structures

    24

    Strain distribution (1) results fromapplication of effective prestress force P e, acting alone, after all losses.

     At intermediate load stage (2)decompression of the concrete takesplace. Due to bond the increase in steelstrain is the same as the decrease inconcrete strain at that level in the beam.

     When the member is overloaded to thefailure stage (3), the neutral axis is at adistance c below the top of the beam.

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    25/49

    Strain in the prestressing tendon at the ultimate loadcondition

    CE 407-Prestressed Concerte Structures

    25

    The strain in the prestressing tendon at the ultimate load condition may beobtained from

     

      

       

     

      

     

    c

    cd 

     I e P 

     A P 

     E 

     E  A P 

     E  f  

     p

    cu

    c

    e

    c

    e

    c

     p

     pe

     p

     pe

     pe

     ps

     ps

     

     

     

      

     

        

     

    conditionloadultimateatlevelsteelng prestressiat thestrainconcreteThe

    ed)decompressislevelitsatconcretetheasstrainsteelinincrease(thezeroismoment

    appliedexternallywhenlevelsteelng prestressiat theconcretein thestrainThe

    / steelng prestressiin theStrain

    ultimateatsteelng prestressiin thestrainTensile

    where

     

    3

    2

    2

    1

    321

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    26/49

    Strain in the prestressing tendon at the ultimate loadcondition (Contd.)

    CE 407-Prestressed Concerte Structures

    26

    errors.seriousgintroducinwithoutignored beusuallymayand

     ,oreitherthanlessmuchveryisequationaboveinof magnitudethegeneral,In:1- Note

     

    312

    321

       

            ps

    .calculated becanultimateatforcetensiletheknown,steelng prestressiof areaWith thesteel.

     ng prestressifor thediagramstrain-stresthefromdetermined becanultimateatsteel

     ng prestressiin thestresstheknown,isIf .strainecompressivextreme

     theandfailureataxisneutraltheof  positiontheof in termsdetermined becan:2- Note

      31

     ps

     pscu

     ps

     ps

     f  

    c

      

     

         

    .findhenceand

     depth,axisneutralthelocateorder toinsteel)ecompressivd prestresse-nonanyinforce

    ecompressivthe(plusforceecompressivconcretewith thesteel)tensiled prestresse-non

    anyinforcetensilethe(plustendonsteelin theforcetensiletheequatetonecessary

    isitandfailureatknownnotisstresssteelthehowever,general,In:3- Note

     psε

     Alghrafy 2016 Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    27/49

    Determination of M n for a singly reinforced section with bonded tendons

    1. Select an appropriate trial value of c and determine ε ps (=   ε1 +   ε2 +   ε3 ). Byequating the tensile force in the steel to the compressive force in the concrete,

    the stress in the tendon may be determined:

    2. Plot the point ε ps and f  ps on the graph containing the stress-strain curve for the prestressing steel. If the point falls on the curve, the value of c selected in step 1

    is the correct one. If the point is not on the curve, then the stress-strain

    relationship for the prestressing steel is not satisfied and the value of c is not

    correct.

    3. If the point ε ps and f  ps obtained in step 2 is not sufficiently close to the stress-

    strain curve for the steel, repeat steps 1 and 2 with a new estimate of . A larger

    value of c is required if the point plotted in step 2 is below the stress-strain curve

    and a smaller value is required if the point is above the curve.

    CE 407-Prestressed Concerte Structures

    27

     p

    c psc ps p A

    cb f  f cb f C  f  AT  1

    '

    1

    ' 85.085.0   

        

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    28/49

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    29/49

    CE 407-Prestressed Concerte Structures 29

    Trial c

    (mm)

    ε ps  f  ps(MPa)

    Point

    plotted

    230 0.0120 1918 1

    210 0.0128 1751 2

    220 0.0124 1835 3

    Point 3 lies sufficiently closeto the stress-strain curvefor the tendon and thereforethe correct value for c isclose to 220 mm.

    .next trialin theReduce

    actual.thanmorealsoisactualthanmoreisIf 

    85.0 1'

    c

    c f 

     A

    cb f  f 

     ps

     p

    c ps

       

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    30/49

    Problem-2

    CE 575: Dr. N. A. Siddiqui

    30

    Calculate the ultimate flexural strength M n of the rectangular section shown below. The steel tendonconsists of ten 12.7 mm diameter strands ( A p = 1000 mm2) with an effective prestress P e = 1200 kN. The

    stress-strain relationship for prestressing steel is also given below and the elastic modulus is E  p = 195 ×103 MPa. The concrete properties are f c’ = 35 MPa and E c= 29800 MPa.

