234
This file is part of the following reference: Knack, Brent Andrew (2011) Cell adhesion factors in cnidarians. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/36991/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/36991/ ResearchOnline@JCU

Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

This file is part of the following reference:

Knack, Brent Andrew (2011) Cell adhesion factors in cnidarians. PhD thesis, James Cook University.

Access to this file is available from:

http://researchonline.jcu.edu.au/36991/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material

included in this document. If you believe that this is not the case, please contact [email protected] and quote

http://researchonline.jcu.edu.au/36991/

ResearchOnline@JCU

Page 2: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

               

Cell  Adhesion  Factors  in  Cnidarians  

 

 

 

Thesis  Submitted  by    

Brent  Andrew  KNACK  BSc  (Hons)    

in  August,  2011  

 

 

 

for  the  degree  of  Doctor  of  Philosophy  

in  the  School  of  Pharmacy  and  Molecular  Biology  

James  Cook  University  

       

Page 3: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

i  

                   

Statement of Sources            I  declare  that  this  thesis  is  my  own  work  and  has  not  been  submitted  in  any  form  for  another  

degree  or  diploma  at  any  university  or  other   institution  of   tertiary  education.   Information  

derived   from   the  published  or   unpublished  work  of   others  has  been   acknowledged   in   the  

text  and  a  list  of  references  is  given.  

 

I   declare   that   the   electronic   copy   of   this   thesis   provided   to   the   James   Cook   University  

Library  is,  within  the  limits  of  the  technology  available,  an  accurate  copy  of  the  print  thesis  

submitted.  

      6th  August  2011  Brent  Andrew  Knack    

Page 4: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

ii  

                   

Statement of Access            I,   the   undersigned,   author   of   this  work,   understand   that   James  Cook  University  will  make  

this   thesis   available   for   use   within   the   University   Library   and,   via   the   Australian   Digital  

Theses  Network,  for  use  elsewhere.  

 

I   understand   that,   as   an   unpublished   work,   a   thesis   has   significant   protection   under   the  

Copyright  Act  and  I  do  not  wish  to  place  any  further  restriction  on  access  to  this  work.  

      6th  August  2011  Brent  Andrew  Knack    

Page 5: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

iii  

 

Contribution of Others Nature  of  Assistance   Contribution   Names  

Core  research  funding   Australian  Research  

Council  Centre  of  

Excellence  for  Coral  Reef  

Studies  

Stipend   James  Cook  University,  

Graduate  Research  School  

Travel  Assistance   Faculty  of  Medicine,  

Health  and  Molecular  

Sciences  Graduate  

Research  Scheme    

Financial  Support  

Accommodation   Network  for  Genes  and  

Evironment  in  

Development  

Database  programming  

(See  page  iv)  

Dr.  Wayne  Mallett,  JCU  

High  Performance  

Computing  

Collaboration  and  

Technical  assistance  with  

Drosophila  Cell  Culture  

Dr.  Tom  Bunch,  University  

of  Arizona  Data  Collection  &  Support  

Collaboration  on  

Expression  of  Wnt  

signalling  component  

Chuya  Shinzato  and  

Svetlana  Ukolova  

 

Page 6: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

iv  

Collaborator contributions to development of JCUSMART:

The concepts and programming behind JCUSMART grew from a relatively simplistic installation

of the annotation programs into a large database with a comprehensive search capability. I manaed

and directed the entire development process. I accessed support from JCU High Performance

Computing (HPC) through personal contacts. The contribution of the HPC team members was

primarily programming support. I actively contributed to the design and testing of all system

components developed, as well as working closely with computing staff to correct errors.

During the initial phases of development Dr. Wayne Mallet (System administrator for the JCU

High Performance Computing Department) and myself worked closely on the design of the

computational pipeline, the handling of character conflicts, and the design of the data storage

system. Decisions on what analyses and results were required in order to be informative, how

character conflicts were resolved, and how data should be linked were primarily my responsibility

as Dr. Mallett had very limited knowledge of biology and bioinformatics.

Dr. Mallet was responsible for programming the scripts that initiate analyses, pre-process input

data, and parse key results into the database. As the system administrator, Dr. Mallett was ideally

positioned to install and troubleshoot programs on the computing cluster. Dr. Mallett’s knowledge

of Perl and PostgreSQL allowed the development of a stable analysis platform, which was

compatible with the JCU HPC system.

Throughout the development process, I tested analysis initialisation; data capture & storage; and

database queries. This was a necessary approach, as each of these steps requires interpretation of

results, which was beyond the knowledge of the HPC staff involved. I then directed the changes in

consultation with Dr. Mallett.

During the development process I actively improved my own programming ability by working

with Dr. Mallet to understand Perl and Prostgres databases in more detail. I also worked with

Wade Tattersall (an undergraduate programmer working on the HPC ARCHER Project) and other

personal contacts to understand Python programming which has a PostgreSQL component

allowing greater control of queries and results. With this knowledge I was able to create more

complex database queries and return more specific results than was previously possible. The

current version of the command line interface was primarily programmed by me, using the

programming skills I developed whilst conducting my PhD.

Page 7: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

v  

Wade Tattersall assisted me to write the initial scripts for commencing BLAST analyses, parsing

BLAST output for relevant data, and entering the results into the JCUSMART database. I took

over the modification and testing of these scripts and further refined these independently.

The web-server interface was programmed and implemented by Wayne Mallet early in the

development of the JCUSMART system. It was designed to give basic reports on up to ~300

sequences. The size of the datasets being analysed quickly outgrew the web-server functionality.

The web-server interface was not progressed beyond its initial incarnation, as HPC staff could not

spare time to update, nor could I take on writing HTML code. The more flexible & capable

command line interface was adopted as it required less external support.

Collaborator contribution to Figure 6.2: Maximum likelihood phylogenetic analysis of

representative β-Integrins

I selected protein sequences for analysis and collected sequences from NCBI protein database.

Integrin phylogenetic analyses are based on extensively edited protein sequence alignments.

Editing of the full length protein sequence alignment (output of ClustalW) was primarily

conducted by Prof. David Miller. Phylogenetic Analysis conducted using MolPhy was performed

by Prof. Miller. I was responsible for editing of raw analysis output into the published figure

presented in Knack et al, 2008 and Figure 6.2.

Every reasonable effort has been made to gain permission and acknowledge the owners of

copyright material. I would be pleased to hear from any copyright owner who has been omitted or

incorrectly acknowledged.  

 

 

      6th  August  2011  Brent  Andrew  Knack  

Page 8: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

vi  

Acknowledgements        The   greatest   thanks  must   go   to   the   girl   who  will   very   soon   become  my  wife,   Ally.   In  my  

work,  as  in  the  rest  of  my  life  you  have  been  my  one  source  of  unwavering  support  and  my  

inspiration  for  perserverance.  Your   faith   in  me  has  been  nothing  short  of  amazing,  even  at  

the   hardest   times   and   with   the   distance   between   us,   you   kept   me   going.   No   words   can  

explain  your  true  contribution  to  this  work.  

 

Secondly  I  would  like  to  acknowledge  the  contribution  my  supervisor,  Prof.  David  Miller,  to  

faciliating  the  initiation  of  this  project.   I  would  also  like  to  thank  Dr.  Eldon  Ball   for  helping  

me  to  appreciate  some  of  the  finer  aspects  of  Acropora  development  and  Dr.  David  Hayward  

for  preparing  and  mailing  EST  clones  as  soon  as  he  was  able.  Thanks  must  also  go  to  Dr.  Tom  

Bunch,  whose  hospitality  and  patience  made  every  aspect  of  my  time  in  Arizona  worthwhile.  

 

Thanks  must  also  go  to  Dr.  Akira  Iguchi  for  the  words  he  shared  during  my  Honours  degree,  

“Step  by  step  we  will  do”.  This  is  a  phrase  that  I  have  reflected  upon  many  times  throughout  

the  past  few  years.  

 

My  fellow  lab  members,  with  whom  I  have  shared  the  highlights  and  disappointments  of  my  

work,   you   have   made   this   experience   truly   enriched.   Your   friendship   and   advice   will  

continue   to  be   invaluable   to  me  as  will   the  colourful   language  of  5   foreign   tongues.   I  wish  

you  all  the  best  in  what  I  am  confident  will  be  a  long  and  successful  life  beyond  your  studies.  

 

Finally,   I  must   thank  my  parents  who  supported  and  encouraged  me  to  embark  on  on  this  

study   and  helped  me   to   remain   focused.  Without   you,   I  would  not   have  had   the   ability   to  

succeed  in  my  studies.    

   

 

Page 9: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

vii  

Table  of  Contents  

Statement  of  Sources.................................................................................................... i  

Statement  of  Access......................................................................................................ii  

Contribution  of  Others.................................................................................................iii  

Acknowledgements .....................................................................................................vi  

Abstract   xv  

Chapter  1:   Introduction............................................................................................. 1  

1.1   Cell  adhesion  molecules  in  development  and  evolution................................................................1  1.2   Acropora  millepora  -­‐  a  model  organism  for  evolution  and  development ...............................6  1.3   Project  objectives ......................................................................................................................................... 10  

Chapter  2:   Methods .................................................................................................12  

2.1   Standard  PCR  Protocol............................................................................................................................... 12  2.2   Amplification  of  Gene  Fragments  from  A.millepora  cDNA  libraries....................................... 12  2.3   Recovery  of  cDNA  from  Expressed  Sequence  Tag  libraries ...................................................... 13  2.4   In  situ  Hybridisation ................................................................................................................................... 13  2.4.1   Riboprobe  Synthesis ...................................................................................................................................... 13  2.4.2   Fixation  of  coral  developmental  stages ................................................................................................ 13  2.4.3   Hybridisation.................................................................................................................................................... 14  2.5   Cloning  of  pHS  S2  cell  expression  constructs .................................................................................. 15  2.5.1   Generation  of  native  Acropora  integrin  expression  constructs ................................................. 15  2.5.2   PCR  amplification  from  template  pBSII  constructs......................................................................... 16  2.5.3   Generation  of  chimeric  Acropora  integrin  expression  constructs ............................................ 17  2.5.4   Generation  of  chimeric  mutant  expression  construct .................................................................... 19  2.5.5   Insertion  of  HA  and  MYC  tags  to  ItgβCN1  and  AmItgβ2 ............................................................... 20  2.6   Maintenance  of  Drosophila  S2  cells  in  culture ................................................................................ 23  2.7   Transfection  of  Drosophila  S2  Cells  in  culture ................................................................................ 23  2.8   Cell  spreading  assays.................................................................................................................................. 24  2.9   Antibody  staining  and  flow  cytometry  of  integrin  expressing  cells....................................... 25  

Page 10: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

viii  

Chapter  3:   JCUSMART  –  A  simple  tool  for  automated  annotation  and  exploration  of  

large  protein  sequence  datasets ...........................................................26  

3.1   Introduction.................................................................................................................................................... 26  3.2   Methods  (development  of  JCUSMART)............................................................................................... 31  3.3   Results  (Testing  and  low  intensity  applications)........................................................................... 34  3.4   Discussion........................................................................................................................................................ 34  3.5   Conclusions..................................................................................................................................................... 37  

Chapter  4:   Diversity  of  cell  adhesion  molecules  in  cnidarians ...................................38  

4.1   Introduction.................................................................................................................................................... 38  4.2   Methods............................................................................................................................................................ 41  4.3   Results   ............................................................................................................................................................. 42  4.3.1   Cadherins ........................................................................................................................................................... 42  4.3.2   Integrins ............................................................................................................................................................. 43  4.3.3   Lectins   ............................................................................................................................................................... 45  4.3.4   Adhesion  LRR.................................................................................................................................................... 48  4.3.5   Class  B  adhesion  G-­protein  coupled  receptors................................................................................... 49  4.3.6   Immunoglobulin  superfamily.................................................................................................................... 50  4.3.7   Extra-­cellular  matrix .................................................................................................................................... 51  4.3.8   Novel  cnidarian  sequences ......................................................................................................................... 52  4.4   Discussion........................................................................................................................................................ 54  4.4.1   The  ancestral  adhesion  repertoire.......................................................................................................... 54  4.4.2   Novel  cnidarian  sequences ......................................................................................................................... 60  4.4.3   Differences  between  cnidarian  adhesion  systems ............................................................................ 61  4.4.4   Interesting  absences...................................................................................................................................... 62  4.5   Concluding  comments................................................................................................................................ 63  

Chapter  5:   Developmental  roles  of  cadherins  from  Acropora  millepora....................65  

5.1   Introduction.................................................................................................................................................... 65  5.2   Methods............................................................................................................................................................ 71  5.2.1   Sequence  identification................................................................................................................................ 71  5.2.2   Cadherin  phylogenetics................................................................................................................................ 71  5.2.3   Isolation  of  riboprobe  template  cDNA .................................................................................................. 71  5.3   Results   ............................................................................................................................................................. 73  5.3.1   Identification  of  catenin  binding  cadherins  and  planar  cell  polarity  components  from  

Acropora  millepora ...................................................................................................................... 73  

Page 11: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

ix  

5.3.2   Phylogenetic  analysis  of  catenin  binding  cadherins ....................................................................... 75  5.3.3   In  situ  hybridisation  of  catenin  binding  cadherins  and  planar  cell  polarity  pathway  

components ...................................................................................................................................... 77  5.4   Discussion........................................................................................................................................................ 80  5.4.1   Cadherins  involved  in  epithelial  cohesion  and  migration  evolved  early  in  metazoan  

evolution............................................................................................................................................ 80  5.4.2   Planar  cell  polarity  but  not  Am_ACadherin  is  implicated  in  gastrulation  of  Acropora  

millepora ........................................................................................................................................... 82  5.4.3   Am_ACadherin  and  planar  cell  polarity  are  implicated  in  development  of  the  Acropora  

larval  oral  pore............................................................................................................................... 84  5.5   Conclusion ....................................................................................................................................................... 86  

Chapter  6:   Integrins  of  Acropora  millepora ..............................................................87  

6.1   Introduction.................................................................................................................................................... 87  6.2   Methods............................................................................................................................................................ 91  6.2.1   Phylogenetic  analyses................................................................................................................................... 91  6.2.2   Preliminary  ligand  binding  assay ........................................................................................................... 91  6.2.3   Optimisation  of  cell  spreading  conditions ........................................................................................... 92  6.2.4   Analysis  of  integrin  surface  expression................................................................................................. 93  6.3   Results   ............................................................................................................................................................. 94  6.3.1   Integrin  identification  and  phylogenetic  analysis ........................................................................... 94  6.3.2   Ligand  Binding  of  coral  integrins ........................................................................................................... 97  6.4   Discussion......................................................................................................................................................102  6.4.1   Novel  Coral  integrins  may  interact  with  2  distinct  ligand  types ............................................ 102  6.4.2   Integrins  containing  AmItgα1  interact  with  RGD  tripeptide  ligands................................... 103  6.5   Conclusions...................................................................................................................................................105  

Chapter  7:   General  Discussion................................................................................106  

7.1   Modes  of  gastrulation  in  cnidarians...................................................................................................106  7.2   Genetic  determinants  of  cnidarian  gastrulation...........................................................................110  7.3   Acropora  millepora  exhibits  an  inside-­‐out  mode  of  gastrulation..........................................113  7.3.1   The  mobile  presumptive  ectoderm  and  un-­coupling  of  β-­catenin  from  mesendoderm  

development.................................................................................................................................. 113  7.3.2   Maintaining  stability  in  the  presumptive  endoderm ................................................................... 115  7.3.3   Co-­ordinating  expansion  of  the  presumptive  ectoderm ............................................................. 116  

Chapter  8:   General  Conclusions..............................................................................120  

Page 12: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

x  

Reference  List  ...........................................................................................................123  

Appendix  A:  Supplementary  Material .......................................................................135  

Chapter  4     ...........................................................................................................................................................135  Chapter  5     ...........................................................................................................................................................150  Chapter  6     ...........................................................................................................................................................170  

Appendix  B:  JCUSMART  Survey  of  the  Cnidarian  Adhesome......................................177  

Cadherins     ...........................................................................................................................................................177  Integrins     ...........................................................................................................................................................179  Lectins     ...........................................................................................................................................................186  LRR  Adhesion ..........................................................................................................................................................192  Class  B  GPCR  193  Immunoglobulin .....................................................................................................................................................198  Extracellular  Matrix ..............................................................................................................................................201  Planar  Cell  Polarity  Signalling ..........................................................................................................................213    

Page 13: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

xi  

List  of  Figures  

Chapter  1:   Introduction............................................................................................. 1  

Figure  1.1     Evolution  of  metazoan  cellular  junctions................................................................................3  

Figure  1.2     Lifecycle  of  Acropora  millepora ...................................................................................................8  

Figure  1.3     Differing  gastrulation  strategies  of  Acropora  millepora  and  Nematostella  

vectensis ..............................................................................................................................................8  

Chapter  3:   JCUSMART  –  A  simple  tool  for  automated  annotation  and  exploration  of  

large  protein  sequence  datasets ...........................................................26  

Figure  3.1     Upward  approach  to  identifying  genes  of  interest  in  a  custom  dataset   ................ 28  

Figure  3.2     Downward  approach  to  identifying  genes  of  interest  in  a  custom  dataset  using  

JCUSMART  ...................................................................................................................................... 30  

Figure  3.3     Computational  Workflow  of  JCUSMART  pipeline............................................................. 33  

Chapter  4:   Diversity  of  cell  adhesion  molecules  in  cnidarians   ..................................38  

Figure  4.1     Maximum  likelihood  analysis  of  Talin  proteins  from  representative                

metazoans ....................................................................................................................................... 44  

Figure  4.2     Maximum  Likelihood  analysis  of  metazoan  haemolytic  lectins   ................................ 47  

Figure  4.3     Domain  structure  of  selected  cnidarian  innovations ...................................................... 53  

Chapter  5:   Developmental  roles  of  cadherins  from  Acropora  millepora....................65  

Figure  5.1     Generalised  protein  architecture  of  catenin  binding  cadherins................................. 67  

Figure  5.2     Milestones  in  cadherin  evolution   ........................................................................................... 67  

Figure  5.3     Protein  conservation    and  architecture  of  Am_ACadherin   ........................................... 74  

Figure  5.4     Maximum  likelihood  analysis  of  catenin  binding  Cadherin  cytoplasmic            

domains............................................................................................................................................ 76  

Figure  5.5     Spatial  mRNA  expression  patterns  of  Am_ACadherin  and  PCP  components  in  

embryo’s  of  Acropora  millepora ............................................................................................ 78  

Figure  5.6     Spatial  mRNA  expression  patterns  of  Am_ACadherin  and  PCP  &  Wnt  components  

in  larvae  of  Acropora  millepora ............................................................................................. 79  

Chapter  6:   Integrins  of  Acropora  millepora  ..............................................................87  

Figure  6.1   Maximum  likelihood  analysis  of  representative  α-­‐Integrins ...................................... 95  

Figure  6.2   Maximum  likelihood  analysis  of  representative  β-­‐Integrins....................................... 96  

Page 14: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

xii  

Chapter  7:   General  Discussion   ...............................................................................106  

Figure  7.1   Modes  of  Gastrulation  in  cnidarians  and  bilaterians ....................................................107  

Figure  7.2   Phylogeny  of  cnidarian  classes ...............................................................................................108  

Figure  7.3   Differing  gastrulation  strategies  of  Acropora  millepora  and  Nematostella  

vectensis .........................................................................................................................................109  

Appendix  A:  Supplementary  Material .......................................................................135  

Chapter  4  

Supplementary  Figure  4.1   JCUSMART  search  terms  used  for  identification  of  adhesion        

genes  ............................................................................................................135  

Supplementary  Figure  4.2   Multiple  sequence  alignment  of  Talin  proteins  used  for  

maximum  likelihood  analysis   ...........................................................139  

Supplementary  Figure  4.3   Multiple  sequence  alignment  of  meatzoan  haemolytic  lectins  

used  for  maximum  likelihood  analysis   .........................................141  

Supplementary  Figure  4.4   Spatial  mRNA  expression  pattern  of  haemolytic  lectin                    

A036-­‐E7  in  Acropora  millepora  larva,  polyp  &  adult  ..............142  

Supplementary  Figure  4.5   Boxshade  alignment  of  full  length  Am_LRIG3  protein  with  

representative  metazoan  LRIG3  orthologues .............................143  

Supplementary  Figure  4.6   Boxshade  alignment  of  full  length  Am_PTPRD  protein  with  

representative  metazoan  PTPRD  orthologues ...........................146  

Chapter  5  

Supplementary  Figure  5.1   Aligned  nucleic  acid  and  protein  sequence  of  Am_ACadherin  150  

Supplementary  Figure  5.2   Boxshade  alignment  of  representative  Dachsous  C-­‐terminal  

domains .......................................................................................................157  

Supplementary  Figure  5.3   Multiple  sequence  alignment  of  cadherin  cytoplasmic  domains  

used  for  maximum  likelihood  analysis   .........................................158  

Supplementary  Figure  5.4   Boxshade  alignment  of  AmFlamingo    protein  with  

representative  metazoan  Flamingo  orthologues ......................160  

Supplementary  Figure  5.5   Boxshade  alignment  of  full  length  Am_Van  Gogh  Like  protein  

with  representative  metazoan  Van  Gogh  orthologues............166  

Supplementary  Figure  5.6   Boxshade  alignment  of  full  length  Am_Dishevelled  protein  with  

representative  metazoan  Dishevelled  orthologues...................168  

Page 15: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

xiii  

Chapter  6  

Supplementary  Figure  6.1   Multiple  sequence  alignment  of  α-­‐Integrin  proteins  used  for  

maximum  likelihood  analysis ............................................................170  

Supplementary  Figure  6.1   Multiple  sequence  alignment  of  β-­‐Integrin  proteins  used  for  

maximum  likelihood  analysis ............................................................173  

 

Page 16: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

xiv  

List  of  Tables  

Chapter  3:   JCUSMART  –  A  simple  tool  for  automated  annotation  and  exploration  of  

large  protein  sequence  datasets ...........................................................26  

Table  3.1     Programs  used  by  JCUSMART  in  the  annotation  of  protein  sequences .................. 32  

Table  3.2   Conditions  under  which  sequences  may  not  be  identifiable  using  JCUSMART... 36  

Table  3.3   Contribution  of  JCUSMART  to  publication........................................................................... 37  

Chapter  4:   Diversity  of  cell  adhesion  molecules  in  cnidarians   ..................................38  

Table  4.1     Datasets  used  to  explore  the  adhesome  of  basal  metazoans....................................... 41  

Table  4.2   Distribution  of  cadherin  family  proteins  in  basal  metazoans ..................................... 42  

Table  4.3   Distribution  of  integrin  and  associated  proteins  in  basal  metazoans ..................... 43  

Table  4.4   Distribution  of  lectin  family  proteins  in  basal  metazoans ............................................ 45  

Table  4.5   Distribution  of  adhesion  -­‐LRR  proteins  in  basal  metazoans........................................ 48  

Table  4.6   Distribution  of  class  B  G-­‐Protein  Coupled  Receptors  in  basal  metazoans............. 49  

Table  4.7   Distribution  of  immunoglobulin  superfamily  proteins  in  basal  metazoans ......... 50  

Table  4.8   Distribution  of  extracellular  matrix  proteins  in  basal  metazoans............................. 51  

Table  4.9   Presence  and  absence  of  selected  bilaterian  adhesion  genes  with      

developmental  and  immunological  significance............................................................ 55  

Chapter  5:   Developmental  roles  of  cadherins  from  Acropora  millepora  ...................65  

Table  5.1   Distribution  of  catenin  binding  cadherins  and  planar  cell  polarity  components    

in  cnidarians .................................................................................................................................. 75  

Chapter  6:   Integrins  of  Acropora  millepora  ..............................................................87  

Table  6.1   Concentrations  of  Mg2+  (MgCl2)  and  Ca2+  (CaCl2)  added  to  Robb’s  Saline  for  

optimisation  of  cell  spreading  conditions......................................................................... 92  

Table  6.2   Percentage  of  cells  expressing  detectable  α  and  β-­‐Integrins  on  the  cell  surface  

following  transient  transfection..........................................................................................100  

Table  6.3   Percentage  of  cells  expressing  epitope  tagged  β-­‐Integrins  on  the  cell  surface  

following  transient  transfection..........................................................................................101  

Chapter  7:   General  Discussion   ...............................................................................106  

Table  7.1   Function  of  adhesion  protein  families  with  demonstrated  involvement  in  

bilaterian  gastrulation.............................................................................................................112  

   

Page 17: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

xv  

Abstract Cell  adhesion  is  central  to  metazoan  evolution  and  development,  facilitating  multicellularity,  

intercellular   communication   and   co-­‐ordinated   cell   movements.   Morphological   studies  

indicate   that   cellular  and  developmental  processes   involving  dynamic  changes   in  adhesive  

state,  such  as  cell  migration  and  gastrulation,  were  established  early  in  metazoan  evolution.  

However,  much  of  our  current  understanding  surrounding  the  involvement  of  cell  adhesion  

molecules   in   these   processes   has   been   obtained   from   comparative   analyses   of   bilaterian  

development.   Cnidarians   present   an   exciting   opportunity   to   investigate   cell   adhesion   and  

developmental   processes   in   the   simplest   extant   animals   to   possess   a   tissue   layer   level   of  

organisation.  As  the  nearest  out-­‐group  to  the  Bilateria,  cnidarians  are  ideally  positioned  for  

comparative  studies  between  diploblastic  and  triploblastic  development  whilst  being  highly  

informative  regarding  ancestral  gene  function  and  protein  family  evolution.    

 

The  diversity  of  adhesion  proteins   in  cnidarians  has  remained   largely  unexplored,  with  no  

single  analysis  offering  an  overview  of  the  cnidarian  adhesion  complement  or  “adhesome”.    

To  better   understand   the   complexity   of   the   cnidarian   adhesome,   sequence  data   from   four  

model  cnidarians  (Acropora  millepora  –  coral,  Nematostella  vectensis  –  Sea  Anemone,  Hyrda  

magnipapillata  –  Hydra,  Clytia  hemispherica  –  Hydrozoan   Jelly-­‐fish)  was  annotated  and  all  

potential  adhesion  proteins  categorised  according  to  similarity  to  described  protein  families.  

The   cnidarian   adhesome   shows   overall   similarity   with   that   of   invertebrate   bilaterians,  

containing  a  substantial  array  of  recognisable  cadherins,  integrins,  lectins  and  extracellular  

matrix  proteins  comparable  to  Drosophila  and  sea  urchin.  Such  conservation  suggests   that  

most  recognised  adhesion  proteins  involved  in  bilaterian  development  and  innate  immunity  

were  already  established  in  the  ureumetazoan  ancestor.  All  four  species  also  demonstrated  

an  expanded   set  of   lectin  domain   containing  putative  pattern   recognition   receptors  which  

may  act  in  opsonisation  of  microbial  pathogens.  In  contrast  to  this,  each  species  lacked  the  

large  immunoglobulin  complement  observed  in  deuterostomes  suggesting  the  predominate  

mechanism   of   microbial   recognition   may   be   facilitated   by   lectins   rather   than  

immunoglobulins.      

 

Catenin  binding  cadherins  and  components  of   the  planar  cell  polarity  (PCP)  pathway  were  

among   the   developmentally   significant   proteins   conserved   between   cnidarians   and  

bilaterians.   Expression   of   cadherins,   such   as   E-­Cadherin   and   N-­Cadherin,   which   bind  

cytoplasmic   β-­catenin,   strongly   influence   the   ability   of   cells   to   undergo   epithelial   to  

mesenchymal   transtion,   a   central   event   in   developmental   processes   such   as   gastrulation.  

The   assymetrical   distribution   of   planar   cell   polarity   cadherins   and   other   PCP   proteins   at  

Page 18: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

xvi  

both   the   cell   and   tissue   levels,   also   affects   tissue   morphology   by   co-­‐ordinating   cellular  

structures  and  providing  positional  cues  during  morphogenesis.  To  identify  the  potential  for  

conserved   catenin   binding   cadherins   and   PCP   proteins   to   participate   in   cnidarian  

development,   patterns   of   mRNA   expression   were   assessed   in   embryos   and   larvae   of   the  

coral  Acropora  millepora.  Surprisingly,  the  only  known  catenin  binding  Cadherin  from  coral  

and  the  first  identified  outside  the  Bilateria,  Am_ACadherin,  does  not  appear  to  participate  in  

gastrulation,  which  is  inconsistent  with  bilaterian  modes  of  gastrulation.  Planar  cell  polarity,  

however   may   be   active   during   Acropora   gastrulation,   with   AmVan   Gogh   (AmVangl)   and  

AmDachsous   (AmDs)   expressed   assymetrically   during   gastrulation.   Am_ACadherin   was  

instead  implicated  in  oral  pore  development  following  gastrulation  as  indicated  by  a  highly  

restricted   pattern   of   expression   in   the   oral   ectoderm.   In   situ   mRNA   hybridisation   also  

strongly   suggests   the   involvement   of   non-­‐canonical   Wnt/PCP   in   oral   pore   development,  

however   none   of   the   PCP   adhesion   proteins   exhibited   oral   pore   restricted   patterns   of  

expression  during  larval  stages.  These  results  suggest  both  Cadherin-­‐catenin  signalling  and  

PCP   are   signficant   during   cnidarian   development   and   may   facilitate   co-­‐ordinated   tissue  

mobility  such  as  involution  of  the  oral  ectoderm.  

 

Survey  of   the   cnidarian   adhesome  also   identified  α   and  β   integrins,  which,   like   cadherins,  

play  signifcant  roles  in  the  early  development  of  bilaterians.  The  expression  patterns  for  3  (1  

α-­‐Integrin  &   2  β-­‐Integrins)   of   the   5   (3  α-­‐Integrins  &   2  β-­‐Integrins)   integrins   identified   in  

Acropora  have  previously  been  reported,  showing  restiction  to  the  presumptive  endoderm  

throughout   gastrulation.   The   ligand   binding   properties   of   basal   integrins   have   not   been  

reported,  obscuring  their  developmental  function.  To  identify  the  ligand  binding  properties  

of  AmItgα1-­ItgβCN1  and  AmItgα1-­AmItgβ2  integrin  heterodimers,  transgenic  cell  spreading  

assays  were   performed   on   a   number   of   Drosophila   ligands.   These   experiments   suggested  

coral  AmItgα1  containing  integrins  may  bind  to  arginine-­‐glycine-­‐aspartate  (RGD)  sequence  

containing  proteins.  RGD  specific  integrins  are  abundant  throughout  the  Bilateria,  and  along  

with   Laminin   binding   integrins,   have   been   suggested   to   be   present   in   the   Urbilaterian  

ancestor   (the   last   common   ancestor   of   the   Bilateria).   Phylogenetic   analysis   of  α-­‐Integrins  

including   the   more   recently   identified   AmItgα3   (Acropora)   and   NvItgα2   (Nematostella)  

suggest  that  these  proteins  may  bind  to  a  second  distinct  ligand  type.  The  ligand  diversity  of  

cnidarian  integrins  may  therefore  be  comparable  with  basal  bilaterians.  

