26
Turbulent Premixed Combustion CEFRC Combustion Summer School Prof. Dr.-Ing. Heinz Pitsch 2014 Copyright ©2014 by Heinz Pitsch. This material is not to be sold, reproduced or distributed without prior written permission of the owner, Heinz Pitsch.

CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Premixed Combustion

CEFRC Combustion Summer School

Prof. Dr.-Ing. Heinz Pitsch

2014

Copyright ©2014 by Heinz Pitsch. This material is not to be sold, reproduced or distributed without prior written permission of the owner, Heinz Pitsch.

Page 2: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Example: LES of a stationary gas turbine

2

velocity field

flame

Page 3: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Course Overview

3

• Turbulence

• Turbulent Premixed Combustion

• Turbulent Non-Premixed

Combustion

• Modelling Turbulent Combustion

• Applications

• Scales of Turbulent Premixed

Combustion

• Regime-Diagram

• Turbulent Burning Velocity

Part II: Turbulent Combustion

Page 4: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Scales of Turbulent Premixed Combustion

• Integral turbulent scales

• Smallest turbulent scales/Kolmogorov scales

• Flame thickness and time, reaction zone thickness

4

Energy

Transfer of Energy

Dissipation of Energy

Page 5: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Dimensionless Quantities in Premixed Turbulent Combustion

• Turbulent Reynolds number

• Turbulent Damköhler number

• Karlovitz number (interaction of small-scale turbulence with the flame)

5

oxidation layer

preheat zone

Inner layer

Page 6: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Course Overview

6

• Turbulence

• Turbulent Premixed Combustion

• Turbulent Non-Premixed

Combustion

• Modelling Turbulent Combustion

• Applications

• Scales of Turbulent Premixed

Combustion

• Regime-Diagram

• Turbulent Burning Velocity

Part II: Turbulent Combustion

Page 7: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagram

7

Corrugated Flamelet Regime

Page 8: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagram: Corrugated Flamelets

• Ka < 1 η > lF

Interaction of a very thin flame with a turbulent flow

Assumption: infinitely thin flame (compared to turbulent scales)

8

Buschmann (1996)

OH-radical-distribution in a turbulent premixed flame

premixed flame in isotropic turbulence

Page 9: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagramm: Broken Reaction Zones Regime

9

Page 10: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagramm: Broken Reaction Zones Regime

• Kaδ > 1 η < lδ

Smallest turbulent eddies enter the reaction zones

Turbulent transport radicals are removed from reaction zone

Local extinguishing in the inner reaction zone

• Overall extinguishing of the flame front is possible

10

Two-dimensional slices from three-dimensional simulations of low- and high-Karlovitz-supernovae flames, respectively. The left-hand panel in each case is burning rate, and the right-hand panel is temperature.

Ka = 0,1

Ka = 230

Source: A. J. Aspden et al. (JFM 2011)

Burning rate Temp

Page 11: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagramm: Thin Reaction Zones Regime

11

Page 12: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagramm: Thin Reaction Zones Regime

12

thin reaction zone

thickened preheat zone

temperature distribution from DNS of a premixed turbulent flame

• Ka > 1 und Kaδ < 1 lδ < η < lF

With lδ ≈ 0,1lF Ka ≈ 100Kaδ

Turbulent mixing inside preheat zone

Assumption: infinitely thin reaction zone (compared to turbulent scales)

Page 13: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagram: Résumé

13

Source: A. J. Aspden et al. (JFM 2011)

Page 14: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Regime Diagram: Résumé

14

Source: A. J. Aspden et al. (JFM 2011)

Page 15: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Course Overview

15

• Turbulence

• Turbulent Premixed Combustion

• Turbulent Non-Premixed

Combustion

• Modelling Turbulent Combustion

• Applications

• Scales of Turbulent Premixed

Combustion

• Regime-Diagram

• Turbulent Burning Velocity

Part II: Turbulent Combustion

Page 16: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity

16

Exemplary measurements in gasoline engine with tumble generator of flame velocity

at spark plug position during full load (Source: Merker, „Grundlagen Verbrennungsmotoren“)

Laminar burning velocity of iso-octane

≈ 15 m/s

< 1 m/s

20

Isentropic compression

Comparison: Laminar/Measured Burning Velocity

Page 17: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Comparison: Laminar/Measured Burning Velocity

17

Experimental data of sT vs. wrinkled laminar-flame theories of turbulent flame propagation (data from Turns 2000)

≈factor 30

Page 18: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity

• Main problem for turbulent premixed combustion: Quantification of turbulent burning velocity sT

• sT: Velocity which quantifies the propagation of the turbulent flame front into unburnt mixture

• Distinction of two limiting cases by Damköhler (1940)

1. Large scale turbulence ↔ corrugated flamelets

2. Small scale turbulence ↔ thin reaction zones

18

Page 19: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity: Corrugated Flamelets

• Instantaneous flame front

Flame surface area AT

Propagates locally with laminar burning velocity sL into unburnt mixture

• Mean flame front

Mean flame surface area A

Propagates with turbulent burning velocity sT

19

„u“ „b“ „u“ „b“

Page 20: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity: Corrugated Flamelets

• With the mass flux trough A and AT

• Assume constant density in the unburnt mixture (assumption)

• Wrinkling of the laminar flame (AT↑) increase of sT

20

Page 21: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

• Turbulence flame surface area ↑

• Using an analogy with a Bunsen flame

• Limit for u‘ 0

• Internal combustion engine:

Engine speed n↑ burning velocity sT↑ due to

→ High engine speed achievable

Turbulent Burning Velocity: Corrugated Flamelets

21

Page 22: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity: large-scale turbulence

• In experiments often used empirical relation

Constant C experimentally determined

Typical values: 0.5 < n < 1.0

• From experimental data

For small u‘, sT ~ u‘ applies

• Consistent with Damköhler theory

Increase of turbulent intensity

• sT grows linearly

• With further increase less than linear

22

Linear

Page 23: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity: Thin Reaction Zones

• Reduced increase of turbulent burning velocity second limiting case of Damköhler

• Thin reaction zones/small-scaled turbulence

• In analogy to Damköhler uses

tc: chemical time scale

Dimensional analysis

Constant of proportionality 0.78

23

consistent with experimental data

Page 24: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity

• Damköhler-limits can be combined to a single formula (Peters, 1999):

constant α = 0,195

• Low turbulence intensity

• High turbulence intensity

24

Page 25: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Turbulent Burning Velocity

• By rearranging this formula with Dat = (ltsL)/(lFu‘)

• Limit for high Damköhler number

25

comparison with experimental data

Page 26: CEFRC Combustion Summer School...Dimensionless Quantities in Premixed Turbulent Combustion • Turbulent Reynolds number oxidation layer p • Turbulent Damköhler number • Karlovitz

Summary

26

• Turbulence

• Turbulent Premixed Combustion

• Turbulent Non-Premixed

Combustion

• Modelling Turbulent Combustion

• Applications

• Scales of Turbulent Premixed

Combustion

• Regime-Diagram

• Turbulent Burning Velocity

Part II: Turbulent Combustion