    (a) Section

    500

    0.0050

    1000

    1500

    200

    0

    0.01 0.015 0.020

       S   t   r

       e   s   s    (   M   P   a    )

    Strain

     f  py

    =1780 MPa

     f  pu=1910 MPa

    350

    750

     p A

    650

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    31/49

    Solution

    CE 407-Prestressed Concerte Structures

    31Given: A p = 1000 mm

    2 ;Effective prestress P e = 1200 kN;

    Elastic modulus E  p = 195 × 103 MPa; f c’ = 35 MPa and E c= 29800MPa.

    (c) Strain atultimate

    (d) Concrete stress block at ultimate

    '85.0 c f 350

    750

     ps f  

    c1  

    2/a

    (a) Section (b) Straindue to P e

     p A

    650

    003.0cu

     

    c

    3 2 

    80.0

    MPa28for65.0)28(0.008-0.85

    astaken bemayandstrengthconcreteon thedepends parameterThe

    1

    1

    1

      

      

      ' 

    c

    c   f   f  

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    32/49

    CE 407-Prestressed Concerte Structures 32

    Solution (contd.)

     

      

       

    c

    c ps

    650003.000655.0

    :ultimateatsteelng prestressiin thestrainTensile

    321       

    00615.0100010195

    101200

     bygivenis prestresseffectivethetoduetendonsin thestraininitailThe

    3

    3

    1  

     p p

    e

     A E 

     P  

    00040.0

    75035012

    1

    275101200

    350750

    101200

    29800

    11 

    ed)decompressislevel 

    itsatconcretetheasstrainsteelinincrease(thezeroismomentapplied 

    externallywhenlevelsteelng prestressiat theconcretein thestrainThe

    3

    2332

    2

     

     

     

     

     

      

     

     

      

     

    c

    e

    c

    e

    c   I 

    e P 

     A

     P 

     E 

     

     

      

       

     

      

       

    c

    c

    c

    cd  pcu

    650003.0 

    conditionloadultimateatlevelsteelng prestressiat thestrainconcreteThe3

     

     

    321:ultimateatsteelng prestressiin thestrainTensile           ps

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    33/49

    Solution (contd.)

    CE 407-Prestressed Concerte Structures

    33

    cccb f C 

    c 8340801.03503585.085.0

    :forceecompressivresultantof magnitudeThe

    1

    '    

     ps p ps   f  A f T 

    1000

     bygivenisforcetensileresultantThe

    c f 

    T C 

     ps 34.8

    henceandthatrequiresmequilibriuHorizontal

    shown.assteelfor thecurvestrain-stresson the plottedareand

     of valuesingcorrespondtheandselected benowcanof valuesTrial

     ps

     ps

     f 

    εc

      

         c

    c ps

    650003.000655.0 

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    34/49

    CE 407-Prestressed Concerte Structures 34

    500

    0.0050

    1000

    1500

    2000

    0.01 0.015 0.020

       S   t   r   e   s   s    (   M   P   a    )

    Strain

     f  py=1780 MPa f  pu=1910 MPa1

    2

    3

    Trial c(mm)

    Pointplotted

    230 0.0120 1918 1

    210 0.0128 1751 2

    220 0.0124 1835 3

     ps   ps f  

    Point 3 liessufficiently close tothe stress-straincurve for the tendon

    and therefore thecorrect value for c isclose to 220 mm(0.34 c)

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    35/49

    CE 407-Prestressed Concerte Structures 35

    0.9andcontrolledtensionismemberThe

    005.000586.0003.0220

    220650

     

      

       

     

      

       

     

       cu p

    t c

    cd 

    kN.m103510

    2

    220801.065010001835

    2 :momentultimateThe

    6

    1n

     

     

     

       

     

      

     

    n

     p p ps

     M 

    cd  A f  M 

       

    kN.m5.93110359.0:momentdesignThe n     M  

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    36/49

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    37/49

    Unbonded Tendons

    When the prestressing steel is not bonded to the concrete, the stress in thetendon at ultimate, f  ps, is significantly less than that predicted for bonded

    tendons.