 

Page 19: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

xvii  

Invovlement   of   cadherins   and   integrins   in   gastrulation   appears   to   be   conserved   between  

cnidarians   and   bilaterians   as   suggested   by   mRNA   expression   during   gastrulation   of  

Acropora  millepora.  The  mode  of  gastrulation  exhibited  by  Acropora  millepora  is  among  the  

more  peculiar  strategies  of  gastric  cavity  formation,  where  by  a  flat  cellular  bilayer  folds  to  

produce   a   spherical   bilayer   at   the   end   of   gastrulation.   Expression   patterns   of   the   coral  

integrins   and   cadherins,   along   with   protein   localisation   data   for   β-­catenin,   allow   the  

description  of  a  new  model  for  gastrulation  in  Acropora.  These  data  suggest  the  presumptive  

ectoderm  of  the  coral  embryo  is  mobile,  with  expansion  of  this  tissue  layer  co-­‐ordinated  by  

planar  cell  polarity.  Stability   in   the  presumptive  endoderm  is  suggested  to  be  mediated  by  

integrin   ligand  binding,   providing   the   basis   for  mesoglea   (the   connective   tissue   layer   that  

separates   cnidarian   ectoderm  and   endoderm)  development.   This  model   is   inside-­‐out  with  

respect   to   most   modes   of   gastrulation   which   rely   upon   co-­‐ordinated   migration   of   the  

presumptive   endoderm   and   represents   a   unique   arrangement   of   conserved   adhesion  

proteins  and  cellular  signalling  processes.  

 

 

 

 

 

 

Page 20: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One     Introduction  

1  

Chapter 1: Introduction

1.1 Cell adhesion molecules in development and

evolution Cell  adhesion  and  changes   in  adhesive  state  are  essential   for   the  normal  development  and  

function   of   metazoans.   Developmental   processes   including   fertilisation,   gastrulation,   and  

neurogenesis   along  with   immunity   and   allorecognition   are   all   dependant   on   co-­‐ordinated  

changes   in   the   adhesive   capability   of   cells   (Halbleib   &   Nelson   2006;   Kinashi   2005).   The  

ability  of  a  cell  to  adhere  to  other  cells,  to  maintain  contact  with  extracellular  matrix,  or  to  

actively  migrate  to  another  location,  is  governed  by  the  expression  of  a  broad  group  of  cell  

surface   proteins   collectively   known   as   cell   adhesion   molecules.   Although   this   name   may  

suggest   a   simple   function   in   making   cells   “stick”,   cell   adhesion   molecules   have   far   more  

important  roles  than  simply  securing  cellular  structures.    

 

Each  biological  process   involving  adhesion,   such  as   gastrulation,   requires  multiple   cells   to  

have   structural   organisation   and   behave   in   a   co-­‐ordinated  manner   (Gumbiner   2005).   Cell  

adhesion  molecules  perform  two  fundamental  cellular  functions,  cohesion  and  intracellular  

signalling,   which   together   contribute   to   tissue   organisation   and   co-­‐ordination   in  

multicellular   organisms.   The   cohesive   function   is   a   consequence   of   extracellular   domain  

(ecto-­‐domain)  structure  and  determines  ligand  specificity,  whereas  the  cytoplasmic  domain  

facilitates   cell   signalling   and   cytoskeletal   attachment   by   interacting   with   cytoplasmic  

proteins.   Unlike   most   cell   surface   receptors,   which   only   transduce   signals   from   the  

environment  into  the  cell,  a  number  of  cell  adhesion  molecule  families  frequently  respond  to  

internal   cellular   stimuli,   changing   affinity,   expression   level   or   signalling   ability   through  

intrinsic  structural  response,  transcriptional  regulation  and  protein  regulatory  mechanisms  

(eg.   phosphorylation,   domain   cleavage,   and   endocytosis).   The   range   of   cytoplasmic  

interactions,   multiplicity   of   fast   and   slow   regulatory   mechanisms   and   the   ability   to  

specifically   determine   cellular   cohesion,   make   adhesion   molecules   particularly   versatile  

morphogenic   effectors,   capable   of   influencing   the   structure,   organisation   and   gene  

expression  profile  of  both  cells  and  tissues.  

 

Page 21: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One     Introduction  

2  

The   influence   of   cell   adhesion   molecules   on   cellular   organisation   and   co-­‐ordination   is  

common   to   all   multicellular   organisms.   Whereas   unicellular   organisms   are   thought   to  

primarily  utilise  adhesive  processes  for  anchoring  to  their  environment,  the  maintenance  of  

multicellular  form  immediately  dictates  an  added  role  for  adhesion  in  generating  continual  

cell-­‐cell   contact   (Abedin   &   Nicole   King   2010).   The   link   between   multicellularity   and  

increased  adhesive  capability  is  well  established  (Abedin  &  King,  2010;  King,  2004;  Nichols  

et  al,  2006)and  none  more  evident  than  in  the  most  complex  incarnation  of  multicellularity,  

the   Metazoa.   An   overview   of   the   metazoan   tree   of   life   is   presented   in   Figure   1.1A.  

Enrichment   of   cell   adhesion   genes   is   among   the   features   that   distinguish  metazoans   from  

other  eukaryotes,  along  with  enrichment  of  signal  transduction  and  cell  differentiation  genes  

(Rokas   2008).   Even   the   most   morphologically   simple   metazoan,   Trichoplax   adhaerens  

(essentially   a   flat   epithelial   bilayer   sandwiching   multinucleated   fibre   cells),   contains   a  

complement  of   adhesion  genes,  which   is  beyond   that  of   the   closest  unicellular   relatives  of  

metazoans,   the   Choanoflagellata   (King   et   al.,   2008;   Srivastava   et   al.,   2008).   Expansion   of  

genetic  adhesive  capability  during  metazoan  evolution  is  reflected  in  the  diversity  of  cellular  

junctions  observed   in  different  animal   lineages.  Figure  1.1B&C   illustrates   the  expansion  of  

adhesive   junction   types   from   simple   anchorage   junctions   in   choanoflagellates   to   the  

communication,   barrier   and   dynamic   cohesive   junctions   of   vertebrates.   Although   this  

increased   complexity   of   adhesive   systems   was   a   significant   step   in   the   transition   to  

multicellularity,   most   of   what   is   known   about   the   function   of   cell   adhesion   molecules  

originates  from  studies  of  bilaterians.    

 

Investigation   of   adhesion   mechanisms   within   bilaterian   animals   has   demonstrated   that  

many   adhesion   and   associated   signalling   mechanisms   are   conserved   from   flies   to  

vertebrates.   This   is   particularly   evident   in   systems   affecting   early  morphogenesis   such   as  

Cadherin-­‐β-­‐catenin,   integrin   signalling   and   planar   cell   polarity   (Klein   &   Mlodzik,   2004;  

Nichols  et  al.,  2006).  Despite  widely  variegated  gastrulation  strategies  in  flies,  fish,  frogs  and  

mammals,  these  conserved  adhesion  systems  maintain  influence  over  the  same  tissue  level  

mechanisms   during   the   formation   of   three   germ   layers   (See   Chapter   7).   Through  

conservation  of   ligand  specificity  and   intracellular   signalling  properties,   adhesion  proteins  

with  similar  structure  in  each  taxon  govern  tissue  morphogenic  mechanisms  such  as  tissue  

flexibility,  migration  and  directional  division.  Whilst  this  level  of  functional  conservation  has  

clearly  been  demonstrated  in  higher  animals,  the  morphogenesis  of  basal  phyla,  cnidarians  

and  sponges,  is  strikingly  different.  

 

Page 22: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

 

3  

Figure  1.1  Evolution  of  metazoan  cellular  junctions.  A  Phylogeny  of  the  Metazoa  (adapted  from  Technau  et  al.,  2005).  A  wide  range  of  evidence  suggests  a  common  (monophyletic)  origin  for  metazoans   from   a   unicellular   ancestor.   Cnidarians   are   basal   among   animals   with   a   tissue   layer   level   of   organisation   (Eumetazoa)   and   are   informative   about   the   last   common   ancestor   of  cnidarians  and  bilaterians.  B  &  C  Distribution  of  adhesive  cell   junctions   in  metazoans   (adapted   from  Abedin  and  King,  2010).  The  diversity  of   cell   junctions  expanded  multiple   times  during  animal   evolution.   The   presence   (grey)   or   absence   (white)   of   junction   types   is   evidenced   by   genetic   surveys   (Gene),   electron   microscopy   (Morph),   and   experimental   (Exp)   data.   Although  experimental  data  is   lacking  for  non-­‐bilaterians,  the  presence  of  genes  that  function  in  adherens  and  septate   junctions  distinguish  metazoans  from  their  unicellular  ancestors  and  subsequent  evolution  of  intercellular  communication  in  the  eumetazoan  ancestor  may  have  been  critical  to  tissue  layer  formation.  Enrichment  of  communicating,  barrier  and  cohesive  junctions  is  a  feature  of  chordate  evolution  and  particularly  evident  in  vertebrates.  Some  caveats  apply  to  the  data  presented:  1  α  and  β   integrins  are  absent  in  choanoflagellates  but  present  in  C.owczarzaki,  a  model  unicellular  organism  used  to  infer  the  genetic  content  of  Opisthokonts,  which  are  basal  to  holozoans.  2  Only  some  sponges  exhibit  basal  lamina  like  structures  and  ECM  comprised  of  Collagen  IV,  a  major  component  of  basal  lamina.  

Page 23: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

4  

The   methods   of   gastrulation   observed   in   basal   animals   are   even   more   diverse   than   in  

bilaterians.   This   is   particularly   clear   in   cnidarians   where   all   strategies   present   in   higher  

animals  are  represented  as  well  as  a  number  of  unusual  gastrulation  methods  (Byrum  and  

Martindale,  2004).  Despite  broad  resemblances   to  bilaterian  gastrulation,   formation  of   the  

gastric   cavity   in   cnidarians   and   the   gastrulation-­‐like   events   of   sponge   embryonic  

development   result   in   only   two   embryonic   germ   layers.   These   animals   are   therefore  

referred   to   as   diploblasts.   Furthermore,   larvae   and   primary   polyps   of   cnidarians   exhibit  

radial  symmetry,  only  possessing  distinction  of  oral  and  aboral  structures  and  not  a  dorsal-­‐

ventral  axis  or  bilateral  symmetry,  characteristic  of  higher  animals.  Given  the  great  impact  of  

adhesive   systems   on   morphogenesis,   these   clear   developmental   differences   between  

bilaterians   and   basal   phyla   are   suggestive   of   changes   in   adhesion   system   specificity,  

regulation  and  downstream  signalling  events.    

 

Evolution  of  other  milestone  developmental  processes  associated  with  differential  adhesion  

is   also   believed   to   have   originated   in   sponges   and   cnidarians.   The   Porifera   (sponges)  

represent   the   most   basal   metazoan   phylum   to   exhibit   continual   cell-­‐cell   contact   during  

development   and   show   specificity   in   cohesion   that   allows   sorting   of   dissociated   cells  

(Burger   et   al.,   1975)   .   They   are   also   the  most   basal   animal   to   establish   cell   layers   during  

embryonic   development,   although   they   lack   a   single   dedicated   gastric   cavity,   which   is  

defining  of  true  gastrulation.  The  novelties  found  in  cnidarians  are  even  more  significant  to  

animal   evolution.   Cnidarians   do   develop   a   single   dedicated   gastric   cavity,   and   possess   a  

primitive   nervous   system,   which   is   proposed   to   facilitate   sensory   responses   to   the  

environment.  They  also  have  added  complexity  of  life  cycles  that  include  a  medusa  jellyfish  

stage,   which   commonly   have   dedicated   defensive   structures   in   the   form   of  

cnidoctye/nematocyte   (stinging   cell)   covered   tentacles.   The   development   of   comparable  

dedicated   tissues   in  higher   animals  has  been   shown   to   require   cell   adhesion  molecules   to  

direct  tissue  development.  

 

Despite   the   multitude   of   novelties   that   arose   before   the   Bilateria   and   the   significant  

differences   between   cnidarian   development   and   that   of   higher   animals,   very   little  

information   exists   about   the   function   of   adhesion   in   cnidarians   and   sponges.   Simply  

considering  differences  among  bilaterians  provides  a  highly  limited  view  of  the  evolution  of  

adhesion  molecules  and  adhesion-­‐signalling  systems.  This  is  due  to  both  the  large  amount  of  

time   between   cnidarian   and   bilaterian   divergence   and   the   genetically   derived   nature   of  

some  common  laboratory  model  organisms  such  as  Drosophila  melanogaster.  Knowledge  of  

adhesion   in   basal   animals   is   limited   to   sporadic   identifications   of   differentially   regulated  

Page 24: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

5  

adhesion   molecules   during   coral   bleaching   and   metamorphosis,   investigation   of   a   single  

coral  lectin  (Millectin),  and  limited  surveys  of  two  complete  genomes.  

 

The  complete  genomes  of  only  1  sponge  (Amphimedon  queenslandica)  and  1  cnidarian  (the  

starlet   sea   anemone,  Nematostella   vectensis)   are   currently  published   (Putnam  et   al.,   2007;  

Srivastava  et  al.,  2010).  To  date,  the  Nematostella  genome  has  been  the  only  representative  

of   non-­‐bilaterian   animals   regularly   included   in   comparative   analyses   of   cell   adhesion  

molecules.   Surveys   of   the   available   genomes   have   been   targeted   towards   identification   of  

genes  or  conserved  functional  protein  domains  associated  with  developmentally  important  

cell  adhesion  molecules.  These  targeted  investigations  fail  to  report  many  novel  or  expanded  

components   of   the   adhesion   complement   and   are   instead   focused   on   highlighting   the  

ancestral   nature   of   components   from   a   minimal   set   of   developmental   adhesion   systems.  

However,   the   great   diversity   of   cnidarian   developmental   processes   and   near   stochastic  

patterns    of  gene  loss  within  the  Cnidaria  (Forêt  et  al.  2010;  Miller  et  al.  2007)  indicates  that  

investigation   of   a   single   cnidarian   genus   is   often   insufficient   to   accurately   infer   ancestral  

relationships.  It  is  important  to  be  mindful  of  this  when  information  regarding  the  cnidarian  

adhesion  complement   is   inferred   from  a   single   species.  Additionally,  detailed  evolutionary  

relationships   have   been   explored   for   only   three   families   of   adhesion   genes   (integrins,  

cadherins   and   G-­‐Protein   Coupled   Receptors)   leaving   the   evolutionary   features   of   most  

adhesion  families  enigmatic.    

 

Understanding   the   origins   of   developmentally   significant   cell   adhesion   molecules   is  

important,   although  sequence  based  analyses  provide  no   information  as   to   the   function  of  

these   basal   cognates.   The   specificity,   regulation,   and   spatial   and   temporal   expression   of  

cnidarian   adhesion   molecules   are   expected   to   be   substantially   different   to   that   of   higher  

animals   and   are   more   informative   of   ancestral   function   than   identifying   the   presence   or  

absence  of  a  homologue.  However,  no  investigation  into  these  aspects  of  cnidarian  adhesion  

systems  has  previously  been  performed  for  any  family  of  cell  adhesion  molecule.    

 

Page 25: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

6  

The  overall   lack  of   information  regarding  the  ancestral   function  of  cell  adhesion  molecules  

and   the   evolution   of   adhesion   molecule   families   is   best   addressed   by   investigation   of  

cnidarian   adhesion   systems.   As   the   most   basal   organisms   with   a   tissue   layer   level   of  

organisation,   cnidarians   are   ideally   positioned   to   be   informative   about   ancestral  

developmental  processes  while   illuminating  aspects  of  molecular  evolution.  Understanding  

the  adhesion  complement  or  “adhesome”  of  more  than  a  single  representative  species,  and  

performing  investigations  into  the  specificity  and  expression  patterns  of  key  developmental  

cell  adhesion  molecules  from  cnidarians  is  the  most  efficient  way  to  fill  critical  gaps  in  our  

knowledge  of  diploblastic  development  and  evolution.  

1.2 Acropora millepora - a model organism for

evolution and development Cnidarians   are   a   large   and   successful   phylum   of   predominantly   marine   animals,   which  

diverged   from  bilaterians  approximately  500-­‐600  million  years  ago  and  have  expanded   to  

over  9000  described  species.  They  are  characterised  by  the  presence  of  cnidocytes  (stinging  

cells)  that  are  used  for  defence  and  prey  capture.  The  Cnidaria  are  divided  into  four  classes:  

Anthozoa,   Scyphozoa,   Cubozoa   and   Hydrozoa,   each   with   defining   life   cycle   features.  

Acropora   are   a   genus   of   reef   building   scleractinian   corals   abundant   throughout   the   Indo-­‐

Pacific   region.   Phylogenetic   analyses   have   revealed   that   along   with   Nematostella   (sea  

anemones),  Acropora  are  members  of  the  basal  class  of  cnidarians,  the  Anthozoa  (see  Miller  

&  Ball,  2000  for  review).  Investigations  into  anthozoan  genomes  have  revealed  that  despite  

a   simple,   radially   symmetrical   body   plan,   these   basal   animals   possess   surprisingly  

sophisticated   genetics,   containing   a   similar   gene   number   and   signalling   complement   to  

vertebrates  (Miller  &  Ball,  2000).  The  sophisticated  genetic  complement  and  basal  position  

of   Acropora   both   within   the   Cnidaria   and   among   the   Eumetazoa   (“True   metazoans”   –  

Animals   with   a   tissue   layer   level   of   organisation),   positions   this   genus   ideally   for  

investigations  of  evolution  and  development.    

 

Acropora   millepora   is   among   the   best   described   species   of   cnidarian   in   terms   of   both  

genetics  and  development,  and  exhibits  several  features  that  are  likely  to  involve  differential  

expression   of   cell   adhesion   molecules,   such   as   nervous   system   development   and  

metamorphosis  (Ball  et  al.,  2004;  Putnam  et  al.,  2007).  The  gastrulation  strategy  of  Acropora  

millepora  is  particularly  peculiar,  involving  the  early  formation  of  a  flat  cellular  bilayer  and  

folding   of   the   presumptive   ectoderm   around   the   presumptive   endoderm   (Figure  

1.2)(Hayward  et  al.,  2004).  This  is  in  contrast  to  that  of  Nematostella  vectenisis,  which  has  a  

typical  blastula  stage  and  gastrulation  occurs  via  invagination  (Hayward  et  al.,  2004)  (Figure  

Page 26: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

7  

1.3).   Whereas   movements   similar   to   those   seen   in   Nematostella   gastrulation   have   been  

highly   investigated   in   bilaterian   models,   the   factors   facilitating   tissue   re-­‐arrangements  

during  coral  gastrulation  are  obscured.  

 

Despite  the  gross  morphological  differences,  Nematostella  and  Acropora  are  closely  related  

on  an  evolutionary  timescale  (both  are  Sub-­‐Class  Hexcorallia)  and  commonly  have  a  similar  

complement   of   many   signalling   pathway   components   (Lee   et   al.,   2007).   The   biological  

differences  and  genetic  similarity  of  these  two  cnidarians  provide  a  unique  opportunity  for  

comparative   studies   of   cell   adhesion   in   closely   related   animals,   whilst   elucidating  

mechanisms  of  an  unusual  developmental  strategy.    

 

In  addition  to  the  developmental  and  evolutionary  implications  of  studying  cell  adhesion  in  

Acropora,   there   are   coral   specific   processes   reported   to   involve   cell   adhesive   changes.  

Acropora   live   in   obligatory   symbiosis   with   unicellular   algae   called   Zooxanthellae.   The  

uptake   and   maintenance   of   symbionts   in   the   gastroderm   of   adult   Acropora   millepora  

requires  expression  of  Millectin,  a  cell  adhesion  factor  of  the  lectin  family  (Kvennefors  et  al.,  

2008;  Kvennefors  et  al.,  2010).  Whether  other  adhesion  factors  play  a  role  in  the  recognition,  

uptake   and   translocation   of   algal   symbionts   from   ectodermal   cells   to   the   gastrodermis  

remains  unresolved.    

 

The  wide  spread  loss  of  Zooxanthellae  from  coral  tissue  is  known  as  coral  bleaching  and  is  

also   suggested   to   involve   changes   in   cell   adhesion.   Although   bleaching   involves   both  

apoptotic   and   necrotic   processes,   the   sloughing   of   gastrodermal   tissue   has   also   been  

reported  and  is  assumed  to  be  due  to  a  change  in  cellular  cohesive  state  (Kvennefors  et  al.,  

2008;  Kvennefors  et  al.,  2010).  Separate  experiments  have  found  changes  in  the  expression  

level  of  undescribed  adhesion  molecules   (eg.  Lectins  and  cadherins)  during   thermal  stress  

(Seneca  et  al.,  unpublished;  (Gates  et  al.,  1992),  which  further  implicates  adhesion  molecules  

as   central   players   in   coral   bleaching.   The   precise   adhesion   genes   that   are   responsible   for  

sloughing   of   zooxanthellae   containing   gastrodermal   cells   are   equivocal   and   could   be  

resolved  through  direct  analysis  of  adhesion  protein  function,  although  such  an  undertaking  

is  not  straightforward  in  sensitive  marine  invertebrates  like  coral.  

Page 27: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

8  

 

   

 

Figure   1.2   Lifecycle   of   Acropora   millepora.   Electron   micrographs   of   each   major   stage   in   the   embryonic  development   of  Acropora  millepora   (Image   courtesy   of   E.Ball,   Unpublished).   The   anthozoan   lifecycle   lacks   the  medusa  stage  observed  in  other  cnidarian  classes  and  asexual  reproduction  in  coral  results  in  colonial  expansion  rather   than   budding   of   a   separate   individual.   Sexual   reproduction   occurs   annually   when   mature   Acropora  colonies   release   sperm   and   ova   into   the  water   column  where   fertilisation   and   embryonic   development   takes  place.  Developmental  times  from  fertilisation  are  temperature  dependant  and  times  indicated  are  within  normal  ranges  for  embryos  collected  in  late  September  at  Magnetic  Island,  Queensland.  

Figure   1.3   Differing   gastrulation   strategies   of   two   representative   cnidarians,   Acropora   millepora   and  Nematostella   vectensis.   Gastrulation   in   Acropora   (A;  Hayward   et   al.,   2004)   is   preceded   by   formation   of   a   flat  cellular  bilayer,  which  reduces  in  circumference  and  thickens  at  the  onset  of  gastrulation.    The  edges  then  begin  to   fold   upward   producing   a   concavity   on   the   side   of   the   presumptive   endoderm.   As   the   concavity   deepens  (gastrula)   the  blastopore  becomes  apparent  and  eventually  closes   to  make  a  sphere.  By  contrast,  Nematostella  gastrulation  (B;  Lee  et  al.,  2007)  is  preceded  by  blastula  (a  hollow  spherical  monolayer  of  cells)   formation  and  occurs  by   involution  of   presumptive   endoderm   from  one   side  of   the  blastula.  Unlike  Acropora,   the  blastopore  does  not  close  and  becomes  the  larval  oral  pore.    

Page 28: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

9  

There   are   a   number   of   limitations   to   using   Acropora   millepora   as   a   model   organism.  

Maintaining   coral   in   a   marine   aquarium   is   a   difficult   task   due   to   fastidious   temperature,  

light,   pH   and   nutritional   requirements   and   those   kept   in   large   reef   aquariums   do   not  

reproduce   sexually   in   a   predictable   manner,   which   makes   them   unsuitable   for  

developmental   studies.   Sexual   reproduction   of   Acropora   millepora   on   the   reef   flat   is   an  

annual   event   and   occurs   by   broadcast   spawning   of   sperm   and   ovum  bundles.   The   annual  

reproductive   cycle   and   generation   times   of   5-­‐10   years   have   inhibited   the   development   of  

gene  knockdown,  protein  over  expression  and  cell  tracking  methods  in  this  model.    

 

Application   of   these   techniques,   which   have   become   the   standard   tools   of   developmental  

research   and   functional   analyses,   has   been   further   constrained   by   the   fragility   of   coral  

embryonic   stages  and  requirement  of  a  high  salt  and  high  pH  (pH  7.8  –  8.0)  environment.  

The  study  of  adhesion  in  coral  morphogenesis  has  therefore  required  some  exploration  and  

extension  of  the  techniques  established  in  other  model  metazoans.    

Page 29: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

10  

1.3 Project objectives Developmental   roles  of   adhesion  molecules  are  poorly   comprehended   in  basal  metazoans,  

which  provide  a  fundamental  view  of  ancestral  gene  function  and  the  evolutionary  history  of  

gene   families.   The   objective   of   this   project   is   to   address   the   deficit   in   understanding   of  

ancestral  adhesion  gene  complement  and  function  using  a  combination  of  bioinformatic  and  

molecular   techniques.   Acropora   millepora   is   the   primary   model   for   these   investigations,  

which  focus  on  a  number  of  specific  aspects  of  cnidarian  adhesion  systems.    

 

A   representative   view   of   adhesion   genes   in   cnidarians   has   not   yet   been   achieved   from  

previous  studies  exploring  the  genome  of  Nematostella  vectensis.  Through  the  investigation  

of   four   large   cnidarian   datasets   (genome,   transcriptome   and   expressed-­‐sequence   tag  

projects),  the  first  component  of  this  project  aims  to  establish  an  overview  of  the  cnidarian  

adhesome   and   provide   insight   into   the   evolution   of   adhesion   genes   originating   in   the  

eumetazoan  ancestor.  Accurate  annotation  of  coding  sequences  is  central  to  identifying  the  

gamut   of   adhesion   proteins   within   cnidarians   and   to   discerning   their   evolutionary  

relationships.  The  datasets  analysed  from  Acropora  millepora,  Nematostella  vectensis,  Hydra  

magnipapillata  and  Clytia  hemispherica   contain  over  100,000  predicted  peptides  that  must  

be   considered   for  adhesive  potential.  No   single,  publically  available   tool   is   able   to  provide  

the   level  of   annotation   required  and  permit   sufficient  data  exploration   for  gene  discovery.  

Therefore,  a  secondary  aim  of  the  above  survey  component  was  to  assemble  a  tool  capable  

of   high   throughput   annotation   and   exploration   of   protein   sequences   which   would   allow  

analysis  of  private  data   for  genes  with  specific  protein   features  (eg.  conserved  domains  or  

signal   peptides).   Development   of   such   software   has   potential   to   contribute   to   projects  

beyond   simply   identifying   adhesion   related   genes   and   is   applicable   to   all   experiments  

requiring  discrimination  of  uncharacterised  sequences.    

 

The  second  aim  of  this  project  focuses  on  elucidating  the  functional  roles  of  specific  families  

of  adhesion  proteins  found  during  the  survey  described  above.  Members  of  the  Cadherin  and  

integrin   families   are   of   particular   interest   due   to   their   critical   function   in   cell   sorting,  

directed   cell   migration   and   neuronal   pathfinding   in   bilaterians.   The   diversity   and  

developmental   impact   of   these   proteins   has   not   been   functionally   assessed   in   cnidarians,  

although   the   expression   patterns   for   some   of   the   coral   integrins   during   development   of  

Acropora  millepora  have  been  previously  reported   (Knack  et  al.  2008).  This  work  on  coral  

integrins  will   be   extended   as   a   part   of   the   second   project   component   by   determining   the  

ligand  specificities  of  3  Acropora  integrins  using  transgenic  cell  spreading  assays.    Whereas  

Page 30: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  One       Introduction    

11  

some   preliminary   data   on   cnidarian   integrins   has   been   published,   the   expression   and  

function  of  Cadherin  mediated  cell  signalling  systems  from  cnidarians  are  recondite.  Chapter  

5   explores   the   phylogenetic   relationships   between   cnidarian   catenin   binding   cadherins,  

which   have   been   demonstrated   to   be   central   to   bilaterian   gastrulation   mechanisms.   The  

expression  of   coral   cadherins  and  planar   cell  polarity   components  are  also   investigated   in  

Chapter  5,  revealing  potential  roles  in  both  embryonic  and  larval  development.  

 

Page 31: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

12  

Chapter 2: Methods

2.1 Standard PCR Protocol The  standard  protocol  used  to  perform  amplification  from  plasmids  is  as  follows:  

 H20   to  20.0ul  Buffer  (10x)   2.0µl  dNTPs  (2mM  ea)   1.5µl  MgCl2  (25mM)   2.0µl  Fwd  and  Rev  Primers  (20µM  ea)   1.0µl  Taq  Polymerase   0.6µl  Template  (variable)        

 

 

2.2 Amplification of Gene Fragments from A.millepora

cDNA libraries Gene   targets   were   amplified   by   PCR   from   an   equal   mix   of   cDNA   libraries  

representing  embryonic,  larval  and  adult  tissues  of  A.millepora.  cDNA  libraries  were  

generated  by  Dr.  David  Hayward  (Australian  National  University)  with  RNA  isolated  

from  multiple   individuals   at   adult,   planula   and   prawnchip   stages   of   development.  

PCRs   used   to   amplify   partial   sequences   of   target   genes   (Chapters   5   and   6)   were  

performed   using   the   standard   PCR   protocol   (Chapter   2.1)   with   the   following  

alterations:  

• Primer  concentration       2.5µl  Primer  (20µM  ea)  

• MgCl2  concentration       2.5µl  MgCl2  (25mM)  

• Template  volume       0.5µl  

• Final  volume       25µl  

 

1   95oC   2min  2   95oC   30sec  3   52-­‐56oC   30sec  4   72oC   1min/Kb  5   Repeat  steps  

2-­‐4  25x    

6   72oC   2x  extension  

time  7   4oC   Hold  

Page 32: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

13  

2.3 Recovery of cDNA from Expressed Sequence Tag

libraries cDNA   isolated   from  EST   libraries  were  donated  by  Eldon  Ball   and  David  Hayward  

(Australian  National  University,  Canberra)  and  shipped  to  James  Cook  University  on  

Filter  Paper.    Recovery  of  cDNA  was  performed  by  placing  the  filter  paper  in  a  1.5ml  

microfuge  tube  and  adding  50µl  of  ddH20  before  overnight  incubation  at  4oC.  5µl  of  

resuspended  cDNA  was  then  used  to  transform  competent  E.coli  NM522.      

