39
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (2/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International Summer School of the GDR PH-QCD “Correlations between partons in nucleons” N

Cédric Lorcé

Embed Size (px)

DESCRIPTION

Second International Summer School of the GDR PH-QCD “Correlations between partons in nucleons”. N. Cédric Lorcé. Multidimensional pictures of the nucleon (2/3). IFPA Liège. June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France. Reminder. Lecture 1. - PowerPoint PPT Presentation

Citation preview

Page 1: Cédric Lorcé

Cédric LorcéIFPA Liège

Multidimensional pictures of the nucleon (2/3)

June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France

Second International Summer School of the GDR PH-QCD

“Correlations between partons in nucleons”

N

Page 2: Cédric Lorcé

Reminder

• Understanding nucleon internal structure is essential• Concept of phase space can be generalized to QM and QFT• Relativistic effects force us to abandon 1D in phase space

Lecture 1

2+3D

Transverse momentum

Transverse position

Page 3: Cédric Lorcé

Outline

• Nucleon 1D picture• Nucleon 2D picture• Nucleon 2+1D picture• Energy-momentum tensor

Lecture 2

• Introduction• Tour in phase space• Galileo vs Lorentz• Photon point of view

Lecture 1

Page 4: Cédric Lorcé

Deep inelastic scattering

Coherent scattering

1/31

Page 5: Cédric Lorcé

Deep inelastic scattering

Coherent scattering

Incoherent scattering

2/31

Page 6: Cédric Lorcé

Deep inelastic scattering

Coherent scattering

Incoherent scattering

FactorizationHard/perturbative

Soft/non-perturbative

3/31

Page 7: Cédric Lorcé

Deep inelastic scattering

Parton model

QCD corrections

Probability to find parton with momentum fraction

Non-perturbativeProcess-independent

PerturbativeProcess-dependent

+ virtual diagrams

4/31

Page 8: Cédric Lorcé

Deep inelastic scattering

Cross-section must not depend on

DGLAP evolution equations

Splitting functions

Non-p

ert

urb

ati

ve

5/31

Page 9: Cédric Lorcé

Parton distribution functions (PDFs)

Optical theorem

PDFs

Final-state cut

Constrained by Lorentz and discrete space-time

symmetries

PDF correlator

Parametrization

6/31

Page 10: Cédric Lorcé

Parton distribution functions (PDFs)

PDFs

Charges

VectorQuark number

TensorQuark

transversity

AxialQuark helicity

7/31

Page 11: Cédric Lorcé

Elastic scattering

Constructive interference (Bragg’s

law)

Scattered amplitude

Diffraction pattern

Crystal

Reconstructed charge distribution

Let’s replace the crystal by a nucleon !

Form factor Scatterer distribution

8/31

Page 12: Cédric Lorcé

Form factors (FFs)

FFs

FF correlator

Parametrization (electromagnetic case)

Sachs FFs

Pointlike Spatial structure

9/31

Page 13: Cédric Lorcé

FFs

Form factors (FFs)

PDFs

Charges

Electric charge

Anomalous magnetic moment

10/31

Page 14: Cédric Lorcé

Monopole

Form factors (FFs)

+ -

Proton Neutron

Negative core does not fit naive picture

!

Longitudinally polarized nucleon

[Miller (2007)]

11/31

Page 15: Cédric Lorcé

Proton Neutron

Form factors (FFs)

Transversely polarized nucleon

+-

+

Dipole

[Carlson, Vanderhaeghen (2008)]

Apparent electric dipole

!P & T

violations ???

No !!!

Monopole

12/31

Page 16: Cédric Lorcé

Form factors (FFs)

Transversely polarized nucleon

[Lorcé (2009)]

u

d

Origin of EDM : light-front artifact

d

Orbital angular momentum

Induced electric moment

Anomalous moment

[Burkardt (2003)]

13/31

Page 17: Cédric Lorcé

Compton scattering

Virtual Compton scattering (VCS)

Real Compton Scattering

Recoiling target

Compton wavelengt

h

interferes with

VCS Bethe-Heitler

Question : why are there 2 peaks?