    Accurate determination of the ultimate flexural strength is more difficult than

    for a section containing bonded tendons. This is because final strain in the

    tendon is more difficult to determine accurately.

    The ultimate strength of a section containing unbonded tendons may be as low

    as 75% of the strength of an equivalent section containing bonded tendons.

    Hence, from a strength point of view, bonded construction is to be preferred.

    CE 407-Prestressed Concerte Structures

    37

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    38/49

    Flexural Strength Analysis Approximate Methods

    CE 407-Prestressed Concerte Structures

    38

     Alghrafy 2016

    A i t d i t d d

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    39/49

     Approximate code-oriented procedures bonded tendons

    CE 407-Prestressed Concerte Structures

    39

     

      

       

    '5.01

    c

     sc st  p ps

     pu psbdf 

     A A f  A f  f 

    Method 1

     

      

     

     

      

       

    21

    '

    cd  f  A

    bdf 

     A A f  Ad  f  A M   p ps ps

    c

     sc st  p ps

     p ps psn

     

     

     

     

     

     

     

     

    2

    85.0

    2

    '   f 

     f wc p ps pswn

    hd hbb f 

    cd  f  A M 

    Rectangle, I or T section with x in fling

    I or T section with x out the fling

      ps ps

     f  

    wc psf     A f  

    hbb f   A   '85.0

     psf  ps psw   A A A  

      ps ps

     f 

    wc psf    A f 

    hbb f  A   '85.0

    3.0)1'  c p

     ps ps

     p f bd 

     f  A 

    3.0)2'  c p

     ps ps

     p

     f bd 

     f  A 

    2'25.0  pcn   bd  f  M   Rectangle, I or T section with x in fling

    )5.0()(85.025.0 '2'  f  f wc pwcn   hd hbb f d b f  M    I or T section with x out the fling

     Alghrafy 2016

    A i t d i t d d

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    40/49

     Approximate code-oriented procedures bonded tendons

    CE 407-Prestressed Concerte Structures

    40

    Method 2 (AASHTO LRFD 2003)

     

      

       

    1

    211  

    k k  f  f   pu ps

    4.01 k  9.085.0    pu

     py

     f 

     f 

    28.01 k 9.0

     pu

     py

     f 

     f 

    '2

    c p

     sc st  pu ps

     f d b

     A A f  Ak 

     

      

     

     

     

     

       

    21

    '

    cd  f  A

    bdf 

     A A f  Ad  f  A M   p ps ps

    c

     sc st  pu ps

     p ps psn

     

      

     

     

      

     

    285.0

    2

    '   f 

     f wc p ps pswn

    hd hbb f 

    cd  f  A M 

    Rectangle, I or T section with x in fling

    I or T section with x out the fling

      ps

     ps

     f 

    wc psf    A f 

    hbb f  A   '85.0

     psf  ps psw   A A A  

      ps ps

     f wc psf    A f 

    hbb f  A  

    '85.0

     Alghrafy 2016

    A i t d i t d d

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    41/49

     Approximate code-oriented procedures bonded tendons

    CE 407-Prestressed Concerte Structures

    41Method 3 (2002 ACI Code)

    = 0.28 for    ≥ 0.9  [low relaxation]

    = 0.40 for    ≥ 0.85   [stress relieved]

    = 0.55 for    ≥ 0.80   [bar]

     Alghrafy 2016

    A i t d i t d d

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    42/49

     Approximate code-oriented procedures bonded tendons

    CE 407-Prestressed Concerte Structures

    42Method 3 (2002 ACI Code)

     

      

     

     

      

       

    21

    '

    cd  f  A

    bdf 

     A A f  Ad  f  A M   p ps ps

    c

     sc st  p ps

     p ps psn

     

      

     

     

      

     

    285.0

    2

    '   f 

     f wc p ps pswn

    hd hbb f 

    cd  f  A M 

    Rectangle, I or T section with x in fling

    I or T section with x out the fling

      ps

     ps

     f 

    wc psf    A f 

    hbb f  A   '85.0

     psf  ps psw   A A A  

      ps ps

     f  

    wc psf     A f  

    hbb f   A   '85.0

     Alghrafy 2016

    A i t d i t d d

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    43/49

     Approximate code-oriented proceduresunbonded tendons

    CE 407-Prestressed Concerte Structures

    43Method 1 (2002 ACI Code)