2.4 In situ Hybridisation 2.4.1 Riboprobe Synthesis

Anti-­‐sense   riboprobes  were  synthesised   from  partial  or   full-­‐length  cDNA  cloned   in  

pGEM-­‐T   or   pBluescript   II   KS-­‐   vectors.   Vectors   were   linearised   by   restriction  

digestion   to   produce   a   5’   end,   5’   overhang.   Reverse   Transcription  was   performed  

using  T7  or   SP6  RNA  polymerase   (Promega)   in   the  presence  of   digoxygenin   (DIG)  

labelled   UTP.   A   sample   of   the   resulting   RNA   was   visualised   by   electrophoresis  

through  a  1%  agarose  gel.  Labelled  RNA  was  purified  by  ethanol  precipitation  and  

resuspension  in  RNase-­‐free  water  before  being  hydrolysed  using  carbonate  buffer  to  

produce  a  theoretical  fragment  length  of  250bp.  Finally,  riboprobes  were  purified  by  

ethanol   precipitation   and   resuspended   in   resuspension   buffer   (50%   formamide,  

50%  TE,  0.1%  Tween-­‐20).  

2.4.2 Fixation of coral developmental stages

Developmentally  staged  embryos  and  larvae  from  Acropora  millepora  were  fixed  for  

10-­‐12minutes   in   4%   (v/v)   formaldehyde   in  HEPES  buffered  Millipore   Filtered   Sea  

Water  pH8.0  (0.2µm  filter;  HEPES-­‐MPFSW).  Embryos  and  larvae  were  then  washed  

repeatedly   in   MPFSW   before   dehydration   through   a   methanol/H20   series   (20%,  

50%,  70%,  90%,  100%x2)  and  stored  in  absolute  methanol  at  -­‐20°C.  

Page 33: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

14  

2.4.3 Hybridisation

In  situ  hybridisation  was  carried  out  by  methods  similar  to  that  previously  described  

(Hayward  et  al.,  2001).  Staged  embryos  were  removed  from  storage  and  allowed  to  

come   to   room   temperature   before   rehydration   to   50%   through   a  methanol   series  

(90%,  70%,  50%),   followed  by  washing  with  PBS   then  PBT  (once  each).  Overnight  

incubation  (4°C)  in  RIPA  was  performed  to  remove  the  large  amount  of  lipid  present  

in   the   coral   embryos  &   larvae.   Animals  were   then   dehydrated   through   an   ethanol  

series  (25%,  50%,  70%,  90%,  100%  x2)  and  treated  with  Xylene  for  3-­‐4hrs.  Xylene  

was   removed   by   multiple   washes   with   absolute   ethanol   followed   by   rehydration  

through  ethanol  series  and  washing  with  PBT.  

 

Prehybridisation  was  performed  by   replacing  PBT  with  hybridisation   solution   and  

incubating  at  hybridisation  temperature  (50°C-­‐57°C)  for  2hrs.  Riboprobe  was  added  

at   a   final   dilution   of   1/125   and   allowed   to   incubate   for   72hrs   at   hybridisation  

temperature.  Unbound  probe  was  removed  by  extensive  washing  in  several  volumes  

of   hybridisation   wash   solution   at   55°C-­‐60°C.   Hybridisation   wash   solution   was  

gradually  replaced  by  PBT  before  addition  of  Alkaline  Phosphatase  conjugated  anti-­‐

DIG  antibodies  (Roche)  at  a  1:1600  dilution  by  PBT.    The  animals  were  incubated  in  

antibody   suspension   for   2   hours   with   gentle   agitation   and   washed   with   PBT.  

Detection  was  performed  using  NBT/BCIP    (Vector  Laboratories)  diluted  in  PBT  as  

per   the  manufacturer’s   instructions.   Colour   development  was   stopped   by  washing  

with   PBT   and   background   colour   was   removed   with   absolute   ethanol   where  

necessary.  

 

 

 

Page 34: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

15  

2.5 Cloning of pHS S2 cell expression constructs Expression  constructs  were  generated  from  pBluescript  II  KS-­‐  plasmids  containing  complete  

coding  sequence  of  AmItgα1   (EU239371),   ItgβCN1  (AF005356)  or  AmItgβ2   (EU239372)  as  

described   in  Knack   et   al.   2008.   For   each   integrin   subunit,   both   native   and   chimeric   genes  

were  cloned  into  the  pHS  vector,  which  has  previously  been  described  for  the  expression  of  

integrins  in  Schneider’s  line  2  (S2)  cells  (  Bunch  &  Brower,  1992;  Jannuzi  et  al.,  2002;    Bunch  

et   al.,   2004).     Chimeric   genes   were   then   used   as   a   template   to   incorporate   integrin  

heterodimer   activating   mutations   by   overlap   extension   PCR.   Primer   sequences   and  

amplification  conditions  follow.  

2.5.1 Generation of native Acropora integrin expression

constructs

Native   constructs   included   complete   coding   sequence   amplified   using   the   below  

primers   and   conditions.   PCR   products   of   the   expected   size   (~3Kb)   were   cleaned  

using  a  PCR  cleanup  kit  (MoBio)  before  direct  restriction  digestion  (NEB  restriction  

enzymes)  of  PCR  products  and  pHS  vector.  PCR  clean  up  was  again  performed  prior  

to   ligation   of   200ng   insert   at   6:1   ratio   insert:vector   using   T4   ligase   (Promega).    

Transformation  was  carried  out  by  heat  shock  of  50µl  competent  NM522  cells.  DNA  

was  isolated  from  overnight  cultures  of  selected  colonies  (Axygen  Miniprep  kit)  and  

sequenced  (Macrogen).    

 

Note:   Ext   (Brown)   is   random   sequence   which   exhibits   very   low   specificity   with  

sequences   in   the   Acropora   transcriptome   and   pHS   vector.   This   sequence   was  

included   in   primers   to   improve   the   specificity   of   restriction   digests   used   during  

cloning.   5’   and   3’   Ext   are   not   complementary   to   each   other   or   internal   primer  

sequences  to  minimise  primer  dimer  formation.  

 

Page 35: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

16  

Ext  HndIII-­‐Alpha1  5'       Tm  =60oC  5’-TGTCAACACGCGCTGTACGAAAGCTTATGCTCTTCACTTCAATAACTTG-3’ Ext  EcoRI-­‐Alpha1  3'       Tm=58oC  5’-TGTCAACACGCGCTGTACGAGAATTCCTACAGGGCTGTCGTTTCT-3’  Ext  KpnI-­‐BetaCN1  5'       Tm=60oC  5’-TGTCTTCACGCGCATCCGCAGGTACCATGAAGCGAAGGCTTTGCTT-3’ Ext  SacI-­‐BetaCN1  3'       Tm=58oC  5’-TGTCAACACGGGCTTCAGCAGAGCTCACTACTGTCTTCCACCAGC-3’  Ext  HindIII-­‐Beta2  5'       Tm=58oC  5’-TGTCTTCACGGGCCACGGCAAAGCTTATGCGGATATTTTGGGTTACA-3’ Ext  SacI-­‐Beta2  3'       Tm=58oC  5’-TGTCTTCACGCGCTACGGCAGAGCTCTTATTTCCCACCATACGTAGG-3’  2.5.2 PCR amplification from template pBSII constructs

H20   to  20.0ul  Buffer  (10x)  (including  MgCl2)   2.0µl  dNTPs  (2mM  ea)   2.0µl  Fwd  and  Rev  Primers  (20µM  ea)   1.0µl  Pfu  Polymerase   0.6µl  pBSII  Template   50ng      

1   95oC   2min  2   95oC   45sec  3   55oC   30sec  4   72oC   7min  5   Repeat  steps  

2-­‐4  30x    

6   72oC   8min  7   4oC   Hold  

   

Page 36: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

17  

2.5.3 Generation of chimeric Acropora integrin expression

constructs

Chimeric   constructs   included   5’   sequence   from   Acropora   integrins   coding   the  

extracellular  region  of  the  integrin  protein  and  3’  coding  sequence  from  Drosophila  

malanogaster   integrin-­‐αPS2C   or   integrin-­‐βPS.   5’   and   3’   sequences   were   amplified  

using  the  conditions  and  primers  described  in  PCR1.  Chimeras  were  generated  from  

PCR1  products  using  overlap  extension  PCR  (PCR2)  before  direct  digestion,  cleanup  

and   ligation   to   pHS   vector.   Transformation  was   carried   out   by   heat   shock   of   50µl  

competent   NM522   cells.   DNA   was   isolated   from   overnight   cultures   of   selected  

colonies   (Axygen   Miniprep   kit)   and   sequenced   (Macrogen).     Chimeric   genes   are  

referred  to  as  AmItgα1-­‐ItgαPS2,  AmItgβ1-­‐PS  and  AmItgβ2-­‐PS.    

   5’  Fragment  Primers    Ext  HndIII-­‐Alpha1  5'       Tm  =60oC  5’-TGTCAACACGCGCTGTACGAAAGCTTATGCTCTTCACTTCAATAACTTG-3’ Alpha1Δ  3'    Tm=57oC  5’-CCACCACGGCGTCTTCT-3’  Ext  KpnI-­‐BetaCN1  5'       Tm=60oC  5’-TGTCTTCACGCGCATCCGCAGGTACCATGAAGCGAAGGCTTTGCTT-3’ BetaCN1Δ  3'    Tm=60oC  5’-GGGAGCCTCTGTCGGGC-3’  Ext  HindIII-­‐Beta2  5'       Tm=58oC  5’-TGTCTTCACGGGCCACGGCAAAGCTTATGCGGATATTTTGGGTTACA-3’ Beta2Δ  3'    Tm=57oC  5’-TTCAGCTTCCTTTGGGCA-3’  3’  Fragment  Primers    Ext  EcoRI-­‐AlphaPS2  3'  5’-TGTCAACACGCGCTGTACGAGAATTCCTACAGGTGCTCGTCGCC-3’ Alpha1-­‐AlphaPS2  adaptor  5’-GAAGAAGACGCCGTGGTGGGTCGTCGTACTGGCCGC-3’  Ext  SacI-­‐BetaPS  3'      5’-TGTCAACACGCGCTGTACGAGAGCTCCTATTTGCCCGCATACATG-3’ BetaCN1-­‐BetaPS  adapt  5’-TGCCCGACAGAGGCTCCCATGTTGGGCATCGTTATGG-3’ Beta2-­‐BetaPS  adapt  5’-GTTTGCCCAAAGGAAGCTGAAATGTTGGGCATCGTTATGG-3’    

Page 37: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

18  

 PCR1  –  Amplification  of  5’  and  3’  Sequences    H20   to  20.0ul  Buffer  (10x)  (including  MgCl2)   2.0µl  dNTPs  (2mM  ea)   2.0µl  Fwd  and  Rev  Primers  (20µM  ea)   1.0µl  Pfu  Polymerase   0.5µl  pBSII  Template   50ng      PCR1-­  5’  Amplification  Cycle     3’  Amplification  Cycles  

1   95oC   2min     1   95oC   2min  2   95oC   45sec     2   95oC   45sec  3   59oC   30sec     3   59oC   30sec  4   72oC   6min     4   72oC   2min  5   Repeat  

steps  2-­‐4  30x  

    5   Repeat  steps  2-­‐4  

30x  

 

6   72oC   4min     6   72oC   4min  7   4oC   Hold     7   4oC   Hold  

     PCR2  –  Overlap  Extension  PCR  H20   to  20.0ul  Buffer  (10x)  (including  MgCl2)   2.0µl  dNTPs  (2mM  ea)   2.0µl  PCR1  5’  product   50ng  PCR1  3’  product   50ng  Pfu  Polymerase   0.5µl  pBSII  Template   50ng    

1   95oC   2min  2   95oC   45sec  3   60oC   30sec  4   72oC   6min  5   Repeat  

steps  2-­‐4  10x  

 

7   4oC   Hold     Add  Outer  

primers    

8   95oC   45sec  9   59oC   30sec  10   72oC   7min  11   4oC   Hold  

Page 38: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

19  

2.5.4 Generation of chimeric mutant expression construct

A   single   amino   acid  mutation  was   introduced   into   the   chimeric   expression   vector  

pHSItgβ2-­‐βPS   pHS   by   overlap   extension   PCR.   5’   and   3’   sequences   were   amplified  

using  the  conditions  and  primers  described  in  PCR1.  Chimeras  were  generated  from  

PCR1  products  using  overlap  extension  PCR  (PCR2)  before  direct  digestion,  cleanup  

and   ligation   to   pHS   vector.   Transformation  was   carried   out   by   heat   shock   of   50µl  

competent   NM522   cells.   DNA   was   isolated   from   overnight   cultures   of   selected  

colonies   (Axygen   Miniprep   kit)   and   sequenced   (Macrogen).   Chimeric   AmItgβ2  

containing  an  activating  mutation  is  referred  to  as  AmItgβ2L>D-­‐PS.    

 

5’  Fragment  Primers  

Ext  HindIII-­‐Beta2  5'        5’-TGTCTTCACGGGCCACGGCAAAGCTTATGCGGATATTTTGGGTTACA-3’ AmItgb2L>D  S-­‐  5’1065-GGCTTGTCTGATAAGTTGGTCAAGGTTAGATGAGTCCTCTCTCAACG-1019 3’

3’  Fragment  Primers  Ext  SacI-­‐BetaPS  3'      5’-TGTCAACACGCGCTGTACGAGAGCTCCTATTTGCCCGCATACATG-3’ AmItgb2L>D  S+  5’1019-CGTTGAGAGAGGACTCATCTAACCTTGACCAACTTATCAGACAAGCC-1065 3’

PCR1  –  Amplification  of  5’  and  3’  sequences  

H20   to  20.0ul  Buffer  (10x)  (including  MgCl2)   2.0µl  dNTPs  (2mM  ea)   2.0µl  Fwd  and  Rev  Primers  (20µM  ea)   1.0µl  Pfu  Polymerase   0.5µl  pBSII  Template   50ng    

1   95oC   2min  2   95oC   45sec  3   60oC   30sec  4   72oC   6min  5   Repeat  

steps  2-­‐4  10x  

 

7   4oC   Hold    

 

Page 39: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

20  

PCR2  –  Overlap  Extension  PCR  H20   to  20.0ul  Buffer  (10x)  (including  MgCl2)   2.0µl  dNTPs  (2mM  ea)   2.0µl  PCR1  5’  product   50ng  PCR1  3’  product   50ng  Pfu  Polymerase   0.5µl  pBSII  Template   50ng    

1   95oC   2min  2   95oC   45sec  3   60oC   30sec  4   72oC   6min  5   Repeat  

steps  2-­‐4  10x  

 

7   4oC   Hold     Add  outer  

primers    

8   95oC   45sec  9   59oC   30sec  10   72oC   7min  11   4oC   Hold  

 

2.5.5 Insertion of HA and MYC tags to ItgβCN1 and AmItgβ2

HA  and  MYC  epitope   tags  were   cloned   into   expression   constructs   for   ItgβCN1  and  

AmItgβ2   respectively.   Epitope   tag   sequences  were   inserted   into   the   loop   encoding  

region  between  bases  258  and  259  of   ItgβCN1  and  bases  248  and  249  of  AmItgβ2.  

This   loop  region  was  extended  using  sequence   from  the  corresponding   loop   in   the  

Drosophila  integrin  ItgβPS.  Sequences  5’  and  3’  of  the  insertion  site  were  amplified  

in  separate  PCRs   from  the  coral   template  using   the   following  primer  combinations  

before  restriction  digestion.  

Template   5’  Sequence   3’  Sequence  

  5’  Primer   3’  Primer   5’  Primer   3’  Primer  

ItgβCN1     Ext-­‐KpnI    βCN1  

5’  

ItgβCN1    

insert  tag  5’  S-­‐    

βCN1  insert  tag  

3’  S+  

βCN1   NgoMIV  

3’  S-­‐  

AmItgβ2   Ext-­‐HindIII   β2  

5’  

AmItgβ2  

insert  tag  5’  S-­‐  

AmItgβ2   insert  

tag  3’  S+  

AmItgβ2   NcoI  

3’S-­‐  

 

Page 40: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

21  

Sense  and  anti-­‐sense  oligonucleotides  encoding  the  HA  and  MYC  epitopes  flanked  by  

SacI   and   BamHI   restriction   sites   were   annealed   by   immersing   a   microfuge   tube  

containing   equal  portions  of   sense   and   antisense  oligonucleotides   in  boiling  water  

for   5   minutes   before   allowing   to   cool   slowly   to   room   temperature.     Three   way  

ligation  was  performed  to  combine  the  5’  and  3’  coral  sequences  with  the  HA  or  MYC  

tag   insert.   The   resulting   DNA   containing   the   epitope   tag   corresponded  

approximately   1/3   of   original   coral   template   in   the   5’   end.   This   sequence   was  

inserted  into  the  ItgβCN1  or  AmItgβ2  expression  vector  by  restriction  digestion  and  

ligation.  Success  of  the  cloning  process  was  determined  by  restriction  digestion  and  

sequencing.  Only   2   vectors,   ItgβCN1-­‐HA  and  AmItgβ2-­‐MYC,  were   completed   in   the  

timeframe   required   to   perform   cell   spreading   experiments.     HA   and   MYC   tagged  

ItgβPS   were   kindly   donated   by   Dr.   Tom   Bunch   (University   of   Arizona)   for  

experimental  control.    

 

5’  and  3’  Fragment  Primers  

coral adaptor sequence SacI restriction site BamHI restriction site  Ext  KpnI-­‐BetaCN1  5'        5’-TGTCTTCACGCGCATCCGCAGGTACCATGAAGCGAAGGCTTTGCTT-3’ ItgbCN1  insert  tag  5’S-­‐ 5’-ctcgacgagctcgaactcgacgagtaggagctgctgccggacatggcggagccgccgccaccagccgccagttcagcTTTTGCACCTACATTACTGT-3’ ItgbCN1  insert  tag  3’S+  5’-gatctgggatccagttccgccagcggatacgaagagtactctgccggcgaaattGTGCAAGTTCAGCCAAAG-3’ Ext  HindIII-­‐Beta2  5'        5’-TGTCTTCACGGGCCACGGCAAAGCTTATGCGGATATTTTGGGTTACA-3’ AmItgb2  insert  tag  5’S-­‐  5’-

ctcgacgagctcgaactcgacgagtaggagctgctgccggacatggcggagccgccgccaccagc

cgccagttcagcTGTATCAAGTGGCTTGTTC-3’  

AmItgb2  insert  tag  3’S+  5’-gatctgggatccagttccgccagcggatacgaagagtactctgccggcgaaattAATGTGAAAGTGAAACCACA-3’  

 

Page 41: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

22  

HA  and  MYC  epitope  tag  oligonucleotides  

SacI restriction site BamHI restriction site HA or MYC Tag sequence  Myc  loop  middle  S+  5’-cgtcgagcttctactcgcagagctcctcggagcagaagctgatctccgaagaggatctgg-3’ Myc  loop  middle  S-­‐  5’-gatcccagatcctcttcggagatcagcttctgctccgaggagctctgcgagtagaagctcgacgagct-3’ HA1  loop  middle  S+  5’-cgtcgagcttctactcgcagagctcctcgTACCCGTACGATGTGCCGGATTACGCCg-3’ HA1  loop  middle  S-­‐  5’-gatccGGCGTAATCCGGCACATCGTACGGGTAcgaggagctctgcgagtagaagctcgacgagct-3’  

 

 

Page 42: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

23  

2.6 Maintenance of Drosophila S2 cells in culture All  experiments  were  performed  using  Drosophila  S2/M3  cell   line   (Schneider’s   line  2  cells  

adapted  for  growth  in  M3  medium  (Schneider  1972);  referred  to  as  S2  Cells).  S2  cells  were  

maintained   at   a   density   of   2x106   –   10x106   cells/ml   in   Shields   and   Sang  M3  medium   (M3;  

Sigma)   supplemented   with   12.5%   heat   inactivated   foetal   calf   serum   (FCS),   100U/mL  

Penicillin   and   100μg/mL   Streptomycin   (PS).   Cells   were   cultured   under   controlled  

temperature  conditions  at  room  temperature  (25OC)  with  an  air  gas  phase.  Transformed  cell  

lines  were  maintained  in  M3  +  FCS  +  PS  with  2x10-­‐7  Molar  Methotrexate  (MTX).    

2.7 Transfection of Drosophila S2 Cells in culture Unless   otherwise   stated,   transfections   were   performed   in   6   well   tissue   culture   plates  

(2ml/well)  1  day  after   resuspension  of   cells   at  3x106   cells/ml   in  M3  +FCS  +PS  medium   to  

allow   cells   to   reach   the   exponential   growth   phase   and   recover   from   stress.   Immediately  

prior   to   transfection,   DNA   mix   was   prepared   by   adding   serum   free   M3   medium   and   the  

following  components  to  achieve  a  final  volume  of  100µl:    

• Transient  transfection  only  -­‐  1µl  250ng/µl  GFP  expression  plasmid  (under  

Actin  promotor)  

• Transient  transfection  only  -­‐  2µl  250ng/µl  Mys  (ItgβPS)  RNAi  

• Equal  parts  of:    

o 250ng/µl  pH8CO  (methotrexate  resistance;  Rebay et al., 1991)  

o 250ng/µl  α  integrin  pHS  expression  construct  

o 250ng/µl  β  integrin  pHS  expression  construct  

Negative   controls   contained   empty   pHSMCS   and   pH8CO   vectors   only.     100µl   of   diluted  

Cellfectin   (Invitrogen)  was   also   prepared   immediately   prior   to   transfection  by   addition   of  

10µl   Cellfectin   to   90µl   serum   free  M3  medium.   The   diluted   Cellfectin   and   DNA  mix  were  

gently  combined  before  incubation  at  room  temperature  for  15minutes.  During  incubation,  

growth  medium  (M3  +  FCS  +PS)  on  the  cells  to  be  transfected  was  replaced  with  2ml  serum  

free  M3  medium.  After  incubation  and  working  no  more  than  2  wells  at  a  time,  M3  (serum  

free)  medium  was  removed  from  the  cells,  800µl  M3  (serum  free)  medium  was  added  to  the  

200µl   Cellfectin-­‐DNA  mix   before   being   gently   added   to   cells.   Cells   were   incubated   in   the  

transfection  mix   for  5hrs   at   room   temperature.  After   incubation,   the   transfection  mix  was  

replaced   with   2ml   M3+FCS+PS   and   incubated   overnight.   Following   this,   medium   was  

replaced  with  supplemented  M3  medium  containing  MTX.    

Page 43: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

24  

2.8 Cell spreading assays Potential  ligands  for  coral  integrins  (Rbb-­‐Tiggrin,  Vitronectin,  Fibronectin,  Tennectin,  Twow,  

PacI,  Drosophila  Trimeric  Laminin,  Sucrose   fractionated  Drosophila  Laminin)  were  diluted  

in  Phosphate  Buffered  Saline  (PBS)  and  200µl  added  to  the  wells  of  a  96well  tissue  culture  

plate.   The   plate  was   sealed  with   parafilm   and   incubated   overnight   at   4OC.   Prior   to   assay,  

liquid   was   removed   from   the   wells   by   decanting   and   replaced   with   200µl   of   spreading  

medium  (optimal:  Robb’s  Saline  +  1mM  Mg2+  +  0.2mM  Ca2+;  Alternatives:  BES-­‐Tyrodes  (1mM  

Mg2+,  10µM  Ca2+,  1%  BSA),  PBS  (1mM  Mg2+,  10µM  Ca2+,  1%  BSA),  serum  free  M3  medium  (no  

additional  cations)).    

 

Cells  at  3  days  post-­‐transfection  were  counted  and  collected  by  centrifugation  at  1000g  for  2  

minutes.   Cells  were   resuspended   at   4x105cells/ml   in   spreading  medium   (Optimal:   Robb’s  

Saline  with  1mM  Mg2+  and  0.2mM  Ca2+).  Spreading  medium  was  removed  from  the  wells  and  

replaced   with   100µl   of   cells   in   spreading   medium   (4x104cells/well).   Attachment   and  

spreading  was  allowed  to  proceed  for  2hrs  before  fixation  with  2%  paraformaldehyde  (PFA)  

by   PBS.   Images   were   captured   on   a   Nikon   X5000   attached   to   a   Zeiss   Axiovision   200  

microscope.  

Page 44: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Two       Methods    

25  

2.9 Antibody staining and flow cytometry of integrin

expressing cells Duplicate  cultures  of  S2  cells  were  sampled  2  days  after   transfection  with  coral  and/or   fly  

integrin   subunits.   Samples   of   0.5x106   -­‐   1x106   cells   were   resuspended   in   50µl   of   primary  

antibody  diluted  as  follows:  

• Rabbit  anti-­‐AmItgα1   1:500  dilution  (1:100  and  1:1000  also  trialled)  

• Rabbit  anti-­‐ItgβCN1   1:500  dilution  (1:100  and  1:1000  also  trialled)  

• Rabbit  anti-­‐AmItgβ2   1:500  dilution  (1:100  and  1:1000  also  trialled)  

• Mouse  anti-­‐ItgαPS1   1:500  dilution  

• Mouse  anti-­‐ItgαPS2C   1:1000  dilution  

• Rabbit  anti-­‐HA-­‐488   1:1000  dilution  

• Rabbit  anti-­‐MYC   1:1000  dilution  

 

Samples  were  incubated  in  primary  antibody  for  20-­‐25minutes  before  washing  with  500µl  

M3  serum  free  medium  and  resuspension  in  50µl  secondary  antibody  diluted  as  follows:  

• Goat  anti-­‐Rabbit  546     1:1000  dilution  –  Coral  integrins  

• Goat  anti-­‐mouse-­‐546   1:1000  dilution  –  Fly  integrins    

 

Samples   were   incubated   in   secondary   antibody   for   20-­‐25minutes   before   washing   with  

500µl   serum   free   M3   medium   and   fixation   in   500µl   2%   PFA   by   PBS.   Surface   antigen  

detection  was   then  performed  by   flow   cytometry.   To   sort   antigen   expressing   cells   for   cell  

spreading   assays   (Section   6.3.2),   cells   were   washed   2x   in   500µl   Robb’s   Saline   after  

incubation  with  secondary  antibody  and  maintained  on  ice  prior  to  cell  sorting.    

 

Page 45: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  26  

Chapter 3: JCUSMART – A simple tool for automated annotation and exploration of large protein sequence datasets

3.1 Introduction The   traditional  view  of  many  evolutionary  and  developmental  biologists  has  been   that   the  

simple  morphology  of   basal   invertebrates   such  as   cnidarians   is   a   reflection  of   low  genetic  

complexity.  The  genomic  complexity  of   cnidarians  has  often  been  underestimated   through  

the   reasonable   expectation   that   simple   morphology   is   correlated   with   low   complexity.  

However,  studies   in   the  early  2000’s  examined  this  expectation  and  demonstrated  specific  

examples   where   aspects   of   cnidarian   genetics   were   considerably   more   complex   than  

expected  (Schmitt  &  Brower,  2001;  reviewed  in  Ball  et  al.,  2004;  Martindale  et  al.,  2002).  

 

Compelling   evidence   for   broad   genetic   complexity   within   basal   metazoans   arose   from  

analysis   of   the   moderately   sized   expressed   sequence   tag   (EST)   projects   of   Acropora  

millepora   and   Nematostella   vectensis.   Sequence   analysis   of   these   EST   data   showed   that  

Acropora  possesses  a  higher  proportion  of  sequences  with  greater  similarity  to  humans  than  

traditional  invertebrate  models  (ie.  Drosophila  and  Caenorhabditis)  (Kortschak  et  al.,  2003).  

Both   Acropora   and   Nematostella   datasets   contain   a   significantly   higher   than   expected  

representation   of   signalling   pathways   previously   assumed   to   be   vertebrate   specific,   and  

exhibit  a  degree  of  ancestral  gene  maintenance  not  observed   in  bilaterians  (Technau  et  al.  

2005).   Evidence   for   ancestral   complexity   within   the   Cnidaria   was   consolidated   with   the  

publication  of  Nematostella  genome,  which  supported  the  above  findings  and  revealed  that  

the   number   of   coding   genes   is  more   similar   to   that   of   Deuterostomes   than   Ecydosozoans  

(Ball  et  al.,  2004;  Martindale  et  al.,  2002;  Schmitt  &  Brower,  2001).  The  demonstrated  lack  of  

correlation  between  genetic  and  phenotypic  complexity  has   lead  to  a  new  appreciation  for  

the  complexity  that  arose  prior  to  bilaterian  evolution.    

 

The   dramatic   change   in   understanding   of   cnidarian   genetics   and   its   implications   for  

metzoan  evolution  exemplifies  the  importance  of  sequence  analysis  as  a  research  tool.  The  

power  of   sequence   analysis   to   yield   results   capable  of  making   a   significant   impact   on   any  

field  of  study   is  heavily  reliant  on  both  the  size  and  quality  of   the  sequence  data  available.  

Development   of   high   throughput   sequencing   technologies   including   Illumina   and   454  

sequencing  has  made  generation  of  high  quality,  large  scale  datasets  (such  as  transcriptome  

Page 46: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  27  

and   genome   sequencing)   feasible   for   a   much   wider   range   of   non-­‐traditional   model  

organisms.   Some   publically   available   examples   available   at   the   Ensembl   genome   browser  

(http://www.ensembl.org/index.html)  include  Dolphin,  Alpaca,  Wallaby,  Turkey  and  Shrew.    

 

Thee  hundred  and  twenty  three  (323)  whole  genome  projects  are  currently  (July  2011)   in  

the   public   domain   (available   through   Ensembl)   and   the   decreasing   cost   of   sequencing   is  

stimulating   the   occurrence   of   private   large   scale   datasets.     Despite   the   increasing   ease   of  

generating   data,   the   ability   to   navigate   large   datasets   in   order   to   explore   genetic  

relationships   and   genetic   novelties   remains   out   of   reach   for   most   individual   molecular  

biologists  and  requires  the  assistance  of  a  dedicated  bioinformatician.  As  a  result,  the  huge  

potential  of   large  scale  sequencing   for   furthering  our  understanding  of  genetic  diversity   is  

underutilised.    