14/31

Page 18: Cédric Lorcé

Compton FF

Generalized parton distributions (GPDs)

GPDs

Factorization

[Collins, Freund (1999)][Belitsky et al. (2000)]Evolution @

NLO

Deeply virtual Compton scattering (DVCS)

GPD correlator

[Diehl (2003)][Belitsky, Radyushkin (2005)]

[Boffi, Pasquini (2008)]

Reviews :

15/31

Page 19: Cédric Lorcé

FFsPDFs

Charges

GPDs

Nucleon tomography/imaging

[GPD]

PDF [FF]

Generalized parton distributions (GPDs) 16/31

Page 20: Cédric Lorcé

Generalized parton distributions (GPDs)

Flat in tNarrow in

b

Steep in tWide in b

[Guidal et al. (2013)]

[Weiss (2009)]

17/31

Page 21: Cédric Lorcé

Generalized parton distributions (GPDs)

Explicit Lorentz invariance is broken by the preferred light-front direction

Lorentz invariance

and dependences constrained by Lorentz invariance !

18/31

Page 22: Cédric Lorcé

Generalized parton distributions (GPDs)

Lowest moment

FFs

GPDs

19/31

Page 23: Cédric Lorcé

Generalized parton distributions (GPDs)

Generic moment in LF gauge

20/31

Page 24: Cédric Lorcé

Generalized parton distributions (GPDs)

Generic moment

Derivative of Wilson line Covariant derivatives

using

21/31

Page 25: Cédric Lorcé

Generalized parton distributions (GPDs)

Generic local operator

Symmetrization+ trace removal

Generic FFs

Polynomiality of GPDs

Constrained by Lorentz and discrete space-time

symmetries

22/31

Page 26: Cédric Lorcé

Generalized parton distributions (GPDs)

How to ensure polynomiality property?

Lorentz-invariant variables

« Covariantization »

23/31

Page 27: Cédric Lorcé

Generalized parton distributions (GPDs)

GPD parametrization

[Müller et al. (1994)][Radyushkin (1999)]

[Polyakov, Weiss (1999)]

Double distribution (DD) parametrization

Constraint :

Support :

24/31

Page 28: Cédric Lorcé

Generalized parton distributions (GPDs)

Relation between GPDs and DDs

[Müller et al. (1994)][Radyushkin (1999)]

[Polyakov, Weiss (1999)]

Polynomiality property

and dependences not constrained by Lorentz invariance !

25/31

Page 29: Cédric Lorcé

Energy-momentum tensor

A lot of interesting physics is contained in the EM tensor

Energy density

Momentum

density

Energy flux

Momentum flux

Shear stress

Normal stress (pressure)

[Polyakov, Shuvaev (2002)]

[Polyakov (2003)][Goeke et al. (2007)]

[Cebulla et al. (2007)]

In rest frame

26/31

Page 30: Cédric Lorcé

Energy-momentum tensor

In presence of spin density

In rest frame

No « spin » contribution !

Belinfante « improvement »

Spin density gradient Four-momentum circulation

27/31

Page 31: Cédric Lorcé

QCD Energy-momentum operator

Matrix elements Normalization

28/31Energy-momentum tensor

Page 32: Cédric Lorcé

Energy-momentum FFs

Momentum sum rule

Angular momentum sum rule

[Ji (1997)]

Vanishing gravitomagnetic moment !

29/31Energy-momentum tensor

Page 33: Cédric Lorcé

Energy-momentum FFs

Momentum sum rule

Angular momentum sum rule

[Ji (1997)]

Vanishing gravitomagnetic moment !

Non-conserved current

30/31Energy-momentum tensor

Page 34: Cédric Lorcé

Leading-twist component of

Link with GPDs

[Ji (1997)]

Accessible e.g. in DVCS !

31/31Energy-momentum tensor

Page 35: Cédric Lorcé

Summary

• PDFs provide 1D pictures of the nucleon• FFs provide 2D pictures of the nucleon• GPDs generalize both PDFs and FFs and give access to the EMT

Lecture 2

[GPD]

PDF [FF]

Energy density

Momentum density

Energy

flux

Momentum flux

Shear stress

Normal stress (pressure)

Page 36: Cédric Lorcé

Backup slides

Page 37: Cédric Lorcé

Nuclear charge densities and FFs

Page 38: Cédric Lorcé

Nucleon FFs

[Perdrisat et al. (2006)]

Page 39: Cédric Lorcé

Nucleon FFs

green : Rosenbluth data (SLAC, JLab)

Pun05Gay02

JLab/HallA

recoil polarization data