    3.0)1'  c p

     ps ps

     p f bd 

     f  A 

     

      

      

     

     

       

    21 'c

    d  f  Abdf 

     A A f  Ad  f  A M   p ps ps

    c

     sc st  pu ps

     p ps psn

     

      

     

     

      

     

    285.0

    2

    '   f 

     f wc p ps pswn

    hd hbb f 

    cd  f  A M 

    Rectangle, I or T section with x in fling

    I or T section with x out the fling

      ps

     ps

     f 

    wc psf    A f 

    hbb f  A   '85.0

     psf  ps psw   A A A  

      ps ps

     f  

    wc psf     A f  

    hbb f   A   '85.0

     Alghrafy 2016

    Appro imate code oriented procedures

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    44/49

     Approximate code-oriented proceduresunbonded tendons

    CE 407-Prestressed Concerte Structures

    44Method 1 (2002 ACI Code)

    3.0)2'  c p

     ps ps

     p f bd 

     f  A 

    2'25.0  pcn   bd  f  M   Rectangle, I or T section with x in fling

    )5.0()(85.025.0 '2'  f  f wc pwcn   hd hbb f d b f  M    I or T section with x out the fling

    Method 2 (AASHTO LRFD 2003)

    105   pe ps   f  f 

     

      

      

     

     

       

    21 'c

    d  f  Abdf 

     A A f  A

    d  f  A M   p ps psc

     sc st  pu ps

     p ps psn

     

      

     

     

      

     

    285.0

    2

    '   f 

     f wc p ps pswn

    hd hbb f 

    cd  f  A M 

    Rectangle, I or T section with x in fling

    I or T section with x out the fling

      ps

     ps

     f 

    wc psf    A f 

    hbb f  A   '85.0

     psf  ps psw   A A A  

      ps ps

     f  

    wc psf     A f  

    hbb f   A   '85.0

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    45/49

    Problem-3

    CE 407-Prestressed Concerte Structures

    45

    Calculate the ultimate flexural strength M n of the rectangular section shown below. The beam is a simplysupported post-tensioned beam which spans 12 m and contains single unbonded cable. The steel tendonconsists of ten 12.7 mm diameter strands ( A p = 1000 mm

    2) with an effective prestress P e = 1200 kN. Thestress-strain relationship for prestressing steel is also given below and the elastic modulus is E  p = 195 ×103 MPa. The concrete properties are f c’ = 35 MPa and E c= 29800 MPa.

    Section

    350

    750

     p A

    650

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    46/49

    Solution

    CE 407-Prestressed Concerte Structures

    46Given: A p = 1000 mm

    2 ;Effective prestress P e = 1200 kN;

    Elastic modulus E  p = 195 × 103 MPa; f c’ = 35 MPa and E c= 29800MPa.

    MPa1200

    :forceng prestressieffective by thecausedtendonin thestressThe

     p

    e pe

    e

     A P  f 

     P 

    MPa128010001009.6

    65035035691200

     9.6

    69 

    ultimateattendonunbondedin thestressthe16,toequalratiodepth-to-spanWith the

     ps

     p

     p

    c

     pe ps

     f 

     KA

    bd  f  f  f 

    MPa28for65.0)28(0.008-0.851     ' 

    c

    c   f   f    

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    47/49

    Contd.

    CE 407-Prestressed Concerte Structures

    47

    mm154801.03503585.0

    0012801000

    85.0 1'

     

      b f 

     f  A f  A f  Ac

    c

     y sc y st  ps p

    kN.m754102

    153801.065010001280

    2 :momentultimateThe

    6

    1

     

      

       

      

      

    n

     p p psn

     M 

    cd  A f Tl  M     

     Alghrafy 2016

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    48/49

    Further Reading

    2016CE 407-Prestressed Concerte Structures

    48

    Read more about the ultimate flexural strength of prestressed concrete beams from:

    •   Design of Prestressed Concrete by A. H. Nilson, John Wiley and  Sons, Second Edition, Singapore.

    •   Design of Prestressed Concrete by R. I. Gilbert and N. C. Mickleborough, First Edition, 2004, Routledge.

     Alghrafy 2016

    h k

  • 8/18/2019 CE 407-Lecture-3(Flexural Analysis of Prestressed Concrete Beams)-Unprotected

    49/49

    Thank You49