 

Increasing   the   accessibility   of   large   datasets   for   analysis   by   a   greater   proportion   of   the  

scientific  community  hinges  on  accurate  annotation  of  sequence  data,  principally  of  coding  

sequences   and   predicted   peptides.   This   is   particularly   important   in   organisms   such   as  

cnidarians   where   current   data   indicates   a   significant   proportion   of   the   detectable   coding  

sequences   are   dissimilar   to   all   sequences   described   in   the   primary   public   databases  

(Swissprot  and  NCBI).  However,  annotation  of  these  datasets  by  molecular  biologists  is  often  

limited   by   the   procedural   aspects   of   operating   commonly   accepted   annotation   software,  

including   installation   on   an   appropriate   computing   environment,   operation   of   the  

computing   environment   and   the   annotation   tools   using   a   command   line   interface,   and  

management  of  the  output  data.    

 

Two   of   the  most   powerful   and   common   annotation   tools   are   BLAST,   to   explore   pairwise  

similarity,   and   HMMER   to   explore   conservation   of   functional   domains   within   protein  

sequences.   Like   most   common   annotation   tools,   these   can   be   utilised   for   individual  

sequences  by  virtue  of  online  servers  accessible  through  a  graphical  interface.  These  public  

servers  carry  heavy   limitations   to  compute   time  and   the  number  of  sequences   that  can  be  

processed  and  are  therefore  not  suitable  for  large  scale  processing.    

 

Limitations   to   the   capacity   of   graphical   and   easy   to   manage   annotation   tools   have  

contributed  to  the  development  of  an  upward  or  “gene  by  gene”  approach  to  annotation  and  

large   dataset   exploration   (Figure   3.1).   The   “gene   by   gene”   approach   starts   with   a   small  

number  or  narrow  range  of  sequences   to  be  annotated  and  often  yields  a  narrow  range  of  

results.  For  example,  in  the  case  of  identifying  a  single  or  small  number  unknown  sequences,  

Page 47: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  28  

BLAST   can   be   performed   online   against   public   databases   and   similarity   to   reported  

sequences   can   be   identified.   For   this   application,   the   “gene   by   gene”   approach   is   ideal.  

However,   this  approach  is   less  suitable  for   identifying  sequences  of   interest   from  a  pool  of  

unknowns   (eg.   a   transcriptome  or   genome   sequence  dataset).     This   task   requires  use  of   a  

known   homologue   of   the   sequence   of   interest,   which   is   used   to   query   a   custom   BLAST  

database   and  may   require   some   verification   of   results,   such   as   BLAST   of   the   best   hits   for  

each  gene  of  interest  against  NCBI  non-­‐redundant  (nr)  or  SwissProt  databases.  The  analysis  

process  quickly  becomes  time  consuming  as  the  number  of  sequences  increases.    

 

 

 

 

Figure   3.1   Upward   approach   to   identifying   genes   of   interest   in   a   custom  dataset.   The   process   undertaken   to  analyse  the  data  is  shown  in  A,  whilst  the  impact  on  the  size  of  the  gene’s  of  interest  group  is  displayed  in  B  As  the   identification  process  proceeds,   the  number  of   genes   that  need   to  be   considered   increases  with  each   step.  Steps  marked  with  “*”  have  potential  to  introduce  identification  /  annotation  error  to  the  system,  through  false  matches  which  may  not  be  easily  detectable  if  only  BLAST  is  considered.    

 

A   B  

Page 48: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  29  

The  time  required  to  processes  data  by  the  gene  by  gene  approach  can  reduce  the  number  of  

annotative   tools   that  are  used,  which  can  have  adverse  affects  on   the  accuracy  of   the   final  

annotation.  Often  the  only  tool  employed  by  molecular  biologists  in  sequence  identification  

is   BLAST.   As   with   all   bioinformatics   programs,   BLAST   has   implicit   limitations.   When  

considering   large   proteins   with   common   or   repeated   domains,   for   example   those   of   the  

Cadherin  family,  which  can  contain  more  than  30  Cadherin  domains,  the  BLAST  analysis  fails  

to  accurately  distinguish  between  members  of  the  family,  even  if  repeat  masking  is  applied.  

In  these  cases,  and  cases  where  the  query  sequence  is  potentially  highly  derived  as  expected  

in   cnidarian   data,   the   protein   architecture   (domain   structure,   presence   of   signal   peptides  

and  transmembrane  regions  etc)  must  also  be  considered.  The  Simple  Modular  Architecture  

Research   Tool   (SMART)   (Letunic   et   al.   2009;   Schultz   et   al.   1998)   served   from  Heidelberg  

University   (http://smart.embl.de)   is  one  online   tool   that  allows   for  more  accurate  peptide  

annotation  through  identification  of  protein  architecture,  however  the  same  limits  to  input  

size  as  with  other  online  serves  apply.  

 

In  order  to  more  effectively  explore  large  datasets  from  potentially  divergent  organisms,  an  

approach  that  asks  “What  genes  are  present?”  must  be  used  instead  of  one  that  asks  “Is  this  

specific   gene   present?”.   This  more   permissive,   downward   approach   (Figure   3.2)   is   better  

suited  to  surveying  large  or  multiple  datasets  for  whole  families  of  genes.  Using  a  downward  

approach,  genes  of  interest  are  identified  by  searching  pre-­‐assigned  annotations  for  specific  

combinations  of   features   that  are  consistent  with   the  genes  of   interest.  Through  control  of  

search   terms,   this  approach  allows  greater   flexibility  and  control  over   the  scope  of   results  

obtained.    

 

For  public  genome  project  data,  the  level  of  exploration  offered  by  a  downward  approach  is  

primarily  accessed  through  genome  browsers  (eg.  JGI  genomes  and  Ensembl),  which  usually  

offer   results   for  BLAST  against   SwissProt,  HMMER  analysis   against  Pfam  and  SMART,   and  

organisation   of   sequences   into   Eukaryotic   Cluster   of   Orthologous   Groups   (KOG)   or   Kyoto  

Encyclopaedia  of  Genes  and  Genomes  (KEGG)  pathways.  Using  a  genome  browser  to  survey  

public  genomes  for  genes  with  specific  features  often  begins  with  exploring  the  contents  of  

the   appropriate   KOG   and/or  KEGG   annotations.   The   results   can   then   be   narrowed   on   the  

basis   of   protein   architecture   (structural   features   of   a   protein   including   signal   peptides,  

conserved   domains   and   transmembrane   regions)   or   BLAST   annotations.   Unfortunately,  

accurate  mapping  of  private  data   to   the  KOG  and  KEGG  hierarchies   is  not   always  possible  

and  is  particularly  complicated  for  lower  organisms  such  as  cnidarians  due  to  small  dataset  

size  and  the  strong  vertebrate  bias  in  publically  available  genomes  on  which  KOG  and  KEGG  

Page 49: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  30  

are   based.   Instead   exploration   of   large   private   datasets   must   be   based   on   the   remaining  

annotative   tools,   protein   architecture   and   BLAST.   Fortuitously,   software   to   perform   these  

analyses   are   freely   available   for   academic   purposes   and   can   be   installed   on   multiple  

computing  platforms.  

 

 

 

Figure   3.2   Downward   approach   to   identifying   genes   of   interest   in   a   custom   dataset   using   JCUSMART.   The  process  undertaken  to  analyse  the  data  is  shown  in  A,  whilst  the  impact  on  the  size  of  the  gene’s  of  interest  group  is  displayed  in  B.  As  the  process  proceeds,  the  number  of  sequences  to  consider  is  reduced  in  a  manner  reflecting  the  stringency  of  search  criteria.  Error  is  not  introduced  into  the  system,  however  some  sequences  may  not  be  identifiable   due   to   the   nature   of   the   custom   dataset.   These   sequences   are   more   easily   detected   using   the  downward  approach  rather  than  falsely  annotated.  

 

In  order  for  large  scale  sequencing  data  to  be  effectively  utilised  by  a  greater  proportion  of  

molecular   biologists,   a   single   access   point   for   data   annotation   and   exploration   using   a  

downward  approach  must  be  available.  Currently,  no  single  package   is  publically  available  

to  perform  both  of   these   functions.  To  address   this  deficit,   I  have  developed  a   tool  named  

JCUSMART   that  aims   to  act  as  a   single  platform   for  automated  annotation  of   large  protein  

datasets   and   for   exploration   of   the   resulting   annotations   using   a   downward   approach.  

Adoption   of   this   tool   will   facilitate   exploration   of   large   datasets   by   a   larger   number   of  

molecular  biologists  who  have  only  a  basic  background  in  bioinformatic  techniques.  

A   B  

Page 50: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  31  

3.2 Methods (development of JCUSMART) In  order  to  provide  a  more  accessible  single  platform  for  employing  a  downward  approach  

to   large   scale   data   exploration   I   developed   a   system   named   JCUSMART   that   allows  

assessment   of   both   BLAST   results   and   protein   architecture.   JCUSMART   was   designed   to  

address  both  analytical  and  user  interface  requirements.    

 

The  analytical  requirements  of  JCUSMART  were:  

• To   perform   timely   analysis   of   large   private   datasets   by   BLAST   against   public  

datasets  and  determination  of  protein  architecture  

• To  extract  key  information  from  raw  results  for  storage  and  display  

• To  store  key  information  in  a  searchable  format    

 

Analytical  requirements  were  addressed  using  a  computational  pipeline,  which  was  capable  

of   thin  deployment  over  a   local  computing  cluster  thereby  reducing  analysis   time.  Outputs  

from  annotative  programs  (Table  3.1)  were  parsed   for  key   information,  which  was  passed  

into  a  PostgreSQL  database.    The  computational  workflow   is  detailed   in  Figure  3.3.  BLAST  

annotation  was  not  included  in  the  automated  analysis  in  order  to  give  greater  control  over  

the   BLAST   parameters.   A   separate   script   was   developed   to   enter   BLAST   data   into   the  

database.  

 

To  make  this  tool  accessible  the  user  interface  was  required  to:    

• Be  presented  for  use  in  a  single,  intuitive,  graphical  environment  

• Have  simple  operation  for  initiation  of  analyses  and  exploration  of  results  

• Present  results  clearly  

 

JCUSMART   is   accessible   through   either   a   web   interface  

(https://kanga.hpc.jcu.edu.au/jcusmart/index.html)   or   command   line   interface.   Both   offer  

the  ability   to   launch  new   JCUSMART  analyses  and  search   the  database   for   sequences  with  

common  annotations.  Both  interfaces  have  simple  operation  and  display  results  in  an  easily  

interpreted  table.    

Page 51: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  32  

 

Program   Function   Origin   Link    HMMER2:  HMMPFAM  

Predict  Conserved  Domains  using  HMMs.  PFAM  and  SMART  databases  utilised  

Howard  Hughes  Medical  Institute  and  Dept.  of  Genetics,  Washington  University    

http://hmmer.janelia.org/      

TMHMM   Predict  Transmembrane  Helicies  

Center  for  biological  sequence  analysis  –  Technical  University  of  Denmark  (CBS-­‐DTU)  

http://www.cbs.dtu.dk/services/TMHMM    (Krogh  et  al.,  2001)  

 

SignalP   Predict  signal  peptides  

CBS-­‐DTU   http://www.cbs.dtu.dk/services/SignalP    (Bendtsen  et  al.,  2004)  

 TargetP   Predict  cell  

membrane/  mitchondreal/  Chloroplastic  signal  peptides  

CBS-­‐DTU   http://www.cbs.dtu.dk/services/TargetP    (Krogh  et  al.,  2001)  

 

SEG   Identify  low  complexity  segments  

CBS-­‐DTU   (Wootton,  1994)  

NCOILS   Predict  coiled-­‐coil  regions  

CBS-­‐DTU   (Lupas  et  al.,  1991)  

Prospero   Identify  internal  repeats  

Welcome  Trust  Centre  for  Huan  Genetics  

http://www.well.ox.ac.uk/ariadne/intro.shtml    (Emanuelsson  et  al.,  2000)  

Netphos   Predict  Phosphorylation  sites  

CBS-­‐DTU   http://www.cbs.dtu.dk/services/NetPhos    (Blom  et  al.,  1999)  

Table   3.1   Programs   used   by   JCUSMART   in   the   annotation   of   protein   sequences,   showing   the   information  gathered  and  the  program  origin.  Conserved  Functional  domains  were  detected  using  HMMPFAM  in  conjunction  with   PFAM   and   SMART   Hidden   Markov   Model   Libraries.   TMHMM   was   used   to   predict   the   presence   of  transmembrane  helices.  Membrane   targeting   signal   sequences  were   identified  using  SignalP  and  TargetP.  Low  complexity  segments  and  coiled-­‐coil  predictions  were  predicted  by  SEG  and  NCOILS  respectively.  Prospero  and  Netphos   were   used   to   identify   internal   repeats   and   putative   phosphorylation   sites.     All   programs   are   freely  available  for  academic  use.  No  citation  is  available  for  HMMER2  as  per  the  program  manual.  

 

Page 52: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  33  

 

Figure   3.3   Computational   Workflow   of   JCUSMART   pipeline.   JCUSMART   accepts   protein   sequences   in   FASTA  format.  The  input  file  is  parsed  for  characters  that  raise  errors  in  the  analysis  programs,  removing  or  replacing  characters  where  required  (this  does  not  affect  the  protein  sequence).   JCUSMART  then  loads  the  cleaned  input  file   to   each   program   for   analysis.   Each   program   runs   on   a   separate   node   of   the   James   Cook   University   High  Performance  Computing  Cluster  (HMMPFAM  on  2  nodes)  and  is  assigned  the  maximum  number  of  CPUs  allowed  by  the  program.  Raw  output  files  are  parsed  for  results  informative  to  most  molecular  biologists,  which  are  then  entered   into  the   JCUSMART  database.  The   JCUSMART  graphic  user   interface  and  command  line   interface  allow  text   based   searching   of   database   results   for   identification   of   sequences   containing   specific   combinations   of  domains   and   protein   architectural   features   (eg.   Singal   peptide,   specific   combinations   of   domains,  transmembrane   helix,   and   phosphorylation   sites).   Refining   search   terms   allows   narrowing   of   the   number   of  sequences   of   interest.   BLAST   results   are   also   stored   in   the   JCUSMART   database,   however   this   analysis   is   run  independently.  Results  of  BLAST  can  also  be  searched  for  key  words  allowing  identification  of  a  greater  number  of  potential  sequences  of  interest  (dependant  on  similarity  limits  imposed  on  BLAST  analysis),  whilst  providing  enough  architectural  information  to  accurately  assign  orthology  even  in  cases  where  BLAST  alone  is  insufficient.  

Page 53: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  34  

3.3 Results (Testing and low intensity applications) Initial   testing   and   development   was   centred   around   the   sequences   of   the   three   integrins  

from   Acropora   millepora   which   had   previously   been   characterised   in   terms   of   protein  

architecture   (Knack   et   al.,   2008).   For   each   annotation   program,   a   comparison   was   made  

between   the   known   protein   architecture,   the   raw   program   output   and   the   results   in   the  

database.  These  results  were  consistent  for  the  three  sequences  used.  The  same  comparison  

was  made  for  a  10  sequence  analysis  and  also  found  to  be  100%  consistent,  demonstrating  

annotations  were  not  lost  or  re-­‐assigned  before  entry  into  the  database.  Analysis  of  100  and  

1000   sequence   datasets   were   performed   in   order   to   check   for   errors   in   the   database.  

SignalP,   HMMER,   TMHMM   and   TargetP   programs   produce   a   database   entry   for   every  

sequence  analysed.  Errors  could  therefore  be   identified  by  comparing  the  number  of   input  

sequences  to  the  number  of  entries  for  these  programs.  Re-­‐testing  using  these  datasets  was  

performed   after   each   adjustment   to   the   system.   Testing   and   development   of   database  

queries  were  also  perform  using  these  initial  datasets.  

3.4 Discussion The  increasing  ease  of  generating  large  amounts  of  sequence  data  is  broadening  the  scope  of  

what  can  be  achieved  through  sequence  analysis.  However,  a  large  proportion  of  molecular  

biologists  who   could   benefit   from   exploring   large   private   datasets   for   proteins   containing  

specific   features   of   interest   are   not   utilising   the   data   for   their  maximum  benefit.   In  many  

cases   this   is   simply   due   to   inexperience   with   the   procedural   aspects   of   bioinformatic  

analysis   on   large   datasets.   JCUSMART   provides   a   single   tool   for   running   basic   automated  

annotation   of   large   datasets   and   exploring   the   results   using   a   downward   approach.  

Currently  the  JCUSMART  pipeline  can  analyse  protein  data  from  a  whole  genome  containing  

30,000  sequences  in  less  than  3  days.  After  analysis,  multiple  large  datasets  that  may  consist  

of  over  200,000  sequences  in  total  can  then  be  searched  for  specified  features  in  a  matter  of  

minutes.  Common  queries  used  to  explore  data  from  one  or  more  datasets  in  the  JCUSMART  

database  include:  

• Searching  for  proteins  with  specified  conserved  domains  

• Searching   for   proteins   with   specified   architectural   features   (eg.   signal   peptide   or  

number  of  transmembrane  domains)  

• Searching  for  sequences  that  have  BLAST  hits  with  descriptions  matching  specified  

key  words  using  Boolean  operators  (AND,  OR,  NOT)  

 

Page 54: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  35  

For  many  of  the  data  types  (eg.  conserved  domains  and  BLAST  hits)  E-­‐value  cutoffs  can  be  

specified,  allowing  control  over  the  specificity  of  results  returned  by  a  query,  and  any  chosen  

fields   can   be   retrieved   using   a   list   of   sequence   names   generated   using   JCUSMART   or   any  

external   method.   The   rapid   cross   dataset   search   times   and   ability   to   control   search  

stringency   makes   this   tool   ideal   for   comparative   studies   and   identification   of   novel   or  

divergent  sequences  of  interest  from  a  large  pool  of  data.  A  number  of  limitations  currently  

exist   in   JCUSMART.   The   current  web  based   interface   lacks   features   such   as   downloadable  

results   file   and   fetching   sequences   from   the   database   in   FastA   format.   These   issues   have  

been  resolved  in  the  command  line  interface.  The  web  interface  could  also  be  improved  by  a  

graphical   display   of   results   with   links   to   external   information   (eg.   conserved   domain  

descriptions),   which  would  make   interpretation   of   results  more   straightforward   than   the  

current  tabular  format.  

 

JCUSMART   is  primarily  designed   to   facilitate   identification  of   sequences  of   interest   from  a  

pool  of  unknown  sequences.   It   is  not  designed   to   identify  orthologous  sequences  or  group  

sequences   automatically.   This   is   due   to   the   difficulties   of   automating   the   integration   of  

BLAST   (which   is   potentially   misleading   for   divergent   or   basal   animals)   and   protein  

architecture   information   to  reach  an  accurate  result.  Protein  grouping   is  better  performed  

manually   using   the   JCUSMART   information   as   it   allows   the   user   to   consider   their   prior  

knowledge   of   the   proteins   of   interest.   Protein   identification   therefore   involves   refining  

search   criteria   to   suit   a   specific   question.   Some   sequences   may   not   be   identifiable   using  

JCUSMART   for   a   number   of   reasons   (Table   3.2).   It   should   be   noted   that   the   inability   to  

identify   a   homologue   of   a   particular   gene   of   interest   is   not   a   definitive   indication   of   its  

absence  from  an  organism,  it  may  simply  be  absent  from  the  dataset.  

Page 55: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  36  

 

Reason  for  Absence   Description  

Fragmentation  of  genes  

into  multiple  models    

This  is  an  inherent  limitation  of  the  contiguous  sequence  assembly  

process  (unrelated  to  JCUSMART).  In  the  case  of  genome  sequencing  

this  is  aided  by  increased  sequence  coverage  and  EST  support.    

Incomplete  models  may  

not  represent  the  gene  

sufficiently  to  be  

identified  using  the  

search  criteria    

Gene  models  and  therefore  predicted  peptides,  may  represent  

regions  of  a  gene  that  are  specific  to  a  particular  biological  function  

or  to  a  specific  gene.  These  sequences  cannot  be  resolved  without  

laboratory  investigation  (ie.  cloning  and  sequencing).  

Incomplete  models  more  

closely  resemble  other  

sequences    

Limitations  in  BLAST  and  HMMER  can  produce  misleading  results.  

Often  in  this  case  the  results  of  BLAST  against  NCBI  nr  will  not  agree  

with  the  domain  structure  of  the  predicted  peptide.  

Inappropriate  search  

criteria  

Narrowing  search  criteria  to  focus  on  a  diagnostic  region  of  the  gene  

of  interest  can  sometimes  correct  this.  Search  criteria  involving  

keywords  commonly  require  refinement.  

Table  3.2  Conditions  under  which  sequences  may  not  be  identifiable  using  the  JCUSMART  method.  Both  errors  in  gene  or  protein  prediction,  such  as  fragmentation  of  genes  into  multiple  models  or  truncated  gene  models,  and  errors  in  the  search  approach  (ie.  inappropriate  search  criteria)  can  result  in  unidentifiable  sequences.  

 

Currently   the   JCUSMART   database   holds   annotations   for   a   total   of   112,868   sequences  

(~35Gb)  from  five  basal  animal  datasets:  

• Nematostella  vectensis  genome  filtered  models  –  27273  sequences  

• Hydra  magnipapillata  EST  project  protein  predictions  –  19845  sequences  

• Acropora  millepora  Transcriptome  protein  predictions  –  48  335  sequences  

• Clytia  hemispherica  EST  project  protein  predictions  –  8219  sequences  

• Monosiga  brevicolis  Genome  predicted  peptides  –  9196  sequences  

 

The  application  of  JCUSMART  in  identification  of  specific  gene  families  across  several  genera  

has  already  made  a  significant  contribution  to  a  number  of  research  projects.  The  projects  

and   the   application   of   JCUSMART   is   outlined   in   Table   3.3.   One   further   documented  

application   for   JCUSMART  has  been   in   the   identification  of  adhesion  genes   throughout   the  

Cnidaria.  This  survey  of   the  cnidarian  adhesion  complement   is  presented  in  Chapter  4  and  

was  the  model  use  case  for  JCUSMART.    

Page 56: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Three       JCUSMART    

  37  

 

Research   Contribution  using  JCUSMART  Foret  et  al  (2010),  New  tricks  

with  old  genes:  the  genetic  

bases  of  novel  cnidarian  traits.  

Trends  in  Genetics,  26  (4),  154-­‐

158  

Identification  of  CEL-­III  like  lectins  in  Clytia  hemispherica  but  

not  in  Nematostella  vectensis  or  Hydra  magnipapilata.  This  

distribution  of  CEL-­III  demonstrates  the  stochastic  nature  of  

gene  loss  in  cnidarians  

Detection  of  Selenium  related  

proteins  in  Acropora  millepora  

(In  preparation)  

Identification  of  GPx  (1),  TR  (2),  Other  Seleno-­‐proteins  (8),  

selenium  binding  proteins(2),  other  related  factors  (1)  from  

Acropora  millepora  EST  data.  These  sequences  formed  the  

basis  of  protein  characterisation  and  coral  stress  experiments  

to  meet  PhD  project  requirements.    

Detection  of  caspase  and  NOD  

related  genes  in  Acropora  

millepora,  Nematostella  

vectensis,  Hydra  magnipapillata,  

Clytia  hemispherica  

Identification  of  NOD  and  caspase  proteins  from  each  of  4  

cnidarian  datasets  prior  to  cloning  and  laboratory  

investigation  used  to  meet  PhD  project  requirements.  

Table  3.3   JCUSMART  has  already  contributed   to  published  and  unpublished  work   though   the   identification  of  genes  of   interest   and   sequence   annotation.  The  project   and   the   contribution  of   JCUSMART  are  outlined   in   the  table.  

3.5 Conclusions Through   the   use   of   a   distributed   computational   pipeline   and   a   relational   PostgreSQL  

database,  JCUSMART  delivers  accurate  and  highly  searchable  automated  protein  annotation  

in   a   timely  manner.   Having   already   demonstrated   its   usefulness   in   a   number   of   projects,  

JCUSMART   provides   an   efficient   tool   for   employing   a   downward   approach   to   identifying  

sequences  of  interest,  and  facilitates  the  exploration  of   large  protein  datasets  by  molecular  

biologists  with  limited  bioinformatic  knowledge.  

 Acknowledgements Initial   development   and   implementation   of   pre-­‐processing,   job   dispatch   and   data   storage  

systems  were  performed  in  conjunction  with  Dr.  Wayne  Mallet  of  the  James  Cook  University  

High   Performance   Computing   Department.   Testing   and   development   of   BLAST   dispatch,  

BLAST  data  storage  and  command  line  query  scripts  were  performed  with  the  assistance  of  

Wade  Tattersall  of  the  JCU  ARCHER  project.  Thanks  also  to  Russell  Sim  and  David  Lang  for  

guidance  on  programming  and  query  design.  

 

Page 57: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

38  

Chapter 4: Diversity of cell adhesion molecules in cnidarians

 4.1 Introduction Cellular   contacts  with   the   extracellular  matrix   (ECM)   and   surrounding   cells   play   a   critical  

role  in  the  development  and  survival  of  animals,  as  demonstrated  by  the  multitude  of  severe  

and  often  lethal  phenotypes  resulting  from  misregulation  of  cell  cohesion  and  cell  migration  

(Hogg   &   Bates,   2000).   A   combination   of   genome   analyses   and   functional   studies   in  

representative   bilaterians   has   led   to   an   appreciation   that   cell   adhesion   molecules,   the  

proteins   facilitating   cellular   cohesion   and   migration,   form   a   complex   network   capable   of  

regulating   diverse   biological   processes   in   both   protostomes   and   deuterostomes   (Klein   &  

Mlodzik,   2004;   Schambony,  Kunz,  &  Gradl,   2004;  Tan   et   al.,   2001).   The   importance  of   cell  

adhesion   molecules   to   fundamental   processes   such   as   morphogenesis   and   immunity   has  

been  described  in  detail.  Examples  include  integrins,  which  function  in  leukocyte  trafficking  

and   formation   of   the   gastric   cavity   (Kinashi,   2005;   Serini,   Valdembri,   &   Bussolino,   2006;  

Yang   et   al.,   1999),   cadherins,   which   influence   cell   polarity   and   directed   cell   movements  

(Kimura-­‐yoshida   et   al.,   2005;   Rodríguez,   2004),   and   immunoglobulins,   which   are   the  

predominant   immune   mediators   in   bilaterians,   facilitating   vertebrate   adaptive   immunity.  

Comparative   analyses   have   also   identified   that   many   families   of   adhesion   genes,   such   as  

integrins,   catenin   binding   cadherins,   and   several   components   of   the   basement  membrane  

are   conserved   throughout   the   Bilateria,   playing   analogous   roles   in   a   variety   of   model  

organisms.  However,  the  complement  and  function  of  cell  adhesion  molecules  from  outside  

the  Bilateria  is  poorly  investigated.      

 

Biological   processes   governed   by   cell   adhesion   in   bilaterian   animals   are   also   observed   in  

lower   metazoans   such   as   cnidarians   and   sponges.   Cnidarians,   the   most   basal   phylum   to  

contain  a  tissue  layer  level  of  organisation  (Technau  et  al.,  2005),  undergo  a  broad  variety  of  

processes   that   centre   around   adhesion   molecule   expression   and   dynamic   changes   in  

adhesive  state  including  complex  morphogenic  cell  re-­‐arrangements  during  gastrulation  and  

metamorphosis   (Grasso   et   al.,   2008;   Hayward   et   al.,   2004),   allorecognition   between  

individuals  and  colonies  (Nicotra  et  al.,  2009),  innate  immunity  (Miller  et  al.,  2007),  nervous  

system  development  (de  Jong  et  al.,  2006)  and  the  uptake/loss  of  zooxanthellae  in  symbiotic  

cnidarians   such   as   coral   (Gates   et   al.,   1992;   Kvennefors   et   al.,   2008,   2010).   This   diverse  

phylum  is  also  positioned  at  the  base  of  the  Eumetazoa  (‘true  animals’),  owing  to  possession  

of  a  nervous  system  and  dedicated  tissues.  Furthermore,  gastrulation  results  in  development  

of  only  two  germ  layers  rather  than  three  as  observed  in  bilateral  animals.  These  attributes  

Page 58: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

39  

make  cnidarians  a  significant  comparator  to  bilaterian  systems  and  particularly  informative  

for   studies   of   evolution   and   development,   allowing   the   genetics   of   the   last   common  

eumetazoan  ancestor  to  be  inferred.  Despite  the  importance  of  cnidarians  to  understanding  

the   fundamental   roles   of   adhesion   molecules   in   tissue   development   and   the   molecular  

evolution  of  adhesion  genes,  the  diversity  and  function  of  adhesion  genes  in  cnidarians  are  

largely  unexplored.    

 

Investigations  encompassing  aspects  of  cnidarian  adhesion  have  previously  been  focused  on  

elucidating   the   distribution   of   a   single   gene   family   (defined   by   the   presence   of   specific  

functional  domains)  throughout  the  whole  of  the  Metazoa.  The  evolution  of  only  3  families  of  

adhesion   molecules   (integrins,   cadherins   and   G-­‐Protein   Coupled   Receptors)   has   been  

investigated   in   this   manner   with   each   analysis   suggesting   several   family   members  

originated   prior   to   the   eumetazoan   ancestor   (Hulpiau  &   van  Roy,   2011;  Nordström   et   al.,  

2009;  Sebé-­‐pedrós  et  al.,  2010).  No  common  evolutionary  trend  could  be  determined  from  

these   proteins   families,   as   each   family   has   a   broad   variety   of   functions   and   therefore  

selective  pressures,  however,  expansion  of  protein  families  is  generally  evident  at  the  base  

of  the  bilaterian  and  vertebrate  lineages.  Although  these  surveys  provide  perspective  on  the  

origin   of   specific   adhesion   families,   they  provide   a   limited   view  of   the   cnidarian   adhesion  

gene   complement   or   ‘adhesome’   as   a   whole.   Such   targeted   studies   also   have   a   restricted  

capacity   to   consider   the   importance   of   novel   or   structurally   distinct   family  members   in   a  

biological  context,  which   is  central   to  understanding   the  significance  of  ancestral  adhesion  

molecules.    

 

In  order  to  establish  an  accurate  overview  of  the  cnidarian  adhesome,  the  present  analysis  

considered  7  families  of  adhesion  molecules  with  described  roles  in  bilaterian  development  

or   immunity.   In   addition   to   investigation   of   the   integrin,   cadherin   and   immunoglobulin  

families   mentioned   above,   members   of   the   lectin,   class   B   G-­‐protein   coupled   receptors  

(GPCR),   Adhesion   leucine   rich   repeat   (LRR)   and   extracellular   matrix   families   were   also  

identified.   Analysis   of   these   families   attempted   to   identify   all   possible   members   with  

relevance  to  cell  adhesion  processes,  although  additional  members  of  these  families  may  be  

detectable  using  less  stringent  criteria.  

 

Page 59: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

40  

Previous   studies   into   the   evolution   of   adhesion  molecules   often   considered   only   a   single  

representative,   the   sea   anemone  Nematostella   vectensis,   as   representative  of   cnidarians   as  

whole.  However,   the  genetic  diversity   and  near   stochastic  nature  of   gene   loss  observed   in  

the  Cnidaria  suggest  the  use  of  a  single  species  may  not  be  suitable  to  gain  insight  into  the  

evolution   of   adhesion   genes   originating   in   the   eumetazoan   ancestor.   To   overcome   this  

limitation  the  present  analysis  examines  EST,  transcriptome  and  genomic  data  from  4  model  

cnidarians,   Acropora   millepora,   Nematostella   vectensis,   Hydra   magnipapillata   and   Clytia  

hemispherica.   This   selection   of   cnidarians   includes   representatives   from   2   taxonomic  

classes,  Hydrozoa  (Hydra  and  Clytia)  and  Anthozoa  (basal  among  cnidarians;  Acropora  and  

Nematostella),   and   2   habitats,   marine   (Acropora   and   Clytia)   and   estuarine   (Hydra   and  

Nematostella).  Developmental   strategies   also   vary   between   the   4   species,  with  Hydra   and  

Nematostella   developing   directly   from   larvae   to   adult,   whilst   Acropora   and   Clytia   (which  

also  exhibits  a  medusa  stage)  undergoing  metamorphosis  to  a  sedentary  polyp.  The  variety  

of  the  taxonomic  classes,  habitats  and  developmental  strategies  are  typical  of  cnidarians  and  

allows   this   analysis   to  more   accurately   elucidate   conservation,   novelty,   and   differences   in  

cnidarian   adhesion   systems,   whilst   developing   a   strong   basis   for   inferring   the   adhesion  

repertoire  of  the  common  metazoan  ancestor.  

     

Page 60: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

41  

4.2 Methods The   adhesion   complement   of   four   cnidarians   (Acropora   millepora,  Nematostella   vectensis,  

Hydra   magnipapillata   and   Clytia   hemispherica)   and   one   choanoflagellate   (Monosiga  

brevicolis)  was  assessed  using  the  automated  annotation  and  data  exploration  capacities  of  

JCUSMART   (described   in   Chapter   3).   Predicted   peptides   with   potential   cell   adhesion  

capabilities   were   identified   from   5   large   sequencing   datasets   (Table   4.1)   by   searching  

JCUSMART   annotations   with   the   terms   presented   in   Supplementary   Figure   4.1.   These  

searches   focused   on   the   discovery   of   peptides   associated   with   7   broad   families   of   cell  

adhesion  molecules  (cadherins,  integrins,  lectins,  Adhesion-­‐Leucine  Rich  Repeat  (Adhesion-­‐

LRR),   Adhesion   G-­‐protein   coupled   receptors   (Adhesion-­‐GPCRs),   immunoglobulin  

superfamily,   and   extracellular   matrix   (ECM)),   which   are   central   to   developmental,  

immunological  and  defensive  processes  in  metazoans.  Many  of  the  predicted  peptides  could  

be   further   categorised   into   sub-­‐families   according   to   the   presence   of   key   architectural  

features   used   in   the   classification   of   bilaterian   proteins.   Orthology   of   a   prediction   to   any  

previously   described   sequence   was   assigned   only   after  manual   consideration   of   both   the  

predicted  protein  architecture  and  results  of  BLASTp  against  the  NCBI  non-­‐redundant  (nr)  

database.  As  detailed  in  chapter  3,  genes  were  more  easily  detected  in  anthozoans,  owing  to  

the  larger  size  of  the  available  data  and  longer  predicted  peptides.  Therefore  the  absence  of  

some   genes   from   this   analysis   (particularly   from   Clytia)   may   reflect   limitations   of   the  

predicted  peptide  collection  rather  than  gene  losses.  

 

Animal   Data  type   Number  of  sequences  

Reference  

Acropora  millepora   Transcriptome  (2010)   48  335   Miller  et  al.,  unpublished  

Nematostella  vectensis   Genomic  predicted  peptides  

(version  1)  

27  273   Putnam  et  al.,  2007  

Hydra  magnipapillata   Unigenes  (EST  contigs)   19  845   Bosch  et  al.,  

unpublished  

Clytia  hemispherica   Unigenes  (EST  contigs)   8  219   Houliston  et  al.,  2010  

Monosiga  brevicolis   Genome  predicted  peptides  

(version  1)  

9  196   King  et  al.,  2008  

TOTAL     112  868    

Table  4.1  Predicted  peptide  datasets  used   to  assess   the  adhesion  complement  of   four  cnidarians  with  diverse  lifecycles  and  developmental  features.  Each  dataset  was  annotated  and  explored  using  JCUSMART  as  described  in  Chapter   3.   The   Number   of   Sequences   presented   in   the   table   represents   an   unadjusted   total   of   the   sequences  analysed   and   does   not   take   into   account   occasions   where   models   were   later   combined   to   provide   complete  coding  sequences.  

Page 61: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

42  

4.3 Results 4.3.1 Cadherins

  Hydra  magnipapillata  

Clytia  hemispherica  

Nematostella  vectensis  

Acropora  millepora  

Monosiga  brevicolis  

Catenin  binding   1   -­‐   4   1   -­‐  Flamingo   -­‐   -­‐   1   1   -­‐  Calsyntenin   -­‐   -­‐   1   2   -­‐  FAT   -­‐   -­‐   1   -­‐   -­‐  FAT-­Like   -­‐   -­‐   2   -­‐   -­‐  Dachsous  like   -­‐   -­‐   10   1   6  Unique   -­‐   -­‐   2   -­‐   4  

Table  4.2  Distribution  of  Cadherin  family  proteins  in  basal  metaoans.  For  each  species  investigated,  the  number  of  protein  models  assigned  to  each  sub-­‐family  (left  hand  column  of  table)  is  given.  Numbers  shown  only  include  sequences  that  could  be  confidently  assigned  on  the  basis  of  JCUSMART  analysis.  

A   modest   number   of   predicted   peptides   from   each   cnidarian   contained   extracellular  

Cadherin   (EC)   domains   (maximum   of   56   distinct   sequences   in   the   complete   dataset  

available,   the   Nematostella   genome)   and   very   few   peptides   contained   other   conserved  

domains.   Although   the   number   of   cadherins   in   each   animal   was   limited   there   was   a  

surprising   richness   of   cadherins   with   recognised   developmental   and   signalling   roles  

including  orthologues  of  Type-­‐III  Catenin  Binding  cadherins  (Figure  5.3),  Flamingo  (CELSR)  

(Supplementary  Figure  5.4),  FAT  and  FAT-­like   (in  Nematostella),  Dachsous   (Supplementary  

Figure  5.2),  Cadherin23  and  Calsyntenin  as  well  as  a  limited  number  of  Protocadherins.    

 

The  number  of  genes  in  each  sub-­‐family  is  comparable  between  anthozoans,  however,  large  

cadherins  are  difficult  to  detect  and  may  obscure  understanding  of  the  complete  hydrozoan  

Cadherin  complement.  It  is  expected  that  representatives  of  the  developmentally  significant  

cadherins  (above)  are  in  fact  present  in  each  cnidarian,  supporting  previous  suggestions  by  

Hulpiau  and  van  Roy  (2011)  that   their  origin  predates  the  cnidarian  divergence.  Monosiga  

peptides   containing   EC   domains   are   unlike   those   of   the   Metazoa,   consisting   of   novel  

combinations  of  domains  or  chains  of  EC  domains  up  to  58  repeats  long.    

 

Investigation   of   mRNA   expression   patterns   during   coral   development   and   discussion   of  

putative   protein   function   of   some  members   of   the   Cadherin   superfamily   are   presented   in  

Chapter  5.    

 

Page 62: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

43  

4.3.2 Integrins   Hydra  

magnipapillata  Clytia  

hemispherica  Nematostella  vectensis  

Acropora  millepora  

Monosiga  brevicolis  

integrin  Alpha   1   1   2   3   -­‐  integrin  Beta   2   1   4   2   -­‐  integrin  Linked  Kinase  

1   1   1   1   -­‐  

ILK  associated  Ser/Thr  Kinase  

1   -­‐   1   -­‐   1  

Talin   2   2   1   2   1  PINCH   1   -­‐   1   1   -­‐  Parvin   1   -­‐   1   1   -­‐  Paxillin   1   1   1   1   1  FAK   -­‐   1   1   1   -­‐  c-­Src   1   -­‐   -­‐   1   -­‐  

Table   4.3   Distribution   of   integrin   and   integrin   associated   proteins   in   basal   metaoans.   For   each   species  investigated,   the   number   of   protein  models   assigned   to   each   sub-­‐family   (left   hand   column   of   table)   is   given.  Numbers  shown  only  include  sequences  that  could  be  confidently  assigned  on  the  basis  of  JCUSMART  analysis.  

 All  components  of  the  integrin  signalling  system  reported  in  vertebrates  were  identified  in  

the  cnidarians  except  Nematostella  c-­Src,  Clytia  PINCH  &  Parvin,  and  Hydra  Focal  adhesion  

Kinase,  although  these  too  are  expected  to  be  present.  Cytoplasmic  signalling  proteins  of  the  

integrin   pathway   such   as   Talin,   integrin   Linked   Kinase   (ILK),   PINCH   and   α-­‐Parvin   are  

represented  by  a  single  peptide  prediction  in  each  cnidarian,  however  the  number  of  α  and  β  

integrin  models  is  variable.  As  previously  reported  in  Knack  et  al  (2008),  Acropora  contains  

only  2  integrin  β-­‐subunits  (confirmed  here  by  exhaustive  transcriptome  searches)  compared  

to  Nematostella  4,  Hydra  2  and  Clytia  1.  The  distribution  of  α-­‐Integrins  is  similarly  fluctuant  

between  cnidarians,  with  Acropora  possessing  3,  Nematostella  2,  Clytia  1,  and  Hydra  1.  This  

distribution   combined   with   phylogenetic   analyses   (Figures   6.1   &   6.2)   suggests   that   the  

eumetazoan   ancestor   possessed   a   complement   of   at   least   2   β   and   1   α   integrins   and  

expansion   in   each   cnidarian   is   the   result   of   independent   duplications.   The   heterodimer  

combinations  and  ligand  binding  properties  of  the  cnidarian  integrins  are  unknown,  but  may  

hold   clues   as   to   their   biological   function   and   relationship   with   bilaterian   integrins.  

Evolutionary   relationships   and   ligand   binding   properties   of   Acropora   integrins   are  

presented  in  Chapter  6.  Patterns  of  mRNA  expression  for  Acropora  integrins  have  previously  

been  reported  by  Knack  et  al  (2008).  

 

 

Page 63: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

44  

Figure   4.1  Maximum   likelihood   analysis   of   Talin   proteins   from   representative   metazoans.   Clytia   Talin1   and  Clytia  Talin2  are  closely  associated,  grouping  together  with  Nematostella  with  strong  bootstrap  support  (91%).  Cnidarian   sequences   form   an   independent   clade   basal   to   the   bilaterian   and   vertebrate   clade,   suggesting   that  duplication   in   Clytia   is   genus   specific   and  does  not   support   an   ancestral   origin   of   the  duplication   observed   in  vertebrates.  Phylogenetic  analysis  is  based  on  alignment  of  Talin  proteins  in  the  region  of  overlap  between  Clytia  talin1   and   Clytia   talin2   (Supplementary   Figure   4.2).   Branch   numbers   represent   percentage   bootstrap   support  based  on  100  bootstrap  replicates.      

 In   contrast   to   the   complete   conservation   of   integrin   signalling   components   in   basal  

metazoans,   the   complement   of   Monosiga   lacks   critical   components.   Protein   domains  

resembling   the   α-­‐integrin   repeat   domain   were   detected   however   no   complete   α   or   β  

integrins  could  be  identified.  ILK,  PINCH  and  α-­‐Parvin  were  also  absent,  however  Talin  was  

found   to   be   present,   which   suggests   an   alternative   function   for   FERM   domain   proteins,  

which  are  enriched   in  choanoflagellates   (Nicole  King  et  al.,  2008).  Phylogenetic  analysis  of  

Talin   genes   (Figure   4.1)   places   Monosiga   and   cnidarian   Talin   genes   independent   of  

metazoan   counterparts   showing   that   vertebrate   Talin1   and   Talin2   arose   from   a   lineage  

specific  independent  duplication.  

 

 

 

Page 64: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

45  

4.3.3 Lectins   Hydra  

magnipapillata  Clytia  

hemispherica  Nematostella  vectensis  

Acropora  millepora  

Monosiga  brevicolis  

C-­‐Type  Soluble  

12   4   42     3  

C-­‐Type  Secreted   3   5   13     6  C-­‐Type  Transmembrane  

4   2   10     2  

Galectin   19   4   42     2  Fucolectin   1   -­‐   25   21   -­‐  Mannose  Binding  (Legume  Like)  

2   -­‐   2   3   2  

Haemolytic   -­‐   2   -­‐   3   -­‐  Table  4.4  Distribution  of  lectin  family  proteins  in  basal  metaoans.  For  each  species  investigated,  the  number  of  protein  models   assigned   to  each   sub-­‐family   (left  hand   column  of   table)   is   given.  Numbers   shown  only   include  sequences  that  could  be  confidently  assigned  on  the  basis  of  JCUSMART  analysis.  

 lectin   families   known   to   be   important   to  metazoan   processes   including   cell-­‐cell   adhesion  

and   immunity   were   represented   in   cnidarians   with   unexpected   diversity.   The   most  

expansive   lectin   family   of   higher   animals,   the   C-­‐type   lectins,   were   also   particularly   well  

represented  in  all  four  of  the  cnidarians  investigated  and  comprised  the  greatest  proportion  

of   the   lectins   identified   from   each   species.   Galactose   binding   lectins   were   the   next   most  

abundant   being   found   in   similar   numbers   to   C-­‐type   lectins.   Despite   the   number   of   C-­‐type  

lectins  (42  from  Nematostella),  there  was  only  a  limited  selection  of  predicted  peptides  that  

are   likely   to   be   secreted   (13   -­‐   Nematostella)   as   determined   by   the   presence   of   a   signal  

peptide.  Even  fewer  models  (9  -­‐  Nematostella)  contained  a  transmembrane  helix  and  could  

be  considered  potential  cell  surface  antigens.  The  C-­‐type  lectin  family  did  however  contain  a  

surprising  diversity  of  associated  domains,  which  more  closely  resembles  vertebrates  than  

protostome   invertebrates   (Wood-­‐Charlson  &  Weis,   2009).   One  model   of  C-­type   lectin   16A  

(CLEC16A),   which   is   highly   expressed   in   circulating   immune   cells   and   associated   with   a  

range  of  auto-­‐immune  diseases   in  man,  was   found   in  each  cnidarian.  The  CLEC16A  models  

were  the  only  predicted  lectins  to  demonstrate  significant  homology  to  known  lectins  (based  

on  BLAST)  and  have  not  previously  been  reported  outside  the  Bilateria.    

 

lectins   containing   a   collagen   domain,   followed   by   a   lectin   domain   were   conserved  

throughout  the  cnidarians.  This  structure  is  consistent  with  the  Collectin  family  (Figure  4.3),  

which   has   only   been   reported   once   in   lower   animals   during   a   microarray   analysis   of  

Acropora  metamorphosis  (Grasso  et  al.,  2008).  Unlike  the  bilaterian  proteins,  which  consist  

of   Collagen   -­‐   C-­‐Type   lectin   combination,   14   of   the   Collectins   from   cnidarians   contain   a  

galactose   binding   domain   (Gal_lectin),   and   only   2   (1  Nematostella   and   1   Clytia)   have   a   C-­‐

Page 65: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

46  

type   lectin   domain.   Nematostella,   Acropora   and   Clytia   each   contain   three   models   with  

predicted   signal   peptides   and   none   of   the   sequences   have   transmembrane   helices,  

suggesting  they  are  secreted.    

 

Fuctose  binding   lectins   (Fucolectins/F-­‐type   lectins)  are  also  not   reported   in  pre-­‐bilaterian  

animals  and  have   limited  abundance   in  basal  deuterostomes  such  as  the  purple  sea  urchin  

(Strongylocentrotus   purpuratus   –   2),   yet   a   surprising   number   were   identified   in   the  

Nematostella   genome   (26)   and  Acropora   transcriptome   (23).  More  modest  numbers  were  

identified   in   Hydra   and   Clytia,   which   contained   2   and   1   predicted   peptides   respectively,  

suggesting  an  anthozoan  specific  expansion  of  the  Fucolectin  repertoire.  

 

Acropora   and   Clytia   each   contain   2  members   of   the   haemolytic   lectin   family,  which   has   a  

restricted   distribution   in   metazoans   being   first   reported   in   the   sea   cucumber,   Cucumeria  

echinata   (Hatakeyama   et   al.,   1994)   then   in   Acropora   millepora   (Grasso   et   al.,   2008).  

Exhaustive   searches  of  Hydra  and  Nemtatostella  data   failed   to   identify  homologues  of   this  

family   suggesting   selective   gene   losses   have   occurred   (Forêt   et   al.,   2010).   Maximum  

likelihood  analysis  (Figure  4.2)  shows  the  Acropora  haemolytic  lectins  clade  independently  

of   the   Clytia   sequences,   suggesting   lineage   specific   duplications   occurred   from   a   single  

ancestral   gene.   In   situ   hybridisation  of   coral   haemolytic   lectins  demonstrate   expression   in  

cells   thought   to   be   nematoblasts,   the   precursors   to   nematocysts   (“stinging”   cells)  

(Supplementary  Figure  4.4).      

 

The  lectin  complement  of  Monosiga  is  much  smaller  than  that  of  the  cnidarians  with  only  15  

peptides   matching   the   search   criteria.   The   majority   of   these   (9)   contain   C-­‐type   lectin  

domains  and  no  representatives  of  the  collectin,  fucolectin  or  haemolytic  lectin  families  are  

present.  

 

Page 66: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

47  

Figure   4.2   Maximum   likelihood   analysis   of   metazoan   haemolytic   lectins   shows   sequences   from   Clytia   and  Acropora  form  separate  clades  with  100%  bootstrap  support,  suggesting  duplication  of  the  ancestral  haemolytic  lectin  occurred  independently  in  each  genus.  The  limited  distribution  of  CEL-­III  like  haemolytic  lectins  implies  a  number  of  independent  gene  losses  occurred  in  the  Cnidaria  and  elsewhere  during  bilaterian  evolution  (Foret  et  al.,  2010).  Phylogenetic  analysis  is  based  on  alignment  of  haemolytic  lectins  shown  in  Supplementary  Figure  4.3.  Branch   numbers   represent   percentage   bootstrap   support   based   on   100   bootstrap   replicates.     Acropora  sequences  are  labelled  according  to  their  EST  of  origin  (Grasso  et  al.,  2008)  and  Clytia  sequences  correspond  to  Contigs  IL0ABA2YE22RM1  (1)  and  IL0ABA8YL09RM1  (2).    

 

 

Page 67: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

48  

4.3.4 Adhesion LRR   Hydra  

magnipapillata  Clytia  

hemispherica  Nematostella  vectensis  

Acropora  millepora  

Monosiga  brevicolis  

LRR-­‐Dsl   -­‐   -­‐   1   -­‐   -­‐  LRR-­‐EGF   -­‐   2   4   1   -­‐  LRR-­‐FN3   -­‐   -­‐   1   -­‐   1  LRR-­‐IG   -­‐   -­‐   2   4   -­‐  LRR-­‐LDLa   -­‐   -­‐   -­‐   -­‐   12  LRR-­‐Sushi   -­‐   -­‐   1   -­‐   1  LRR-­‐VWA   -­‐   1   -­‐   -­‐   -­‐  Scribble   -­‐   -­‐   1   1   -­‐  

Table   4.5   Distribution   of   proteins   containing   a   leucine   rich   repeats   (LRR)   and   an   adhesion   domain   in   basal  metaoans.  For  each   species   investigated,   the  number  of  protein  models  assigned   to  each   sub-­‐family   (left  hand  column  of  table)  is  given.  Numbers  shown  only  include  sequences  that  could  be  confidently  assigned  on  the  basis  of  JCUSMART  analysis.  

 Overall   the   adhesion-­‐LRR   complement   of   cnidarians   is   much   smaller   and   shows   less  

diversity   than   that   of   bilaterians.  More   than   230   Leucine  Rich  Repeat   containing   proteins  

were  identified  across  the  5  species  investigated  and  only  26  of  them  had  potential  adhesive  

capability  based  on  the  presence  of  one  or  more  adhesion  domains.  LRR  containing  models  

proposed   to  have   adhesive   functions  were   sorted   into  dsl,   EGF,   FN3,   IG,   LDLa,   SUSHI,   and  

VWA  groups  based  on  domain  content  and  none  of   these  groups  were   identified   in  Hydra.  

Cnidarians   appear   to   lack   the   LRR   and   LDLa   domain   combination,   characteristic   of   the  

relAxin   hormone   receptor   family   (LGR  7   and  LGR  8)   consistent  with  previous   suggestions  

that   these   proteins   arose   early   in   the   vertebrate   lineage     (Wilkinson   et   al.,   2007).   This  

domain   combination   was   however   dominant   in   Monosiga,   which   contained   12   LRR-­‐LDLa  

proteins  compared  to  1  LRR-­‐Sushi  and  1  LRR-­‐FN3.    

 

The  number  of  models  that  are  likely  orthologues  of  known  bilaterian  proteins  was  limited  

to  4.  Each  of  the  anthozoans  contained  1  model  of  Leucine-­Rich  Repeats  and  Immunoglobulin-­

Like   Domains   3   (LRIG3)   and   1   of   Scribble.   LRIG3   is   suggested   to   play   a   role   in   tumour  

suppression  and  neural  tube  closure  (Abraira  et  al.,  2010;  Zhao  et  al.,  2008),  whilst  Scribble  

is   crucial   for   signalling   from   the   Cadherin   FAT-­1   and  may   be   a   cross-­‐over   point   between  

Planar  Cell  Polarity  and  Hippo  signalling  (Abraira  et  al.,  2010;  Zhao  et  al.,  2008).  

Page 68: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

49  

4.3.5 Class B adhesion G-protein coupled receptors   Hydra  

magnipapillata  Clytia  

hemispherica  Nematostella  vectensis  

Acropora  millepora  

Monosiga  brevicolis  

7tm_2  Only   4   4   28   23   1  GPS-­‐7tm_2   1   2   13   8   3  VLGR1   -­‐   -­‐   1   1   -­‐  CLECT-­‐GPS-­‐7tm_2  

-­‐   -­‐   3   -­‐   1  

NvX  Group   -­‐   -­‐   6   -­‐   -­‐  GPCR125   -­‐   -­‐   1   1   -­‐  Novel   -­‐   -­‐   3   2   1  

Table  4.6  Distribution  of  Class  B  Adhesion  G-­‐Protein  Coupled  Receptors   in  basal  metaoans.  For  each   speacies  investigated,   the   number   of   protein  models   assigned   to   each   sub-­‐family   (left   hand   column   of   table)   is   given.  Numbers  shown  only  include  sequences  that  could  be  confidently  assigned  on  the  basis  of  JCUSMART  analysis.  

 The  Class  B  G-­‐Protein  Coupled  Receptors  (characterised  by  a  7tm_2  domain)  comprise   the  

most   interesting   group  of  GPCRs  due   to   their   roles   in  developmental   signalling  processes.  

Like   the   Adhesion-­‐LRR   family,   proteins   containing   a   7tm_2   domain   were   rare   in   all   the  

organisms   investigated  and  a   restricted  distribution  among  cnidarians  was  observed   for  3  

protein   subgroups.   The  majority   of   7tm_2   proteins   from   each   species   have   no   detectable  

extracellular   domains   and   adhesion   domains   are   extremely   rare,   consistent   with   reports  

that  adhesion-­‐GPCRs  expanded  after  the  divergence  of  vertebrates  (Nordström  et  al.,  2009).    

 

Orthologues   of   Frizzled,   Smoothened   and   Very   Large   G-­protein   Couple   Receptor1   (VLGR1)  

were  identified  in  each  cnidarian  but  absent  from  Monosiga.  C-­‐type  lectin  and  7tm_2  domain  

proteins  were  only  identified  in  Nematostella  as  were  proteins  containing  a  Somatomedin  B  

(SO)   domain.   SO-­‐7tm_2   proteins   have   previously   been   reported   from   Nematostella  

(Nordström  et  al.,  2009)  and  the  present  investigation  confirms  that  these  proteins  are  not  

shared  with   other   cnidarians.   The   third   group  with   a   restricted  distribution,   the  GPCR125  

orthologues,  were  found  only  in  the  anthozoans.  Novel  structures  were  also  found  in  6  genes  

(3  Nematostella,  2  Acropora,  1  Monosiga).    

Page 69: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

50  

4.3.6 Immunoglobulin superfamily   Hydra  

magnipapillata  Clytia  

hemispherica  Nematostella  vectensis  

Acropora  millepora  

Monosiga  brevicolis  

DCC   1   -­‐   1   -­‐   -­‐  DS-­‐CAM   1   1   9   -­‐   -­‐  F11/Contactin   1   -­‐   1   -­‐   -­‐  L1-­‐like   -­‐   -­‐   2   1   -­‐  N-­‐CAM   -­‐   -­‐   3   4   -­‐  IgLON   2   2   13   2    Ig  and  FN3  Containing  

4   1   23   20   -­‐  

Ig  and  Adhesion  

2   9   11   -­‐   -­‐  

COLIG   -­‐   -­‐   5   9   -­‐  TIR    (Toll  Pathway)  

4   -­‐   12   10   2  

RPTP   -­‐   -­‐   2   1   -­‐  MALT-­1   -­‐   1   2   2   -­‐  

Table   4.7   Distribution   of   immunoglobulin   Superfamily   proteins   in   basal   metaoans.   For   each   speacies  investigated,   the   number   of   protein  models   assigned   to   each   sub-­‐family   (left   hand   column   of   table)   is   given.  Numbers  shown  only  include  sequences  that  could  be  confidently  assigned  on  the  basis  of  JCUSMART  analysis.  

 The  abundance  of  immunoglobulins  containing  any  other  associated  domain  is  much  smaller  

in  cnidarians  than  higher  animals,  with  the  largest  representation  consisting  of  87  individual  

predicted   peptides   (Nematostella).   The  majority   of   sequences   found   in   Nematostella   (55)  

were   associated   with   Fibronectin   Type3   (FN3)   domains   and   could   be   further   categorised  

into  6  sub-­‐groups  (N-­‐CAM,  L1-­‐like,  Contactin,  DS-­‐CAM,  Repeat  Protein  Tyrosine  Phosphatase  

(RPTP),   and   Other   Ig   and   FN3   containing),   whilst  most   of   the   remaining   sequences  were  

specified  as  part  of  the  DCC,  or  Toll  like  families.  Interestingly  no  Toll  Like  Receptors  (TLR)  

possessing   the  canonical   structure  known   from  higher  animals  were   identified  during   this  

survey.   One   LRR   containing   Toll   receptor   (NvTLR-­1)   has   previously   been   identified   in  

Nematostella   (Miller  et   al.,   2007)     and   remains   the  only  example   from  a   cnidarian  despite  

exhaustive  searches.    

 

A   number   of   models   unrelated   to   the   above   sub-­‐groups   were   also   identified   including  

members   of   the   FGF   receptor   family,   Bystin   proteins,   and   DCLK2/3   proteins.   Mucosa  

Associated  Lymphoid  Tissue  1  (MALT1)  was  also  found  in  Nematostella,  Clytia  and  Acropora,  

and  although  these  are  not  adhesion  related  genes  they  have  previously  only  been  reported  

in   vertebrates,   C.elegans   and   Dictostellium.   Partial   putative   models   of   extremely   large  

adhesion   molecules   were   also   identified   in   cnidarians   including   Titin,   Roundabout   and  

VEGFR,  however  genes  similar  to  those  functioning  in  the  adaptive  immunity  of  vertebrates,  

such  as  I-­CAM  and  V-­CAM  were  not  identified  in  either  cnidarians  or  choanoflagellates.  

 

Page 70: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

51  

One  novel  group  of  proteins,  consisting  of  a  Collagen  domain  followed  by  2-­‐5  Ig  domains  was  

identified   in   Nematostella   and   Acropora,   but   are   absent   from   the   hydrozoan   data.   The  

structure  (Figure  4.3)   is  somewhat  reminiscent  of  collectins,  however  the   function  has  not  

been  described.    

4.3.7 Extra-cellular matrix   Hydra  

magnipapillata  Clytia  

hemispherica  Nematostella  vectensis  

Acropora  millepora  

Monosiga  brevicolis  

Collagen4   2   1   6     -­‐  Fibrillar  Collagen   12   12   10     2  Collagen   6   4   12     1  Minicollagen   20   2   3     -­‐  Fibrinogen  Domain  Containing  

2   44   92     3  

Fibrillin   4   5   15     -­‐  FN2  Domain  Containing    

1   2   11     -­‐  

FN3  Domain  Containing  

-­‐   -­‐   1     2  

Laminin  Alpha   2   -­‐   9     1  Laminin  Beta   -­‐   -­‐   1     -­‐  Laminin  Gamma   4   -­‐   4     1  Thrombospondin   4   6   3     -­‐  Rhamnospondin   -­‐   5   6   10   -­‐  HSPG2   1   1   1     -­‐  SPOCK   1   1   1     -­‐  

Table   4.8   Distribution   of   Extracellular  matrix   proteins   in   basal  metaoans.   For   each   speacies   investigated,   the  number  of  protein  models  assigned  to  each  sub-­‐family  (left  hand  column  of  table)  is  given.  Numbers  shown  only  include  sequences  that  could  be  confidently  assigned  on  the  basis  of  JCUSMART  analysis.  

 The   major   components   of   the   invertebrate   extra-­‐cellular   matrix   (ECM)   such   as   type   4  

Collagen,   Laminins,   Fibrillin   and  Heparin   Sulphate  Proteoglycan  2   (HSPG2)  were   identified  

throughout   the   Cnidaria   and   a   similar   number   of   proteins   in   each   family   were   detected  

across  Nematostella,  Hydra,  Cyltia  and  Acropora.  All  of  these  classes  of  ECM  proteins  occur  

in   the   Bilateria   with   the   exception   of   the   mini-­‐collagens,   a   family   of   proteins   containing  

simplified   collagen   like   domains   which   were   identified   as   a   structural   component   of   the  

nematocyst   cell  wall   in  Hydra.   Their   existence   in  Acropora  has   been   acknowledged   in   the  

literature   (Srivastava   et   al.,   2010)   however   the   relative   number   of   mini-­‐collagen   domain  

proteins  in  Nematostella  (2),  and  Clytia  (2)  has  not  been  reported.  The  laminin  complement  

of  Nematostella   is   similar   to   that  of  vertebrates  consisting  of  3  or  more  alpha  chains,  3  or  

more  gamma  chains  and  only  1  beta  chain.  Alpha  and  Gamma  chains  are  also  predicted   in  

Hydra,  whereas  no  laminins  were  detected  in  Clytia.    

 

Page 71: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

52  

A   few   of   the   large  multidomain  matrix   proteins   and   proteoglycans  were   also   represented  

including  Usherin,  Sidekick,  Nidogen  and  HSPG2,  Titan,  Polydom,  SPARC  and  SPOCK,  Slit  and  

notch.   A   surprising   discovery   was   the   presence   in   Nematostella   of   a   model   similar   to  

periostin,   a   matrix   protein   involved   in   regulation   of   bone   mass   in   response   to   load   in  

vertebrate   models.   Fibronectin,   Vitronectin,   Tenascin’s   and   von   Willebrand   Factor   were  

absent  from  cnidarians  further  supporting  their  designation  as  vertebrate  specific  genes.  

4.3.8 Novel cnidarian sequences Rhamnospondins   are   a   family   of   thrombospondin   and   lectin   domain   containing   proteins,  

which   have   immune   functions   in   Hydractina.   This   survey   has   identified   homologues   of  

Rhamnospondins   in   the   wider   cnidarian   community   but   not   in   Monosiga   suggesting   this  

family   originated   in   cnidarians.   Similarly,   minicollagen   proteins,   previously   known   from  

Hydra,   were   found   in   each   of   the   cnidarians,   although   this   is   perhaps   unsurprising   given  

their   role   in   cnidocyte   cell   wall   formation.   A   novel   protein   family   consisting   of   a   signal  

peptide   followed  by  a  Collagen  domain  and  2-­‐4   Ig  domains   (Figure  4.3)  was  also   found   in  

Nematostella   and   Acropora.   The   only   other   novel   cnidarian   adhesion   family   are   GPCR  

proteins   containing   a   Somatomedin-­‐B   domain   in   extracellular   region.   This   family   are  

described   as   the   NvX   GPCR   family   and   through   this   analysis   have   been   confirmed   as  

Nematostella  specific.  A  few  examples  of  novel  protein  architectures  not  shared  between  the  

cnidarians   were   also   identified   in   the   adhesion   GPCR   family,   although   these   protein  

predictions  need  to  be  experimentally  confirmed.  

 

Page 72: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

53  

 

Figure   4.3   Domain   structure   of   selected   cnidarian   innovations.   Collectin   like   proteins,   containing   a   Galactose  binding   lectin  domain  rather  than  the  C-­‐type   lectin  domain  of  Collectins,  were   identified  as  novel  sequences   in  the   Cnidaria.   A   Family   of   proteins,   which   I   named   COLIG’s,   containing   a   Collagen   domain   followed   by   2-­‐4  immungoglobulin   domains  was   also   identified   for   the   first   time   in   this   analysis.   COLIG’s     are   restricted   to   the  anthozoan  data  and  appear   to  be  absent   from  hydrozoans,  however   it   is  unclear  whether   this   is  an  anthozoan  innovation   or   an   example   of   hydrozoan   gene   loss.   Rhamnospondins,   which   are   characterised   by   a   series   of  thrombospondin  domains  followed  by  a  rhamnose  binding  lectin  domain,  also  appear  to  be  an  innovation  of  the  Cnidaria   or   ureumetazoan   ancestor.   Each   of   these   families   hold   a   structure   similar   to   pattern   recognition  receptors   of   bilaterian   humoral   immune   systems.   The   presence   of   a   predicted   signal   peptide   suggests   these  proteins   are   secreted,  which  may   allow   them   to   function   in   opsonisation   of   bacteria   or   other   invasive  micro-­‐organisms.  

             

Page 73: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

54  

4.4 Discussion 4.4.1 The ancestral adhesion repertoire Cnidarian  adhesion  genes  or  gene  families  possessing  features  of  known  bilaterian  proteins  

are  likely  to  have  been  retained  from  the  Ureumetazoan  ancestor  (the  last  common  ancestor  

of   cnidarians   and   bilaterians).   The   presence   and   absence   of   known   gene   families   is  

summarised  in  Table  4.9.  Genes  from  each  of  the  7  adhesion  families  (cadherins,   integrins,  

lectins,   Adhesion-­‐LRR,   Adhesion-­‐GPCRs,   immunoglobulin   superfamily,   and   ECM)   were  

identified   in   all   4   cnidarians   investigated   and   many   showed   homology   to   described  

bilaterian  protein  architectures,  although  clear  orthologues  of  higher  animal  proteins  were  

rarely  apparent.  Comparison  of   the  cnidarian  cell  adhesion  molecule  complement  with   the  

published   bilaterian   adhesion   gene   repertoire,   has   revealed   a   number   of   significant  

functional  and  evolutionary  aspects  of  cell  adhesion.  

 

The   cnidarian   extracellular   matrix,   cadherin,   and   immunoglobulin   families   all   showed  

characteristics  more  consistent  with  invertebrates  than  chordates.  The  extracellular  matrix  

proteins  were   remarkably  well   conserved  with  all  major   components  of   invertebrate  ECM  

(eg.  Type-­‐IV  and  fibrillar  collagens,  laminins,  fibrilin,  fibulin  and  Thrombospondin)  present  

in   each   cnidarian.   The   most   surprising   aspect   of   the   cnidarian   ECM   was   the   diversity   of  

proteins   associated   with   human   disorders,   which   were   identified   primarily   from   the  

Nematostella  genome.  These  proteins  include  Titin,  Usherin,  Heparin  Sulphate  Proteoglycan  2  

(HSPG2),   MEGF,   Polydom,   and   SPOCK.   Although   the   precise   roles   of   these   proteins   in  

cnidarian  development  are  unclear,  their  presence  suggests  the  capacity  to  produce  complex  

cell-­‐ECM   interactions   that   facilitate   cell   migration,   cilia   formation   and   regulate   matrix  

assembly,  is  an  ancestral  trait.    

Page 74: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

55  

 

Family   Genes  present   Genes  absent   Novel  Genes   Genes  not  previously  Identified  outside  Bilateria  

cadherins   • Type-­‐III  Cadherin  (catenin  binding)  

• FAT  • FAT-­‐Like  • CELSR/Flamingo  • Dachsous  • Protocadherins      

• Type  I/II/IV  Cadherin  (Catenin  Binding)  

• Desmocolins    • Desmogliens  • CDH26  • 7D  family  

• 2  unique  -­‐  Nematostella  

• Type-­‐III  Cadherin  

• Dachsous  • FAT  • FAT-­‐Like  

integrins   • α-­‐Integrin  • β-­‐Integrin  • integrin  Linked  Kinase  (ILK)  

• ILK  associated  phosphatase    

• PINCH  • Parvin  • Talin  • Kindlin  • ADAM  • ADAM_TS  • GON  family  

-­‐   -­‐   -­‐  

lectins   • C-­‐type  • Galactose  Binding  • Fucolectins  • Haemolytic  lectins  

• Selectins   • Collectin-­‐Like  • Rhamnospondins  

• Collectins  • Fucolectins    

Immunoglobulin     • N-­‐CAM  • L1-­‐like  • F11/Contactin  • IgLON  • RPTP  • DCC  • DS-­‐CAM  • Ig-­‐FN3  • TIR  containing  • NvTLR-­1  • MALT-­‐1  

• Canonical  Toll  Receptors  

• Adaptive  Immune  Components  

• COLIGs   • RPTP  • MALT-­1    

Adhesion  LRR   • LRIG3  • Scribble  • LRR-­‐EGF  • LRR-­‐dsl  • LRR-­‐IG  • LRR-­‐Sushi  

-­‐   -­‐   • LRIG  family  • Scribble  

Class  B  GPCRs   • CLECT-­‐7tm_2  • GPCR125  • VLGR  

• Group  II  • Group  VI  • Group  VII  • Group  VIII  • Methuselah  family  

• Somatomedin  B-­‐GPCRs  

• 2  Unique  Acropora  

• 3  Unique  Nematostella  

-­‐  

Page 75: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

56  

Extracellular  Matrix  

• Fibrillar  Collagens  • Collagen  4  family  • Contactin  • Collagen  Triple  Helix  containing  

• Fibrinogen  containing  

• Fibrillin  • Polydom  • Fibulin  • Thrombospondins  • Periostin  • Titan  • Perlecan/HSPG2  • MEGF  • Netrin  • Fibropellin  • Notch  • Nidogen  • Slit  • Agrin  • Usherin  • Fras1  • Rabconnectin  • Sortilin  • Sorting  nexin  • Sidekick  • SPOCK  

• Fibronectin  • Vitronectin  • Osteonectin  • Von  Willebrand  Factor  

• Tenascin    

• Minicollagens   -­‐    

Table  4.9  Presence  and  absence  of   selected  bilaterian  adhesion  genes  with  developmental  and   immunological  roles.  The  present  analysis  has  identified  a  number  gene  families  previously  thought  to  be  bilaterian  restricted  including  Type-­‐II  cadherins,  FAT   cadhrins  and  Fucolectins.  The  abundance  of  known  bilaterian  adhesion  genes  demonstrates  that  many  of  the  adhesion  systems  recognised  from  higher  animals  were  already  established  in  the  last  common  eumetazoan  ancestor.  Further  diversity  in  mammalian  systems  is  therefore  likely  to  be  the  result  of  lineage   specific   expansions   occurring   after   the   cnidarian   divergence.   Genes   involved   in   vertebrate   sight   and  hearing  are  also  present   in  cnidarians  and  are   likely   to  have  been  sequestered   from  other  biological   functions,  which   are   yet   to   be   elucidated   in   lower   animals.   Gene   families   absent   from   the   cnidarian   data   are   largely  associated   with   evolution   of   closed   circulatory   systems   and   circulating   cellular   immune   systems.   Hormone  receptors  associated  with  long  range  cellular  signalling  are  also  absent  from  cnidarians.  

   

Page 76: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

57  

cadherins  that  influence  the  early  embryogenesis  of  higher  animals  have  only  recently  been  

reported   in   one   cnidarian,  Nematostella   vectensis   (Fung   et   al.,   2008;   Hulpiau   &   van   Roy,  

2009;  Whittaker  et  al.,  2006),  and  no  expression  or  functional  data  has  been  published  from  

this   model.   Conservation   of   Type-­‐III   Cadherin,   Flamingo,   and   Dachsous     among   the  

cnidarians   (as   well   as   FAT   and   FAT-­‐like   protein   in   Nematostella)   combined   with   their  

absence   from   choanoflagellates   suggest   the   critical   roles   these   proteins   play   in   β-­‐catenin  

signalling  and  planar  cell  polarity  originated  prior  to  the  cnidarian  divergence  (See  Chapter  

5   for  discussion).  Reports   from   the   genome  of  Amphimedon  queenslandica   (Porifera)   have  

also  yielded  a  sequence  for  a  Type-­‐III  Cadherin,  but  do  not  indicate  the  distribution  of  other  

cadherins   in   sponges   (Srivastava   et   al.,   2010).   The   presence   of   these   cadherins   in   both  

cnidarians  and  sponges  implies  that  Cadherin  based  morphogenic  systems  date  back  to  the  

metazoan  common  ancestor.    

 

Despite   the   richness   of  morphologically   crucial   cadherins   in   cnidarians,   the   structure   and  

low  total  number  of  Cadherin  proteins  is  most  consistent  with  the  invertebrate  complement.  

Type-­‐III  cadherins  possess  a  characteristic  domain  structure  and  are  not  found  in  chordates  

(with   few   exceptions).   Using   the   JCUSMART  method,   the   total   number   of   genes  with   3   or  

more  Cadherin  domains   in  Nematostella  (the  most  complete  dataset  used  here)  was  found  

to  be  20  -­‐  4  more  than  found  by  Hulpiau  et  al  (2011).  In  either  case,  the  number  of  cnidarian  

cadherins  is  similar  to  that  of  fly  (17)  and  sea  urchin  (14),  compared  to  over  110  sequences  

in  mouse  and  human  (Fung  et  al.,  2008;  Hulpiau  &  van  Roy,  2009;  Whittaker  et  al.,  2006),  

supporting   previous   suggestions   that   diversification   of   cadherins   occurred   specifically   in  

chordates  (Hulpiau  &  van  Roy,  2011).  

 

Immunoglobulin   proteins   lacked   the   complexity   observed   in   higher   animals.  Whereas   the  

sea  urchin  genome  yielded  over  20  adhesion-­‐LRR  proteins  with  a  wide  variety  of  associated  

extracellular  domains,  only  13  sequences  were  found  across  the  4  cnidarians  (Nematostella  -­‐

9,   Acropora   -­‐1,   Clytia   -­‐3).   The   range   of   associated   domains   was   also   limited   with   only  

EGF(7),   Ig(3),   FN3(1),   Sushi   (1),   VWA(1),   represented.   The   immunoglobulin   family  

contained  representatives  of  all  Ig-­‐FN3  sub-­‐families  and  the  IgLON  family,  however,  the  total  

number  of  immunoglobulin  proteins  falls  far  short  of  what  is  observed  in  sea  urchin  (~400;  

Whittaker  et  al.,  2006).  Such  an  explosive  expansion  of  the  immunoglobulin  superfamily  in  

deuterostomes  most  likely  facilitated  the  occurrence  of  adaptive  immunity,  the  components  

of  which  are  absent   from  cnidarians.  Both   the  adhesion-­‐LRR  and   immunoglobulin   families  

have  recognised  roles   in   innate   immunity,   serving   largely  as  pattern  recognition  receptors  

(PRRs)   in   other   model   organisms   (Pancer   &   Cooper,   2006).   This   function   is   apparently  

Page 77: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

58  

conserved  in  cnidarians,  with  a  member  of  the  IgLON  family  implicated  in  allorecognition  of  

Hydractinia   (Hydrozoa)   colonies   (Nicotra   et   al.,   2009).   The   relative   simplicity   of   these  

adhesion   families,   as   identified   during   this   survey,   suggest   cnidarian   pattern   recognition  

mediated   by   immunoglobulin   and   adhesion-­‐LRR   proteins   is   primitive   when   compared   to  

bilaterian  systems.    

 

The   predominant   PRR   system   of   cnidarians   may   instead   centre   around   the   lectin   family.  

Cnidarian  lectins  were  found  to  be  surprisingly  diverse  and  include  a  variety  of  C-­‐type  and  

galactose   binding   lectins   (Gal-­‐lectins)   with   a   range   of   associated   domains.   This   level   of  

complexity  in  cnidarian  C-­‐type  lectins  more  closely  resembles  the  vertebrate  lectin  diversity  

than   that   of   model   protostomes   (Cambi   et   al.,   2005;   Dam   &   Brewer,   2010),   which   is  

consistent   with   previous   reports   of   genetic   simplification   among   Ecdysozoans   (eg.  

Drosophila  and  Caenorhabditis)  (Lin  et  al.,  2000;  Wood-­‐Charlson  &  Weis,  2009).  Both  C-­‐type  

and  Gal-­‐lectins  have  been  suggested  to  play  roles  in  pattern  recognition  (Cambi  et  al.,  2005;  

Dam   &   Brewer,   2010;  Weis   et   al.,   1998).   Pattern   recognition   is   particularly   important   to  

cnidarians   that   exist   in   obligatory   symbiosis   with   intracellular   algae   (Zooxanthellae)   and  

lectins  have  been  shown  to  facilitate  the  uptake  of  symbionts  into  host  cells  through  specific  

interaction  with  glycoproteins  of  the  algal  cell  wall  (Lin  et  al.,  2000;  Wood-­‐Charlson  &  Weis,  

2009).  The  most  prominent  example  of   this   interaction  comes   from  the  only  characterised  

PRR   lectin   from   a   coral,   Millectin,   a   C-­‐type   lectin   isolated   from   Acropora   millepora,  

(Kvennefors  et  al.,  2008;  Kvennefors  et  al.,  2010).  

 

The   lectin   family   also   yielded   some   of   the   most   interesting   and   unexpected   cnidarian  

innovations,   all   of  which  have   implications   for   innate   immunity.  The   first   unexpected   find  

was  the  presence  of  fucolectins  (F-­‐type/Fucose  binding),  secreted  innate  immune  effectors  

first  identified  in  eels  (Honda  et  al.,  2000)  that  have  not  previously  been  described  in  lower  

animals.  The  anthozoans,  Nematostella  and  Acropora,  each  contain  an  expanded  set  of  more  

than  20  (26  and  23  respectively)  fucolectins  compared  to  between  2  and  8  representatives  

in   bilaterians,   suggesting   that   fucolectins   form   a   central   part   of   the   anthozoan   immune  

system.   Other   unexpected   finds   included   orthologues   of   CLEC16A   (a   disease   associated  

protein  highly  expressed  in  mammalian  B  cells  and  dendritic  cells)  and  CEL-­III  (haemolytic  

activity),  further  adding  to  the  secreted  innate  immune  repertoire  of  cnidarians.  

Page 78: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

59  

Comparison  of  the  cnidarian  adhesome  with  that  of  Monosiga  was  consistent  with  previous  

indications   that  adhesion  systems  sustaining  unicellular   life  are  considerably   simpler   than  

what  is  required  in  multicellular  animals  (Abedin  &  Nicole  King,  2010).  This  was  particularly  

evident  in  the  ECM,  which  contained  limited  examples  of  fibrillar  collagens,  a  limited  set  of  

laminin  α  and  γ  chains,  and  lacked  all  components  of   functional  basement  membranes  (eg.  

Type-­‐IV  collagens  and  laminin-­β).  Immunoglobulin  domains  were  almost  completely  absent  

from  Monosiga,   as  were   adhesion  GPCR  proteins,   and  whilst  many  of   the  domains   known  

from   other   adhesion   families   (eg.   Cadherins   and   integrins)   were   identifiable   in   low  

abundance  (eg.  Cadherin  &  integrin  α  domains),  the  overall  protein  architecture  was  unlike  

that  of  animal  adhesion  molecules.    

   

In   contrast   to   systems   such   as   innate   immunity,   characterised   by   genes   absent   in   pre-­‐

metazoans   and   likely   to   have   originated   in   the   ureumetazoan   or   urmetazoan   ancestor,  

integrin   signalling   is   suggested   to   have   originated   well   before   the   evolution   of  

multicellularity  despite  its  absence  from  Monosiga.    All  components  of  the  integrin  signalling  

complex  were   identified   in  cnidarians  and  only   the   terminal  signalling  molecules   (α   and  β  

integrins)   varied   in   number.   This   finding   is   consistent   with   investigations   into   the   pre-­‐

metazoan  ancestry  of   integrins,  suggesting  the   integrin  heterodimer,   ILK,  Talin,  PINCH  and  

α-­‐Parvin  originated  in  the  Unikont  ancestor  with  canonical  integrin  signalling  (involving  FAK  

and  c-­Src)  appearing   in   the  Opsithokont  ancestor   (Sebé-­‐pedrós  et  al.,  2010)   (Although   the  

later  is  based  on  data  from  a  single  species).  The  function  of  integrin  signalling  components  

in   the   primitive  model   organisms   investigated  by   Sebé-­‐Pedrós   et   al   (2010),   and   therefore  

the   pre-­‐metazoan   ancestral   function,   is   likely   to   be   distinct   from   that   of   the   metazoan  

integrin   system.   Instead,   these   proteins   are   likely   to   have   been   co-­‐opted   from   other  

biological   processes   into   morphogenic   roles   concurrent   with   the   evolution   of   animal  

multicellularity.    

Page 79: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

60  

4.4.2 Novel cnidarian sequences Novelty   in   the   cnidarian   adhesome   is   primarily   centred   around   expansion   of   the   immune  

system  with  most  phylum  specific  protein   families   exhibiting   strong   similarity   to   secreted  

pattern  recognition  proteins.  Models  containing  an  N-­‐terminal  collagen  domain  followed  by  

a   C-­‐terminal   Gal_lectin   domain   were   identified   in   each   of   the   cnidarians,   an   architecture  

which   closely   resembles   that   of   Collectins   (Collagen   –  C-­‐type   lectin).   Vertebrate  Collectins  

function   in   humeral   immunity   through   opsonisation,   neutralisation,   agglutination,  

phagocytosis  and  activation  of  the  complement  system  in  addition  to  modulating  apoptotic  

cell  clearance  (Gupta  &  Surolia,  2007;  van  de  Wetering  et  al,  2004).  Each  of   these   immune  

responses  are  expected  to  also  occur  in  cnidarians  as  apoptotic  processes  and  components  

of   the  complement  system  (eg.  C3,  MASP,  Ficolins   (also   identified  by   the  present  analysis),  

and  Factor  B)  have  both  been  identified  (Ainsworth  et  al.,  2007;  Kimuraet  al.,  2009;  Lasi  et  

al.,  2010).  However,  the  range  of  proteins  able  to  elicit  these  responses  awaits  clarification.  

 

Two   other   taxon   specific   families   with   a   similar   general   architecture,   consisting   of   a  

conserved   homophilic   matrix   protein   domain   (TSP1   or   Collagen)   in   conjunction   with   an  

antigen   recognition   domain   (lectin   or   Immunoglobulin)   were   also   identified.   The  

Rhamnospondin  family  (TSP1  –  Rhamnose  binding  lectin)  have  previously  been  identified  in  

Hydractinia,   where   they   are   suggested   to   mediate   bacterial   defence   in   the   oral   region  

(Schwarz   et   al.,   2007).   The   present   analysis   detected   Rhamnospondins   in   the   wider  

cnidarian   community,   suggesting   they   are   not   a   hydrozoan   innovation.   Rhamnospondins  

have   also   been   reported   from   the   tunicate  Botyllus   schlosseri   (Oren   et   al,   2007),   however  

their   identification   in   this   urochordate   is   unconvincing.   The   final   family   of   novel   proteins  

with  the  matrix-­‐recognition  architecture,  which  have  here  been  given  the  name  “COLIGs”,  is  

previously  undescribed  anywhere  in  the  Metazoa,  consisting  of  a  collagen  domain  followed  

by   2   Ig   domains.   This   structure   again   suggests   a   role   in   resisting   colonisation   by   micro-­‐

organisms.  

 

Whereas  the  Collectin-­‐like  proteins,  Rhamnospondins  and  COLIGs  provide  secreted  defence  

by  opsonisation,  the  minicollagens,  which  are  also  unique  to  cnidarians,  are  reported  to  be  

critical   to   physical   defence.  Minicollagens   are   demonstrated   components   of   the   cnidocyte  

cell  wall,  which  is  a  defining  defensive  structure  in  all  cnidarians.  It  is  therefore  unsurprising  

that  minicollagen  proteins  were  identified  in  both  anthozoans  and  hydrozoans.    

 

Page 80: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

61  

4.4.3 Differences between cnidarian adhesion systems Although  many  of  the  major  components  of  bilaterian  adhesion  could  be  identified  in  all  of  

the   cnidarians,   a  number  of  proteins  with   adhesion  domains  had  a   restricted  distribution.  

These  proteins  showed  no  bias  towards  any  one  biological  process  or  adhesion  family.  The  

Anthozoans  were  found  to  each  possess  a  single  LRR  &  Ig  domain  containing  protein,  which  

showed  clear  orthology  to  vertebrate  LRIG3.  The  LRIG  family  was  thought  to  be  vertebrate  

specific  and  LRIG3  has  been  experimentally  determined  to  influence  neural  crest  formation  

and   complex   tissue   morphogenesis   (eg.   inner   ear   morphogenesis),   possibly   through  

modulation   of   the   FGF   and   Wnt   pathways   (Abraira   et   al.,   2010;   Zhao   et   al.,   2008).  

Orthologues   of   XPTP-­D,   a   Xenopus   receptor   Protein   Tyrosine   Phosphatase   involved   in  

retinal  axon  extension  and  neurite  outgrowth  (Johnson  &  Holt,  2000;  Johnson  et  al.,  2001),  

were   also   restricted   to   Anthozoans.   The   prospect   of   ancient   roles   for   these   genes   in  

embryogenesis   and   neurogenesis   of   anthozoans   is   exciting   and   warrants   further  

investigation,  however  a  reason  for  their  absence  from  hydrozoans  cannot  yet  be  suggested.    

 

The  genome  of  Nematostella  vectensis   revealed  a  number  of  proteins   that  are  not   found   in  

other  cnidarians  such  as  NvX  group  and  C-­‐type  lectin  domain  containing  (Group  V)  GPCRs.  

Extensive   targeted   searches   of   the   available   cnidarian   data   have   confirmed   that   these  

families   are   species   specific   innovations.   Nematostella   also   possesses   the   only   known  

canonical  Toll  receptor  in  cnidarians  (Miller  et  al.,  2007).  The  canonical  structure  of  the  Toll  

receptor   is   expected   to   be   ancestral   and   has   apparently   been   lost   from   other   model  

cnidarians.      

 

The   most   peculiar   distribution   among   cnidarians   is   that   of   the   haemolytic   lectins,   which  

bind   to   target   cells   via   the   lectin   domain   and   cause   osmotic   rupture   by   pore   formation.  

Haemolytic   lectins   were   identified   in   only   1   of   the   anthozoans   (Acropora;   Grasso   et   al.,  

2008)  and  1  of  the  hydrozoans  (Clytia),  with  the  2  sequences  in  each  species  resulting  from  

independent  duplications  (Figure  4.2).  These  cnidarian  lectins  are  orthologous  to  the  CEL-­III  

haemolytic  lectin  from  sea  cucumber  (Cucumaria  echinata)  and  together  make  up  the  entire  

known  metazoan  complement  of  haemolytic  lectins.  The  distribution  of  haemolytic  lectins  in  

echinoderms  and  cnidarians  suggest  these  genes  have  been  lost  in  a  number  of  independent  

lineages,  with  parallel  losses  occurring  in  anthozoans  and  hydrozoans.    

 

Page 81: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

62  

The   remarkable   distribution   of   haemolytic   lectins,   along  with   the   restriction   of   canonical  

Toll  receptors,  highlights  both  the  ubiquity  and  stochastic  nature  of  gene  loss  in  cnidarians  

and  throughout  the  Metazoa  (Forêt  et  al.,  2010).  Furthermore,  cnidarian  haemolytic  lectins  

are   retained   only   in   species   that   inhabit   a  marine   environment,   suggesting   estuarine   and  

marine   cnidarians   have   distinct   defensive   strategies   and   that   adaptation   to   an   estuarine  

habitat  has  impacted  on  gene  loss  in  Nematostella  and  Hydra.    

 

4.4.4 Interesting absences The  cnidarian  adhesome   lacks  a  number  of  genes  present   in  bilaterians,  particularly   those  

recognised   to   be   chordate   specific   expansions   such   as   some   classes   of   cadherins   and  

integrins.   The   missing   Cadherin   family   members   include   Type   I   and   II   cadherins   (eg.   E-­

Cadherin  and  N-­Cadherin)  as  well  as  the  recently  evolved  desmocolins  and  desmoglians.  The  

absence  of  β-­catenin  binding  Type  I  and  II  cadherins  was  predictable  due  to  a  demonstrated  

degree  of  functional  analogy  with  invertebrate  Type-­‐III  cadherins,  which  are  considered  the  

ancestral   ‘classical’  Cadherin  (Hulpiau  &  van  Roy,  2009;  2011).  Other  predictable  absences  

include  proteins  associated  with  adaptive  immunity  and  matrix  proteins  such  as  Fibronectin  

and  Von  Willebrand  Factor,  which  function  in  maintenance  of  vascular  systems,  a  structure  

lacking  from  cnidarians.  

 

integrins   with   VWA   domains   involved   in   binding   of   collagens   and   those   functioning   in  

leukocyte   trafficking   were   also   absent   from   all   the   cnidarians   investigated.   Cnidarian  

integrins   are   not   directly   related   to   mammalian   types   and   have   unknown   binding  

capabilities,   although   the   ability   to   bind   collagen   is   unlikely   (See   Chapter   6).  Reelin,   a   cell  

surface   receptor,   which   functions   in   positioning   neuroblastic   cells,   is   another   significant  

absence  from  the  cnidarian  adhesome.  This  exclusion  may  at  first  seem  surprising  given  the  

presence   of   other   large   neural   adhesion   proteins   in  Nematostella   such   as   Slit,  Netrin,   and  

Roundabout,   however,   Reelin   binds   to   a   soluble   ligand,   acting   in   the   neurocrine   system.  

Hormone   receptors  are   completely  absent   from  cnidarians,  however   they  are  prevalent   in  

basal  deuterostomes  such  as  sea  urchin.  

Page 82: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

63  

4.5 Concluding comments The   overall   composition   of   the   7   adhesion   families  making   up   the   cnidarian   adhesome   is  

remarkably  similar  to  adhesion  systems  of  bilaterian  invertebrates,  with  the  exception  of  the  

lectin  family,  which  has  undergone  significant  simplification  in  Ecdysozoans.    This  degree  of  

conservation  suggests  that  most  of  the  recognised  bilaterian  adhesion  components  affecting  

developmental,   innate   immune   and   defensive   processes   were   already   established   in   the  

ureumetazoan   ancestor.   Determining   which   of   these   adhesion   systems   are   linked   to   the  

origin   of   metazoan   multicellularity   and   the   earliest   forms   of   morphogenesis   will   require  

similar  surveys  of  the  recently  released  sponge  genome  (Amphimedon  queenslandica).  Such  

studies   could   also   clarify   the   influence   of   adhesion  proteins   on   the   evolution  of   dedicated  

tissues,  which  are  a  eumetazoan  feature  absent  from  sponges.  

 

The   abundance  of   secreted   innate   immune  proteins   observed   in   all   4   species   investigated  

here,   highlights   the   importance   of   pattern   recognition   to   cnidarian   survival.   The   aqueous  

environment   inhabited   by   cnidarians   could   easily   facilitate   colonisation   by   pathogenic  

micro-­‐organisms,   which   may   go   some   way   towards   explaining   the   development   of   a  

predominantly   secretory     cnidarian   immune   system   in   preference   to   forms  of   cell-­‐contact  

mediated  immunity.  The  secretion  of  mucus  as  a  general  stress  response  in  cnidarians  may  

also   increase   the  efficacy  of   these   immune  mediators   in   resisting  colonisation  by   reducing  

loss   of   secreted   proteins   to   the   water   column.   Alternatively,   a   proportion   of   the   pattern  

recognition   receptors  may   be   associated  with   nematocysts   (‘stinging’   cells)   that   form   the  

primary  mechanism   for   cnidarian   defence   and   prey   capture.   In   situ   RNA   hybridisation   of  

both   haemolytic   lectins   and   Collectin-­‐like   proteins   in   Acropora   polyps   demonstrate  

expression   in   putative   nematoblasts,   the   precursors   to   nematocysts   (Grasso   et   al.,   2008;  

Supplementary  Figure  4.4).  Further  investigation  of  pattern  recognition  protein  expression  

is   required   to   determine   whether   the   secreted   innate   immune   proteins   of   cnidarians  

constitute  a  form  of  humoral  immunity  or  if  the  innovation  in  cnidarian  pattern  recognition  

is  primarily  associated  with  cnidarian  specific  structures.    

 

Whether   the   cnidarian   pattern   recognition   complement   represents   a   phylum   specific  

expansion  or  the  higher  animal  repertoire  is  a  simplification  of  the  ancestral  state  is  unclear.  

However,  surveys  of  other  lower  metazoan  phyla  will  resolve  these  issues  as  complete  data  

becomes   available   for   a   broader   range   of   basal   animals.   The   evolutionary   and   functional  

impacts   of   cnidarian   innate   immunity   are   therefore   an   area   of   interest   for   future  

investigations   and   may   also   contribute   to   our   knowledge   of   symbiont   uptake   and   coral  

bleaching  mechanisms,  which  will  aid  in  reef  conservation  efforts.    

Page 83: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Four     Diversity  of  Adhesion  Molecules  in  cnidarians  

64  

 

Many   of   the   cell   adhesion   molecules   directing   morphogenic   cell   movements   during  

gastrulation  and  neural  development  were  identified  in  each  of  the  cnidarians.  The  effect  of  

these  proteins   in   the  development  of  diploblastic  animals  however  has  not  been  explored,  

with  most  studies  instead  focusing  on  the  expression  and  regulation  of  transcription  factors  

expressed   in   tissue   restricted  patterns.   The   insight   into   cnidarian   cell   adhesion  presented  

here   establishes   a   strong   foundation   for   future   analyses   aimed   at   understanding   the  

expression   and   function   of   genes   that   ultimately   determine   tissue   differentiation   and  

morphogenesis  in  lower  animals.    

 

Page 84: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

65  

Chapter 5: Developmental roles of cadherins from Acropora millepora

5.1 Introduction Developmental   processes   in   metazoans   require   regulated   adhesion   and   communication  

between   cells   in   order   to   properly   co-­‐ordinate   morphological   change   and   ensure   correct  

functional  associations  are  established.  Members  of  the  Cadherin  family  are  critical  to  these  

processes   and   whilst   their   primary   capability   may   appear   to   be   adhesion   between   cells  

achieved   through   calcium   dependant   homophilic   interactions,   cadherins   have   a   far   more  

influential   part   to   play   than   simply  mediating   cell-­‐cell   contact   (Hulpiau  &   van   Roy,   2009;  

Magie  &  Martindale,  2008;  Nollet  et  al.,  2000;  Yagi  &  Takeichi,  2000).  Differential  regulation  

and  a  variety  of  cytoplasmic  connections  allow  cadherins  to  take  an  active  role  in  regulating  

the  cytoskeleton,  cell  shape  and  tissue  polarisation  as  well  as  playing  roles  in  cell  sorting  and  

the   intracellular   signalling   that   determines   morphogenesis   (Gumbiner,   2005;   Halbleib   &  

Nelson,  2006).  

 

The  earliest  recognised  cadherins  were  isolated  because  of  their  clear  roles   in  gastrulation  

and  are  now  considered  “classical”  or  Type-­‐I  cadherins  (Yoshida  and  Takeichi,  1982;  Kemler  

1992).  Members  of  this  group,  which  include  E-­Cadherin  (Cdh1)  and  N-­Cadherin  (Cdh2),  have  

5  extracellular  Cadherin  domains,   followed  by  a   transmembrane  helix  and  a   characteristic  

cytoplasmic  region.  There  are  now  more  than  15  recognisable  groups  of  cadherins  based  on  

the  arrangement  of  conserved  domains  and  motifs  along  the  protein  (referred  to  herein  as  

the   protein   architecture).   Phylogenetic   analysis   of   first   true   Cadherin   repeat   in   the  

ectodomain   has   identified   6   major   clades   and   revealed   substantially   more   familial  

associations  (Hulpiau  &  Frans  van  Roy,  2009;  Nollet  et  al.,  2000;  F  van  Roy  &  Berx,  2008).      

 

Although   there   are  many   sub-­‐families   of   cadherins,   some   genes   stand   out   as   particularly  

significant   for   their   functions   in   development,   such   as   Type-­‐I   cadherins,   CELSR  

(Flamingo;Fmi),  Dachsous  (Ds)  and  FAT  (Ft)  cadherins  (Halbleib  &  Nelson,  2006).  Like  Type-­‐

I   cadherins,   those   from   the   Type-­‐III   and   Type-­‐IV   groups   have   been   shown   in   different  

animals   to   be   critical   to   the   cellular   re-­‐arrangements   of   germ   layer   formation   (Miller   &  

Mcclay,  1997;  Oda  et  al.,  1998;  Choi  and  Gumbiner,  1989;  Hatta  et  al.,  1987;  Takeichi  et  al  

1986).  Each  of  these  3  families,  which  vary  in  overall  protein  architecture  (Figure  5.1),  share  

a  common  feature  -­‐   the  ability  to  make  functional  connections  to  the  cytoskeleton  through  

binding   cytoplasmic   catenins   (Yagi   &   Takeichi,   2000).   The   Cadherin   cytoplasmic   domain  

(CCD)  is  a  defining  feature  of  these  groups  and  contains  2  highly  conserved  motifs,  the  juxta-­‐

Page 85: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

66  

membrane  domain  (JMD),  responsible  for  binding  δ-­catenin  (p120-­catenin),  and  the  catenin  

binding  domain  (CBD),  responsible  for  binding  β-­catenin  (van  Roy  &  Berx,  2008).  The  ability  

of  these  proteins  to  influence  the  cytoplasmic  pool  of  β-­catenin  sets  them  apart  and  conveys  

the   influence   over  morphogenic   events   for   which   these   cadherins   are   known   (Gumbiner,  

2005).  

 

Two  functions  of  catenin  binding  cadherins  are  particularly  well  conserved  in  the  Bilateria,  

cell   cohesion   and   cell   migration.   In   vertebrates,   expression   of   E-­Cadherin   is   detectable   at  

adherens  junctions  even  before  gastrulation  has  occurred.  Like  in  adult  tissues,  the  role  of  E-­

Cadherin   at   this   stage   of   development   is   to  maintain   stable   cellular   contacts   and   limit   the  

movement  of   cells  within   the   cell   layer.  As   gastrulation   commences,   cells   fated   to  become  

mesoderm  and   endoderm  begin   to   express  N-­Cadherin.   As   these   cells   begin   to  migrate   by  

ingression   or   involution,   they   cease   to   express   E-­Cadherin   at   the   cell   surface   (Takeichi,  

1988).   This   occurs   by   both   endocytosis   of   membrane   associated   E-­Cadherin   and  

transcriptional   inactivation   (Le   et   al.,   1999;   Hatta   et   al.,   1987).   The   loss   of   epithelial  

character  associated  with  the  migratory  or  invasive  phenotype  has  been  demonstrated  to  be  

a   direct   result   of   N-­Cadherin   expression.   Moreover,   co-­‐expression   of   N-­Cadherin   and   E-­

Cadherin   produces   cells   that   have   the   same   invasiveness   as   those   expressing  N-­Cadherin  

alone  (Nieman  et  al.,  1999).  

   

In   protostomes,   Type-­‐IV   Cadherin   (DE-­Cadherin/Shotgun   in   Drosophila)   is   functionally  

analogous   to  vertebrate  E-­Cadherin,   showing  a  similar  protein   localisation  and  undergoing  

the   same   down-­‐regulation   during   mesoderm   development   (Oda   et   al.,   1998).   Like   in  

vertebrates,   DN-­Cadherin   is   up-­‐regulated   in   migrating   mesodermal   cells,   although   the  

protein  architecture  of  DN-­Cadherin  (a  Type-­‐III  Cadherin)  is  significantly  different  from  that  

of  DE-­Cadherin   (type-­‐IV)  and  vertebrate  N-­Cadherin   (type-­‐I).   In  sea  urchin,  an  invertebrate  

deuterostome,   no   functional   analogue   of   N-­Cadherin   has   been   described.   Instead,   the  

flexibility  of  cell   junctions  that  allows  invagination  of  presumptive  mesendoderm  has  been  

suggested   to   be   facilitated   by   de-­‐coupling   of   LvG-­Cadherin   from   the   cytoskeleton.   Protein  

localisation   studies   indicated   that   whilst   LvG-­Cadherin   expression   at   the   cell   surface   is  

maintained,  cell  surface  expression  of  α-­catenin  and  β-­catenin  is  greatly  reduced  compared  

to  the  surrounding  ectoderm  (Miller  &  Mcclay,  1997).  Together,  these  observations  suggest  

both   protostomes   and   deuterostomes   require   at   least   1   catenin   binding   cadherin   that  

facilitates   tissue   stability   and   in   most   cases   a   2nd   to   promote   a   migratory   or   invasive  

phenotype.    

Page 86: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

67  

 

Figure   5.1   Generalised   protein   architecture   of   catenin   binding   cadherins.   Catenin   binding   cadherins   possess  distinct   ectodomain   structures   allowing   classification   as   Type-­‐I/II,   Type-­‐III   or   Type-­‐IV.   Type-­‐I   &   Type-­‐II  cadherins   (classical   cadherins)   contain   5   Cadherin   domains   (ectodomain   repeats;   EC)   followed   by   a  transmembrane  domain  and  Cadherin  cytoplasmic  domain.  The  highly  conserved  Cadherin  cytoplasmic  domain  (CCD)   is   responsible   for   functional   connections   to   the   cytoskeleton   through   interaction  with  δ-­‐catenin   via   the  JMD  motif,  and  β-­catenin  via  the  CBD  motif.  Unlike  Type-­‐I  &  Type-­‐II  cadherins,  which  are  chordate  specific,  Type-­‐III  &  Type-­‐IV  cadherins  possess  longer  extracellular  domains  consisting  of  8  or  more  EC  repeats  and  a  membrane  proximal   “Primitive   Classic   Cadherin   Domain”   (PCCD).   The   PCCD   consists   of   a   single   “non-­‐chordate”   domain,  followed   by   alternating   EGF-­‐like   and   Laminin   G   (LamG)   domains.   Cadherins   of   Type-­‐IV   structure   have   8   EC  domains  and  their  PCCD  contains  only  1  EGF-­‐like  and  1  LamG  domain.  By  contrast,  the  number  of  EC  domains  in  Type-­‐III  cadherins  varies,  with  some  proteins  containing  as  many  as  30  EC  domains.  The  Type-­‐III  EC  domains  are  also  preceded  by  N-­‐Terminal  EC-­‐like  domains,  which  hold  a  similar  structure  but  are  not  capable  of  homophilic  binding.  The  PCCD  of  Type-­‐III  cadherins  contains  a  3  EGF-­‐like  domains  and  2  LamG  domains,  more  than  other  types  of  catenin  binding  cadherins.  

     

 

 

 

 

 

 

 

 

Figure   5.2   Milestones   in   cadherin   evolution   (adapted   from   Hulpiau   and   Van   Roy,   2009).   The   proposed  appearance  of   features   in   the  Cadherin  domain  structure   throughout  evolution  are  marked   in  blue  with   losses  marked   in   red.   Genomic   surveys   suggest   early   cadherins   contained   a  wide   variety   of   associated   domains   (eg.  Nhh,   vWA   and   IgCAM   domains)   and   simplification   of   these   associations   occurred   in   the   bilaterian   lineage.  Catenin  binding  cadherins  have  been  suggested  to  be  a  bilaterian  invention,  first  occurring  as  Type-­‐III  cadherins  in  the  Urbilateria  (common  ancestor  of  bilaterians).  From  the  Type-­‐III  structure,  these  cadherins  are  believed  to  have  diversified  through  a  serries  of  domain  simplifications  into  Type-­‐IV  and  Type-­‐I/II  cadherins  in  protostomes  and  chordates  respectively.    

 

Page 87: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

68  

In  addition  to  roles  in  making  cytoskeletal  connections  at  the  cell  membrane,  β-­catenin  is  an  

important   cytoplasmic   signalling   molecule.   If   not   active   at   the   cell   membrane,   ‘free’  

cytoplasmic  β-­catenin  is  rapidly  degraded  following  phosphorylation  by  the  GSK3β  complex,  

consisting   of  Glycogen   Synthase   Kinase-­3β   (GSK3β),  Adenomatous   Polyposis   Coli   (APC)   and  

Axis  Inhibition  Protein  (Axin).  Alternatively,  β-­catenin  can  function  as  an  activating  co-­‐factor  

to  T-­‐Cell  Factor  (TCF/LEF)  transcription  factors,  which  lay  downstream  of  the  canonical  Wnt  

Pathway.   Canonical   Wnt   signalling   through   the   Frizzled   group   of   cell   surface   receptors  

inhibits  GSK3β  mediated  degradation  of  β-­‐catenin,  thereby  stabilising  the  cytoplasmic  pool  

and  effecting   its  nuclear   translocation   (Nelson  &  Nusse,  2004;   Schambony  et   al.,   2004).   In  

the  nucleus,  TCF/LEF  is  activated  by  replacement  of  the  repressing  co-­‐factor,  Groucho,  with  

the  activating   co-­‐factor  β-­‐catenin   (Chen  &  Courey,  2000;  Range  et   al.,   2005).  Through   this  

mechanism,  β-­‐catenin  is  critical  to  canonical  Wnt  signalling,  which  is  commonly  regarded  as  

one  of  the  most  important  signalling  cascades  in  bilaterian  development,  governing  diverse  

processes  such  as  axis  specification  and  limb  development.    

 

Canonical   Wnt   signalling   is   recognised   to   activate   epithelial   to   mesechymal   transitions  

(EMT),   which   is   a   critical   step   during   gastrulation   of   bilaterians   (Chuai   &  Weijer,   2009).  

Among   the   main   features   of   a   full   EMT   is   the   loss   of   epithelial   adhesions   (adherens  

junctions)   and   increase   in   cell   motility   (Shook   &   Keller,   2003).   It   is   therefore   perhaps  

unsurprising  that  Canonical  Wnt  has  a  reciprocal  inhibitory  relationship  with  the  expression  

and  function  of  CCD  containing  cadherins,  as  both  compete  for  β-­catenin  activity  to  facilitate  

opposite   adhesive   states   (Vincan   &   Barker,   2008;   Wang   et   al.,   2010).   Canonical   Wnt  

signalling   has   been   demonstrated   to   stabilise   and   up-­‐regulate   the   E-­Cadherin   repressor,  

Snail,   which   is   required   for   EMT   (Yook   et   al.,   2006;   Katoh   and   Katoh,   2006;   Yook   et   al.,  

2005).   Furthermore   β-­catenin   has   been   suggested   to   directly   repress   transcription   of   E-­

Cadherin  (van  Roy  &  Berx,  2008).  Conversely,  E-­Cadherin  has  been  demonstrated  to  inhibit  

the   translocation  of  β-­catenin   to   the  nucleus   in  over-­‐expression  experiments   (Logan  et   al.,  

1999;  Wikramanayake  et  al.,  2003),   thereby  acting   in  a  positive   feedback   loop   to  maintain  

cellular  adhesions  and  highlighting  the  importance  of  β-­catenin  regulation  in  determining  a  

cell’s  adhesive  state.    

 

The  developmental  roles  of  CELSR,  Ds  and  Ft  cadherins  are  also  influenced  by  Wnt  signalling,  

although  here  signalling  through  the  non-­‐canonical  pathway  is  upstream  of  their  expression  

(Strutt,   2003).   These   cadherins   are   all   components   of   systems   that   determine   the  

polarisation  of   cells  within  an  epithelial   cell   sheet  or  planar   cell  polarity   (PCP).  Two  main  

systems  of  planar  cell  polarity  have  been  described,  the  Fmi-­Fz  (‘core’)  pathway  and  the  Ds-­

Ft  pathway.  In  most  well  described  examples,  these  systems  function  within  the  same  tissue  

Page 88: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

69  

and  both  are  required  for  correct  morphogenesis  (for  review  see  Fanto  and  McNeill,  2004),  

however  regulatory  mechanisms  between  these  systems  remain  enigmatic.  In  each  system,  

cell  polarity  is  effected  by  the  asymmetrical  localisation  of  membrane  bound  components  to  

opposing  ends  of  the  cell.    

 

Interactions  between  the  membrane  bound  components  have  been  shown  to  occur  through  

direct   binding   of   opposing   extracellular   domains.   The   Fmi-­‐Fz   system   has   opposing  

localisation  of  Fz-­‐Dgo-­‐Dsh-­‐Fmi  and  Vangl-­‐Pk-­‐Fmi  complexes,  whereas  the  Ds-­‐Ft  system  relies  

on   opposing   localisation   of   Ds   and   Ft   at   the   membrane   as   well   as   asymmetrical   cellular  

localisation  of  four-­‐jointed  (fj),  a  golgi  protein  that  modifies  the  Ds  protein  (Wu  &  Mlodzik,  

2009).   Components   of   each   system   are   expressed   in   a   graduated   pattern   across   the  

epithelium  and  polarisation  of  tissues  is  determined  by  the  relative  expression  and  activity  

of   each   system.   The   relationship   between   their   relative   expression   and   morphological  

events  is  not  simple.  Two  classical  examples  are  the  Drosophila  Wing  and  Eye,  where  both  

the  Fmi-­‐Fz  and  Ds-­‐Ft  systems  are  expressed.   In  the  Wing,  graduated  activity  of  Ds-­‐Ft  along  

the  proximal-­‐distal  axis  opposes  that  of  Fmi-­‐Fz,  whereas  in  the  eye,  the  activity  gradient  of  

both   systems   are   concurrent   (Wu   &   Mlodzik,   2009).   Although   there   are   a   number   of  

unresolved   aspects   of   planar   cell   polarity   function,   the   influence   of   appropriate   PCP   on  

morphogenesis   has   been   clearly   demonstrated   in   two   distinct   processes.   Convergent  

extension,   the   process   of   elongating   an   epithelial   sheet   through   intercalation   of   existing  

cells,  is  seen  in  vertebrate  gastrulation  and  is  a  critical  process  for  neuralation  (Shindo  et  al.,  

2008;   Wang   et   al.,   2006).   The   second   process   is   polarised   cell   division,   whereby  

establishment   of   tissue   polarity   determines   the   direction   of   mitotic   spindle   alignment  

through  constraint  of  the  cells  shape  (Gong  et  al.,  2004).    

 

The   involvement  of  PCP   in  both  convergent  extension  and  polarised  cell  division  has  been  

shown   in   Zebrafish,   Drosophila   and   Caenorhabditis,   suggesting   these   are   evolutionary  

conserved  morphogenetic  events  (Carreira-­‐Barbosa  et  al.,  2009;  Gong  et  al.,  2004;  Seifert  &  

Mlodzik,   2007).   Similarly,   the   role   of   β-­catenin   in   both   transcriptional   and   membrane  

associated  roles  has  been  highly   investigated   in  protostomes  and  deuterostomes.  Very  few  

investigations  however,  have  described  homologues  of  β-­catenin  and  PCP  adhesion  systems  

in  ‘lower’  metazoans.    

 

Page 89: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

70  

Consideration   of   the   distribution   and   arrangement   of   adhesion   domains   within   Cadherin  

proteins   from  Nematostella  and  choanoflagellates  has   revealed   the  ancestral  nature  of   the  

Cadherin   extracellular   domain   and   describes   a   variety   of   domain   associations   that   have  

since  been  lost   in  the  Bilateria  (Abedin  &  King,  2009).  The  presence  of  the  catenin  binding  

Cadherin   cytoplasmic  domain   is   reportedly  unique   to  metazoans  however,   in   a  number  of  

basal   cognates,   the   overall   architecture   of   proteins   containing   this   domain   has   not   been  

reported.   Hulpiau   and   Van   Roy   (2009)   proposed   the   model   of   Cadherin   evolutionary  

milestones  described  in  Figure  5.2,  suggesting  that  a  number  of  developmentally  significant  

cadherins,   including   those   that   bind   β-­Catenin   are   restricted   to   the   Bilateria,   despite   the  

parallels  in  early  development  of  selected  cnidarians  and  bilaterians.    

 

Genomic   surveys   of   the   sea   anemone  Nematostella   vectensis   have   previously   revealed   the  

existence  of  Canonical  and  Non-­‐canonical  Wnt  components   including  β-­‐catenin,   the  GSK3β  

complex,  Frizzled  and  Van  Gogh,  however  no  direct  analysis  of  the  Cadherin  complement  of  

cnidarians   has   been  made   (Kusserow   et   al.,   2005;   Putnam   et   al.,   2007).   Furthermore,   the  

expression  patterns  of  the  Nematostella  Wnt  genes  and  β-­catenin  have  been  described  and  

discussed  in  terms  of  their  signalling  during  gastrulation  (Lee  et  al.,  2007;  Wikramanayake  

et   al.,   2003),   however   the   localisation   and  putative   roles   of   planar   cell   polarity   genes   and  

catenin  binding  cadherins  have  not  been  reported  outside  the  Bilateria.    

 

Investigation   of   cadherin-­‐catenin   and   planar   cell   polarity   signalling   components   in  

cnidarians  and  sponges  will  resolve  the  importance  of  these  systems  to  metazoan  evolution  

and   reveal   their   ancestral   significance   in  development.  Here,   I  describe   the  distribution  of  

genes  significant  to  Cadherin-­‐catenin  signalling  and  planar  cell  polarity  in  4  representative  

cnidarians,   with   different   developmental   features.   The   expression   of   catenin   binding  

cadherins   and   a   number   of   planar   cell   polarity   components   are   investigated   by   in   situ  

hybridisation  of  coral  embryos  and  larvae  and  the  functional  and  evolutionary  implications  

of  these  systems  are  considered.    

   

Page 90: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

71  

5.2 Methods 5.2.1 Sequence identification Sequences   for   “classical”   cadherins   and   other   key   components   of   the   Wnt   -­‐   Planar   Cell  

Polarity  pathway  were  identified  using  JCUSMART  (See  Chapter  3).  Sequences  from  4  large  

datasets  representing  Acropora  millepora,  Nematostella  vectensis,  Hydra  magnipapilata  and  

Clytia  hemispherica  were  assessed  for  the  presence  of  key  architectural  features  and  overall  

sequence  similarity  (BLASTp)  to  known  representatives  of  target  genes  already  in  Genbank.    

5.2.2 Cadherin phylogenetics Maximum   likelihood   analysis   was   performed   on   28   cnidarian   and   bilaterian   cadherins  

possessing  a  classical  Cadherin  cytoplasmic  domain  which  consists  of  both  a  JMD  motif  and  a  

CBD  motif.   Due   to   the   highly   repetitive   nature   of   the   Cadherin   extracellular   domain,   this  

analysis   is   based   on   truncated   sequences   corresponding   to   148   positions   within   the  

cytoplasmic   region   and   encompassing   both   the   JMD   and   CBD  motifs.  Maximum   likelihood  

analysis  was  performed  using  PhyML3.0  (Guindon  &  Gascuel,  2003)  and  supported  by  100  

bootstrap  replicates.  

5.2.3 Isolation of riboprobe template cDNA Partial  sequences  of  selected  genes  identified  in  the  Acropora  millepora  transcriptome  were  

amplified   from   Acropora   cDNA   libraries   and   cloned   into   pGEM-­‐T   vector   (Promega)   as  

described   in  Chapter  2.2.  Amplified  regions  correspond  to  sections  of   the  coding  sequence  

that   exhibit   the   least   homology   to   other   genes   and   do   not   encompass   internal   repeats   of  

functional  protein  domains.  These  strategies  were  utilised  to   increase  the  specificity  of  the  

resulting  probe.  Although  a  number  of  primer  combinations  were  assessed,  the  sequences  of  

only  the  most  successful  pair   for  each  gene  are  shown  below.  Full  or  partial  sequences   for  

the  remaining  genes  were  recovered  from  the  Acropora  millepora  Expressed  Sequence  Tag  

(EST)  project.  In  situ  hybridisation  was  performed  as  described  in  Chapter  2.4.  

 

Page 91: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

72  

Am_ACadherin  F3       5’-­‐GGGCAACATCATCTCAAGC-3’  

Am_ACadherin  R5       5’-­‐ATGCGATTGAGGTTATCGAA-3’  

 

AmFlamingo  F4     5’-­‐GGTCCACGTACCACCAAG-3’  

AmFlamingo  R4     5’-­‐AGAGAATCAAGGAATATCAAG-3’  

 

Am_Van_Gogh  like  F3     5’-­‐GTGATCGCAATATGGGCTT-3’  

Am_Van_Gogh  like  R3   5’-­‐TCTGCTTCTTCATAGAAACG-3’  

 

Am_Wnt16  Forward     5'-­‐GTACAGTGGTTGGGGAATGG-­‐3'  

Am_Wnt16  Reverse     5'  -­‐  CAGTGCAAGAGCCAGAAACA-­‐3'  

 

Am_beta-­‐Catenin   Unigene:  B025-­‐E11  

Am_Frizzled4     Unigene:  C007-­‐H4  

AmDachsous     Unigene:  D041-­‐C8  

Am_WIF     Unigene:  C014-­‐E11  

Am_Axin     Unigene:  D027-­‐D10  

Am_Dishevelled   Unigene:  B036-­‐C4  

 

 

 

Page 92: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

73  

5.3 Results 5.3.1 Identification of catenin binding cadherins and planar cell

polarity components from Acropora millepora Two   sequences  with   homology   to   the   catenin-­‐binding   Cadherin   cytoplasmic   domain  were  

identified   in   the   Acropora   millepora   transcriptome   using   JCUSMART.   One   contiguous  

sequence   (Contig6389  +  Contig5439;  Sequence  presented   in  Supplementary  Figure  5.1)  of  

8,933bp,  which  I  named  Am_ACadherin,  showed  significant  homology  to  Type-­‐III  cadherins  

in   both   protein   architecture   and   cytoplasmic   domain   sequence   alignment   (Figure   5.3).  

Although  the  5’  sequence  of  Am_ACadherin  could  not  be  resolved  with  the  available  data,  the  

cytoplasmic  region  contains  both  a  p120/δ  catenin  binding  juxta-­‐membrane  domain  (JMD)  

and  β-­catenin  binding   domain   (CBD)   (Figure   5.3   A).   The   second   sequence   (Contig10872),  

7,786bp,  was  identified  as  an  orthologue  of  Dachsous  (Ds)  (see  Supplementary  Figure  5.2  for  

cytoplasmic   region   boxshade   alignment),   an   atypical   protoCadherin   that   participates   in  

planar   cell   polarity   in   bilaterians.   AmDachsous   (AmDs),   the   first   reported   Ds   orthologue  

outside   the   Bilateria,   contains   only   a   CBD   in   the   cytoplasmic   region   as   is   consistent  with  

bilaterian  Dachsous  genes.  

 

Two   partial   sequences   (Contig8737   and   Contig3665)   corresponding   to   the   central   and   C-­‐

terminal   regions   (3,073bp   and   3,898bp   respectively)   of   the   core   planar   cell   polarity  

Cadherin  CELSR/Flamingo  (Fmi)  were  also  identified  using  JCUSMART.  The  presence  of  coral  

orthologues   of   core   (Fmi)   and   secondary   (Ds)   planar   cell   polarity   pathway   cadherins  

prompted  investigation  of  other  components  of  this  pathway.  Almost  all  investigated  genes  

associated   with   Cadherin-­‐catenin   signalling,   PCP   signalling   and   Wnt/PCP   pathway   are  

represented  throughout  the  Cnidaria  (Table  5.1).  The  range  of  genes  apparently  absent  from  

Hydra  and  Clytia   is   likely  due   to  data   limitations   rather   than  gene   losses.  These   signalling  

pathways   can   therefore   be   considered   evenly   represented   among   species   with   different  

developmental  mechanisms,  suggesting  they  are  of  fundamental  importance  to  survival.  

Page 93: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

74  

Figure  5.3   Protein   conservation     and  architecture  of  Am_ACadherin    

A)   Alignment   of   Am_ACadherin  cytoplasmic  domain    to  representative  sequences   from   bilaterians.   Shading  demonstrates     >50%   consensus   to  Am_ACadherin   (Back   –conservation,  Grey   –   conservative   substitution).  Am_ACadherin   contains   both   a   JMD  (Yellow   box)   and   CBD   (blue   box),  which   are   required   for   interaction  with  β-­‐catenin  and  the  cytoskeleton.    

B)   Domain   structure   of  Am_ACadherin.   Sequences   gained  from   the   2010   assembly   of   Acropora  millepora   show   only   an   N-­‐terminal  truncated  model.  The  total  number  of  EC  repeats  is  therefore  unknown.  The  assembly   of   2   overlapping   contigs    (Contig   6389   +   Contig5394)  demonstrates  Am_ACadherin   contains  at   least   13   EC   domains   followed   by  the  canonical  structure  of  PCCD,  TMH,  CCD   consistent   with   Type-­‐III  cadherins.   This   is   the   first   reported  type-­‐III   Cadherin   outside   of   the  Bilateria   suggesting   the  developmentally   critical   function   of      cadherins   in   facilitating   cell   adhesion    and   influencing   β-­‐catenin   balance  originated   earlier   than   previously  believed.  

(Hs)   Homo   sapiens;   (Mm)   Mus  Musculus;   (Bm)   Bombyx   mori;   (Gb)  Gryllus   bimaculatus;   (Dm)   Drosophila  melanogaster;   (Af)   Artemia  franciscana;   (Lv)   Lytechinus  variegates;   (Sp)   Strongylocentrotus  pupuratus;   (Ap)   Asterina   pectinifera;  (Se)  Sexostrea  echinata;  (BS)  Botryllus  schlosseri;   (Ci)   Ciona   intestinalis;   (Cj)  Cardina   japonica;   (Le)   Ligia   exotica;  (At)  Achaearanea  tepidariorum  

 

Page 94: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

75  

 

Gene   Acropora   Nematostella   Hydra   Clytia  

Type-­‐III  Cadherin   1   3   -­‐   -­‐  Beta-­‐Catenin   1   1   1   1  Axin   1   1   1   -­‐  APC   1   1   1   -­‐  GSK3b   1   1   1   1  Dishevelled   1   1   1   1  CELSR/Flamingo   1   1   -­‐   -­‐  Frizzled   4   4   2   1  Van  Gogh/Strabismus   1   1   1   1  Diego   -­‐   -­‐   -­‐   -­‐  LRP5/6   1   1   -­‐   -­‐  Dachsous   1   1   -­‐   -­‐  FAT   -­‐   3   -­‐   -­‐  Four-­‐jointed   -­‐   -­‐   -­‐   -­‐  Wnt16   1   1   1   1  Groucho   1   1   1   1  Inversin   3  (partial)   1   -­‐   -­‐  

Table  5.1.  Distribution  of  catenin  binding  cadherins  and  planar  cell  polarity  pathway  components  in  cnidarians.  For  each  protein,  the  number  of  homologues  that  were  positively  identified  by  the  JCUSMART  method  are  shown  for   each   cnidarian   species   investigated.  This   value  may  vary   from  previously  published  values,   for   example,   2  Frizzled   proteins  have  been   reported   in  Clytia   (Momose  &  Houliston,   2007),   however   only  1  protein   could  be  confirmed   as  Frizzled   on   the   basis   of   EST   data   used   in   JCUSMART   analysis,   despite   the   presence   of   4   protein  models  with  BLAST  hits   to  Frizzled.  A   “-­‐“   indicates  no  sequences  were   identified  but  may  not  be  suggestive  of  gene  loss,  due  to  inherent  limitations  of  the  initial  data  and  sequence  assembly  and  analysis.  Representatives  of  all   components   of   the   Cadherin-­‐catenin   (Green)   and   planar   cell   polarity   pathways   (blue)   are   present   in  cnidarians   with   the   exception   of   the   cytoplasmic-­‐side   regulatory   proteins,   Diego   and   Four-­‐jointed.   Genes  involved   in  Wnt/PCP  signalling  are  coloured  yellow.  Conservation  of  a   single  homologue  of  most  genes  across  cnidarian  species  with  minimal   to  no  expansion  of  gene  repertoire  suggests   that  systems   influencing  β-­catenin  distribution   and   cell   polarity   are   highly   constrained   despite   varying   developmental   methods   in   each   species.  Identifiers  for  models  included  in  table  are  presented  in  Appendx  B.  

5.3.2 Phylogenetic analysis of catenin binding cadherins Maximum   likelihood   analysis   of   catenin   binding   cadherins   (Figure   5.4)   shows   that  

sequences  from  protostomes  and  deuterostomes  form  two  distinct  major  clades.  Cadherins  

with   similar   overall   protein   architecture   (ie.   each   Cadherin   type)   group   together   within  

these   major   clades.   Consistent   with   this,   Type-­‐III   cadherins   from   protostomes   and  

deuterostomes   clade   separately   from   each   other   and   from   the   cnidarian   Cadherin  

sequences,   which   also   possess   Type-­‐III   architecture.   The   position   of   the   cnidarian  

sequences,   as   a   third   major   clade   is   well   supported   albeit   on   a   long   branch,   which  most  

likely   reflects   the   large   amount   of   time   since   cnidarian   divergence   from   other  metazoans  

rather   than   a   lack   of   evolutionary   constraint   on   the   cytoplasmic   region   of   cnidarian  

cadherins.  

 

 

Page 95: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

76  

 

Figure  5.4  Maximum  likelihood  analysis  of  Cadherin  Cytoplasmic  Domains  of  Type-­‐I,  Type-­‐II,  Type-­‐III  &  Type-­‐IV  cadherins   from   representative   metazoans.   Cadherin   major   clades   reflect   the   taxonomy   of   each   animal   as  Protostome   (Green),   Deuterostome   (yellow)   or   Cnidarian   (blue).   Bilaterian   Type-­‐III   cadherins   occur   in   2  well  supported,   lineage   specific   clades   (Deuterostome   &   Protostome),   which   reflect   their   function   as   epithelial  stabilising  or  invasion  promoting  as  well  as  reflecting  their  evolutionary  history.  The  position  of  Type-­‐I  &  Type-­‐II  cadherins  within  the  Deuterostome  clade,  and  Type-­‐IV  cadherins  within  the  Protostome  clade  is  consistent  with  previous   suggestions   that   these   families   arose   from   independent   lineage   specific   diversification   of   ancestral  Type-­‐III  cadherins.  The  position  of  cnidarian  Type-­‐III  cadherins  in  an  independent  clade  is  likely  due  to  the  early  divergence  of   the  cnidarians  from  bilaterian  evolution  and  is  not   informative  as  to  the  function  of  cnidarian  or  ancestral  catenin-­‐binding  cadherins.  Branch  numbers  are  bootstrap  values  (100  replicates).  Values  of   less  than  50   are   not   marked.   The   edited   alignment   of   sequences   used   for   maximum   likelihood   analysis   and   Genbank  accession  numbers   are  presented   in   Supplementary  Figure  5.3.   (Hs)  Homo   sapiens;   (Mm)  Mus  Musculus;   (Bm)  Bombyx  mori;  (Gb)  Gryllus  bimaculatus;  (Dm)  Drosophila  melanogaster;  (Af)  Artemia  franciscana;  (Lv)  Lytechinus  variegates;   (Sp)  Strongylocentrotus  pupuratus;   (Ap)  Asterina  pectinifera;   (Se)  Sexostrea   echinata;   (BS)  Botryllus  schlosseri;  (Ci)  Ciona  intestinalis;  (Cj)  Cardina  japonica;  (Le)  Ligia  exotica;  (At)  Achaearanea  tepidariorum  

 

Page 96: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

77  

5.3.3 In situ hybridisation of catenin binding cadherins and planar

cell polarity pathway components In   situ   RNA  hybridisation   of  Am_ACadherin   shows   that   detectable   levels   of   expression   are  

not  present  until  after  gastrulation,  at  the  sphere  stage  (Figure  5.6).  Expression  in  spheres  is  

restricted  to  a  small  region  of  ectoderm  on  one  side  of  the  larva,  likely  to  correspond  to  the  

site  of  the  future  oral  pore.  Expression  in  the  involuted  ectodermal  cells  of  the  oral  pore  is  

apparent   in   pear   and   planula   larvae,   however   no   expression   could   be   detected   after  

metamorphosis.  

 

Coral   orthologues   of   planar   cell   polarity   (PCP)   components   exhibit   a   variety   of   spatial  

expression  patterns   throughout  development.  Two  components  of   the  Fz-­Fmi   PCP   system,  

Am  Van   Gogh   like   (AmVangl)   and  AmDishevelled   (AmDsh),   along  with  AmDs   of   the  FAT-­Ds  

PCP   system,   are   first   expressed   at   the   prawnchip   stage,   prior   to   gastrulation   (Figure   5.5).  

Each  of  these  three  genes  are  expressed  only  in  the  presumptive  ectoderm  of  the  prawnchip,  

however,  whilst  AmDsh   is  expressed  ubiquitously  throughout  this  presumptive  germ  layer,  

AmVangl  and  AmDs  are  expressed  in  a  gradient  from  one  side  of  the  embryo.  It  is  not  clear  

whether  these  graded  expression  patterns  are  overlapping  or  opposing.  In  contrast  to  these  

early  patterns,  only  one  of  the  three  cloned  Acropora  Frizzled  genes  are  expressed  prior  to  

gastrulation   (AmFz4),   however   its   expression   is   restricted   to   the   presumptive   endoderm  

(Ukolova   et   al.,   unpublished).   AmFmi   expression   is   also   not   detectable   until   after  

gastrulation.    

 

The  expression  of  PCP  related  genes  in  larval  stages  occurs  in  two  main  regions,  the  aboral  

ectoderm   and   the   oral   region.   AmFmi,   AmDsh,   AmVangl   and   AmDs   are   all   expressed  

throughout  the  aboral  ectoderm  of  planula  larvae.  In  the  oral  region,  AmFmi  and  AmDsh  are  

expressed   in   the   oral   endoderm,  whilst   genes   involved   in  maintaining   non-­‐canonical  Wnt  

signalling  (Wnt16,  Axin,  Wnt  inhibitory  factor  (WIF)  and  Groucho)  are  expressed  either  in  a  

ring   of   ectodermal   cells   surrounding   the   oral   pore   (Wnt16,   Axin)   or   in   the   oral   ectoderm  

itself   (WIF,   Groucho)   (Figure   5.6).   Although   its   role   in   canonical   or   non-­‐canonical   Wnt  

signalling  is  unclear,  AmFz4   is  also  strongly  expressed  in  the  oral  ectoderm  and  potentially  

overlaps  the  area  of  Wnt16  expression.    

 

Page 97: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

78  

Figure  5.5.  In  situ  hybridisation  of  prawnchip  (left)  and  early  donut  (right)  stage  Acropora  embryos  with  genes  from  the  Cadherin-­‐catenin  and  planar  cell  polarity  pathways.  Embryos  are  shown  with  presumptive  blastopore  in   the   centre   and   the   presumptive   endoderm   visible.   Unlike   catenin   binding   cadherins   from   other   species,  Am_ACadherin  (A  &  B)  is  not  expressed  during  gastrulation  of  Acropora  millepora,  suggesting  this  protein  is  not  required   to   maintain   cellular   stability   during   embryonic   morphogenesis.   Am_β-­catenin   (C   &   D)   and  Am_Dishevelled  (E  &  F)  are  both  expressed  in  the  presumptive  ectoderm,  which  is  in  contrast  to  blastula  forming  animals   where   embryonic   expression   of   both   proteins   occurs   in   the   presumptive   mesendoderm.   Planar   cell  polarity  genes  Am_Van_Gogh  (G  &  H)  and  AmDachsous  (I  &  J)  demonstrate  a  lateral  gradient  of  expression  in  the  presumptive   ectoderm   during   embryonic   development   (the   relative   direction   of   these   gradients   could   not   be  confirmed),  which  may  indicate  an  active  PCP.  However,  the  apparent  absence  of  AmFlamingo  expression  (K  &l)  during   this   stage  would   suggest  otherwise.  Am_Dishevelled  and  Am_β-­catenin   insitu  hybridisations   (C-­‐F)  were  performed  by  C.Shinzato,  Unpublished)  

Page 98: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

79  

Figure  5.6.  In  situ  hybridisation  of  Acropora  larvae  with  genes  from  the  Cadherin-­‐catenin  and  planar  cell  polarity  pathways.   Larvae   are   shown   with   oral   pore   at   top   except   in   B   where   oral   pore   is   centred.   Am_ACadherin   is  expressed  in  a  restricted  pattern  at  the  oral  pore  commencing  at  sphere  stage  (A  &  B)  and  is  maintained  during  the   pear   (C   &   D)   and   planula   (E)   larval   stages.   This   pattern   overlaps   that   of   β-­catenin   (F-­‐H),   consistent  with  canonical  interactions  of  β-­catenin  and  CCD  containing  cadherins  and  a  role  in  oral  pore  development.  Expression  patterns  of  non-­‐canonical  Wnt   signalling   components  Wnt16  &  Frizzled   4   (M  &  P)   suggest  Planar  Cell  Polarity  may  also  function  in  the  oral  pore.  This  is  supported  by  repressors  of  canonical  Wnt  signalling  WIF  (N)  and  Axin  (O)   in   the   oral   pore,   however   the   absence   of   PCP   effector   (Dachsous,   Van   Gogh,   Flamingo   and   Dishevelled)  expression   from   the   oral   ectoderm   is   contradictory.   In   situ   hybridisation   of  Am_β-­catenin   (F-­‐H)   performed  by  E.Ball,  Unpublished;  In  situ  hybridisation  of  Wnt  components  (M-­‐P)  performed  by  S.Ukolova,  unpublished;  In-­‐situ  hybridisation  of  AmGroucho  (Q)  performed  by  L.Grasso,  Unpublished.  

Page 99: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

80  

5.4 Discussion 5.4.1 Cadherins involved in epithelial cohesion and migration

evolved early in metazoan evolution cadherins  capable  of  binding  cytoplasmic  β-­catenin  have  long  been  recognised  to  have  roles  

in   embryonic   development  where   their   expression   correlates   to   both   stable   cohesive   and  

invasive   cellular   phenotypes.   Using   JCUSMART,   I   have   identified   4   cnidarian   cadherins   (3  

complete   from   Nematostella   vectensis   and   1   5’   truncated   from   Acropora   millepora)   with  

conserved   catenin   binding   motifs   in   their   cytoplasmic   domain.   Genomic   surveys   have  

revealed  the  presence  of  CCDs  in  representatives  of  all  metazoan  taxa,  including  a  cnidarian  

(Nematostella  vectensis)  and  sponge  (Amphimedon  queenslandica  –  preliminary  sequences)  

(Abedin  &  King,   2009;  King   et   al.,   2008;   Sakarya   et   al.,   2007).   These   domains   are   notably  

absent   from   the   genome   of  Monosiga   brevicolis,   a   representative   of   the   choanoflagellata,  

which  are  considered  the  closest  extant  metazoan  outgroup  (Abedin  &  King,  2009;  King  et  

al.,  2008).  The  absence  of  CCDs  from  choanoflagellates  suggests  the  CCD  arose  only  after  the  

animal  transition  to  multicellularity  in  the  common  metazoan  ancestor  (King  et  al.,  2008).    

 

Although  the  CCD  is  recognised  as  metazoan  specific,  the  complete  coding  sequence  of  CCD  

containing   proteins   from   non-­‐bilaterian   representatives   has   not   previously   been  

investigated.  The  protein  architecture  of  each  cnidarian  sequence  is  consistent  with  that  of  

type-­‐III  cadherins  (Figure  5.1),  found  primarily  in  non-­‐chordates  (with  the  exception  of  Hz-­‐

cadherins)   and   have   not   previously   been   reported   outside   the   Bilateria.   Cadherins   of   this  

type  are  distinct  from  typical  chordate  (type-­‐I  and  II)  catenin  binding  cadherins  due  to  the  

presence   of   a   variable   number   of   N-­‐terminal   Cadherin   (EC)   repeats   followed   by   a  

characteristic   combination   of   NC,   CE   and   LamG   domains   (the   PCCD   complex),  which  may  

play  a  role  in  translocation  to  the  plasma  membrane  (Oda  &  Tsukita,  1999).  The  sponge  CCD  

containing   protein,   first   reported   by   Sakarya   et   al   (2007),   is   also   a   Cadherin   however   is  

somewhat  divergent   in   its  ecto-­‐domain  architecture.    Following   the  N-­‐terminal  EC  repeats  

(>12),  are  12  EGF  domains  and  1  LamG  domain.  The  domain  organisation  and  the  absence  of  

a   PCCD   are   dissimilar   to   type-­‐III   cadherins   and   all   other   CCD   containing   proteins.   The  

sponge  protein  has  instead  been  considered  a  FAT-­‐like  Cadherin  (King  et  al.,  2008)  despite  

its   unknown   functional   significance.   Although   this   one   reported   sponge   catenin   binding  

Cadherin  does  not  exhibit  an  architecture  characteristic  of  any  described   ‘classic’  Cadherin  

types,   future  analyses  of   the  recently  completed  A.queenslandica  genome  (Srivastava  et  al.,  

2010)  may  reveal  a  more  complex  complement  of  CCD  containing  cadherins  in  sponges.    

 

 

 

Page 100: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

81  

Type-­‐III  cadherins  have  previously  been  suggested  to  be  a  bilaterian  ‘invention’  due  to  their  

presence   in   both   protostomes   and   deuterostomes   (Hulpiau   &   van   Roy,   2009).   The  

identification   of   CCD   containing   proteins   from  basal  metazoans   as   cadherins  with   type-­‐III  

structure   contradicts   this   notion.   Instead,   their   presence   suggests   that   type-­‐III   cadherins  

arose   early   in   metazoan   evolution   and   diversified   in   the   bilaterian   lineage,   giving   rise   to  

functionally  similar  type-­‐IV  and  type-­‐I  cadherins  in  protostomes  and  chordates  respectively.  

Type-­‐III   cadherins   have   subsequently   been   lost   from   the  majority   of   chordates  with   only  

three  representatives  (Hz-­‐cadherins)  remaining  in  vertebrates.  

 

Phylogenetic  analysis  of  the  catenin  binding  region  (Figure  5.4)  was  unable  to   identify  any  

clear   relationship  between  cnidarian  and  bilaterian  CCD  containing  cadherins.  Protostome  

and   deuterostome   sequences   produce   2   discrete   clades   as   is   consistent   with   previously  

published   analyses   (Hulpiau   &   van   Roy,   2009).   Type-­‐III   cadherins   also   form   2   clades  

consistent   with   the   functional   distinction   between   type-­‐III   cadherins   from   different  

bilaterian   lineages.   Grouping   of   cnidarian   sequences   with   either   clade   would   suggest   a  

common  evolutionary  history,  however  the  cnidarian  sequences  form  a  third  discrete  clade  

and   are   not   clearly   associated   with   either   of   the   bilaterian   type-­‐III   Cadherin   groups.   The  

functional  significance  of  the  cnidarian  CCD  containing  cadherins  therefore  remains  unclear  

as  they  are  not  more  closely  related  to  either  invasive  or  stabilising  type  cadherins.  It  may  be  

that  cadherins  fulfilling  both  of  these  roles  are  present  in  cnidarians  and  that  the  distinction  

between   invasiveness   and   stability   is   more   closely   associated  with   differential   regulation  

than   with   the   interaction   between   the   cytoplasmic   domain   and   catenins.   Differential  

regulation  however,  only  partially  explains  this  distinction  in  bilaterians,  as  expression  of  E-­

Cadherin  on  N-­Cadherin  expressing  cells  does  not  diminish  the  invasive  phenotype  (Nieman  

et  al.,  1999).  To   further   the  explanation,  a  mechanism  of  matrix-­‐metalloprotease  mediated  

cleavage  of   the  E-­Cadherin  ectodomain  has  been  proposed  (Xian  et  al.,  2005),  although  the  

possibility   of   similar   protein   level   regulation   in   cnidarians   would   not   be   reflected   in   the  

present  analysis.    

 

The   apparent   tight   association   of   the   CCD   with   cadherins   in   even   the   most   primitive  

metazoan  phylum,  the  sponges,  and  the  high  degree  of  conservation  in  the  catenin  binding  

motifs  of  the  CCD,  indicates  the  presence  of  a  functional  constraint  on  the  Cadherin-­‐catenin  

relationship.   The   critical   nature   of   roles   for   β-­catenin   and   Cadherin   described   during  

gastrulation   and   normal   function   of   bilaterian   animals   is   the   most   likely   reason   for   this  

constraint.  It  therefore  stands  to  reason  that  similar  vital  roles  for  the  conserved  Cadherin-­‐

catenin   signalling   axis   in   germ   layer   specification   and   morphogenesis   could   be   evident  

during  development  of  more  primitive  metazoans  such  as  cnidarians.    

Page 101: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

82  

5.4.2 Planar cell polarity but not Am_ACadherin is implicated in

gastrulation of Acropora millepora The   presence   of   catenin   binding   cadherins   at   adherens   junctions   of   the   presumptive  

ectoderm  prior  to  gastrulation  is  conserved  throughout  the  Bilateria.  A  similar  distribution  

in   the   presumptive   ectoderm   was   expected   for   Am_ACadherin   prior   to   gastrulation   of  

Acropora   millepora.   However,   in   situ   hybridisation   of   Acropora   embryos   revealed   no  

detectable  expression  of  Am_ACadherin  until  after  gastrulation  was  complete  (Figures  5.5  &  

5.6).   In   each   branch   of   the   Bilateria   for   which   catenin   binding   cadherins   have   been  

described,   a   role   analogous   to   that   of   E-­Cadherin   in   stabilising   the   structure   of   the  

presumptive  endoderm  has  been  demonstrated.  The  unexpected  absence  of  Am_ACadherin  

from   gastrulation   stages   indicates   it   does   not   function   in   tissue   stability   prior   to  

gastrulation.  Only   a   single   Cadherin   capable   of   binding  β-­catenin  has  been   identified   from  

A.millepora,  suggesting  that  the  most  highly  conserved  role  for  the  Cadherin-­‐catenin  axis  is  

not  represented  in  this  species.    

 

The   most   direct   evolutionary   interpretation   of   the   absence   of   cadherins   effecting   tissue  

stability  is  that  the  tissue  stabilising  function  arose  after  the  divergence  of  cnidarians.  This  

prospect   is   however   highly   unlikely.   Cnidarians   demonstrate   a   considerable   range   of  

gastrulation  processes  including  invagination,  ingression,  delamination  and  epiboly  (Byrum  

and  Martindale,  2004).  Such  diversity  is  even  reflected  among  coral  and  the  bi-­‐layer  folding  

exhibited   by   Acropora   is   a   particularly   peculiar   mode   of   gastrulation.   In   contrast   to  

Acropora,   the   gastrulation   of   Nematostella   occurs   by   invagination   following   blastula  

formation   (Kraus   &   Technau,   2006;   Lee   et   al.,   2007;   Magie,   Daly,   &   Martindale,   2007)  

variations   of   which   are   reasonably   common   in   bilaterians.   The   clear   evolutionary  

relationship  between  Nematostella  and  bilaterian  gastrulation  suggests  that  stabilisation  of  

the  presumptive  ectoderm  by  a  catenin-­‐binding  Cadherin  is  likely  to  be  represented  in  some  

parts  of  the  cnidarian  lineage.  As  such,  the  tissue  stabilising  function  can  still  be  considered  

ancestral.   The   absence   of   this   function   in   Acropora   is   therefore   attributable   to   a   genus  

specific   diversification   related   to   the   mode   of   gastrulation   and   is   not   reflective   of   the  

ancestral  state.    

 

Simplification  of  Acropora  catenin  binding  Cadherin  function  is  also  supported  by  the  results  

of  cnidarian  genomic  surveys.  Whereas  a  single  Type-­‐III  Cadherin  was  identified  in  coral,  the  

genome   of  Nematostella   vectensis   has   revealed   3   predicted   Cadherin   genes   with   Type-­‐III  

architecture.  Two  of  the  Nematostella  genes  appear  to  be  tandem  repeats  and  may  produce  

only   a   single   functional   protein   (based   on   protein   alignment   –   not   shown),   however   the  

third  gene  resides  on  a  separate  scaffold  of  the  genome  assembly  and  is  likely  to  be  a  distinct  

Page 102: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

83  

and   functional  Cadherin.  The  presence  of  only  a  single  Cadherin   in  coral  compared   to  2   in  

Nematostella   could   indicate   that   functional   simplification   is   paralleled   by   gene   loss.   This  

then   raises   the   question   of   how   epithelial   associations   are   maintained   when   the   major  

adhesive  component  of  adherens   junctions  has  been   lost.  When  considered  along  with   the  

incomplete   nature   of   the   Acropora   transcriptome,   there   is   a   reasonable   possibility   that  

further  catenin  binding  cadherins  may  be  found  in  the  upcoming  Acropora  millepora  genome  

(Miller  et  al,  unpublished).  

 

Planar   cell   polarity   has   also   been   implicated   in   gastrulation,   however   most   studies   have  

focused  on   roles   during   convergent   extension  processes   such   as   neuralation.   In  Acropora,  

expression  of  AmDsh,  AmVangl  and  AmDs  is  restricted  to  the  presumptive  ectoderm  (Figure  

5.5).  Unlike  AmDsh,  expression  of  AmVangl   and  AmDs   is  observed  as  a  gradient  across   the  

embryo.   The   relative   orientation   of   the   gradients   could   not   be   confirmed   although   the  

presence   of   graded   expression   is   consistent   with   classical   descriptions   of   these   genes   in  

polarised  epithelial  tissues  (Wu  &  Mlodzik,  2009).  These  patterns  of  expression  suggest  that  

planar  cell  polarity  has  a  role  in  morphogenesis  of  the  coral  ectoderm  during  gastrulation.    

 

Like  most   forms  of   gastrulation,   that   of  Acropora   requires  progressive   changes   in   cellular  

arrangement.  The  best  described  methods  of  achieving   the  necessary  re-­‐arrangements  are  

directed  cell  movements  (eg.  convergent  extension,  integrin  mediated  migration,  ingression,  

and  involution)  and  polarised  cell  division.  Directed  cell  movements  are  expected  to  play  a  

minimal  role  in  Acropora  gastrulation  with  no  clear  morphological  evidence  for  the  common  

forms.     Despite   this,   the   process   by   which   convergent   extension   is   regulated   is   worth  

considering.   Experiments   in   Xenopus   have   demonstrated   that   convergent   extension  

requires   active   planar   cell   polarity   controlled   by  Dsh   and   that   non-­‐canonical  Wnt   is   only  

permissive   in   this   process   and   not   required   (Wallingford   et   al.,   2000).   Of   more   direct  

importance   is   the   demonstration   that   planar   cell   polarity,   through   Dishevelled,   is  

responsible  for  directing  polarised  cell  division  along  the  AV  axis  in  Zebrafish.  Similarly  the  

expression  of  AmDsh   in   the  presumptive  ectoderm  of  coral  (Figure  5.5)  could  play  roles   in  

permitting  cell  movement  and  directing  cell  polarity.  This  would  also  be  consistent  with  a  

lack   of   catenin   binding   Cadherin   in   this   tissue.   Asymmetric   distribution   of   AmVangl   and  

AmDs   may   therefore   act   in   establishing   cell   polarity   and   the   direction   of   cell   division,  

allowing   extension   of   the   ectodermal   cell   sheet   to   occur   in   an   ordered   manner   where   a  

single  plane  of  ectodermal  cells  is  maintained.    

 

Page 103: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

84  

Contradictory  to  this  suggestion  is  the  absence  of  detectable  AmFmi  and  Fz  expression  in  the  

ectoderm  prior   to   gastrulation.  Frizzled   and  Fmi   are   the  major   cell   surface   components  of  

the  core  (Fz-­‐Fmi)  planar  cell  polarity  pathway  and  are  expected  to  be  present   in  polarised  

epithelium.   Whilst   it   is   likely   that   multiple   Frizzled   proteins   remain   undiscovered   in  

Acropora,   some  of  which  may  be  expressed   in   the  presumptive  ectoderm,   the  same   is   less  

likely   to   be   true   for  Flamingo.   Genome   surveys   from  a   range   of   representative  metazoans  

indicate   diversification   of   CELSR   occurred   only   in   the   vertebrate   lineage,   so   alternatively  

expressed   coral   cognates   are   not   expected.   The   roles   and   organisation   of   non-­‐bilaterian  

planar  cell  polarity  systems  are  yet  to  be  defined,  however  the  asymmetrical  distribution  of  

AmDs  and  AmVangl  and  their  potential   involvement   in  directing  cell  division  are  a  starting  

point   for   future   investigations  which  would   fill   a   gap   in   both   our   knowledge   of   cnidarian  

gastrulation  and  the  evolution  of  a  major  metazoan  patterning  system.  

5.4.3 Am_ACadherin and planar cell polarity are implicated in

development of the Acropora larval oral pore. The  possibility  of  developmental  roles  for  Am_ACadherin  and  components  of  the  planar  cell  

polarity   pathway   were   investigated   by   in   situ   hybridisation   of   Acropora   millepora  

developmental   stages.   Spatial   patterns   of   expression   in   and   around   the   oral   pore   (larval  

mouth  structure)  for  a  number  of  the  genes  investigated  were  consistent  with  roles  in  oral  

pore  development,  a  process  which  is  poorly  described  in  Acropora.  Morphological  analyses  

have   demonstrated   that   following   Acropora   gastrulation   the   blastopore   closes   completely  

(sphere  stage)  prior  to  establishment  of  the  oral  pore  (pear  stage).  This  is  in  contrast  to  the  

development  of  other  cnidarians,  such  as  Nematostella,  where  the  blastopore  does  not  close  

instead  becoming   the  oral  pore.  Morphological  data   from  Acropora  also   show   that   cells  of  

the   oral   pore   are   ciliated   and   more   closely   resemble   the   epithelial   organisation   of  

ectodermal  tissue  (Ball  et  al.,  2002),  suggesting  they  are  of  ectodermal  origin.  The  possibility  

that   oral   pore   formation   occurs   through   involution   of   ectodermal   tissue   is   therefore   not  

unreasonable.    

 Expression  of  Am_ACadherin  was  first  detectable  in  a  restricted  region  of  ectoderm  in  sphere  

stages   and   later   expressed   specifically   in   the   oral   pore,   during   pear   and   planula   stages  

(Figure   5.6).   Expression   both   prior   to   and   following   establishment   of   the   larval   mouth,  

suggests   a   role   in   oral   pore   development.   The   restricted   pattern   of   larval   expression   also  

coincides  with   that   described   for  Amβ-­catenin,   supporting   the   proposition   of   an   ancestral  

Cadherin-­‐catenin  signalling  axis.  The  association  of  Amβ-­catenin  with  Am_ACadherin  in  these  

cells   is   further   supported   by   expression   of   AmWIF   and   AmGroucho   in   the   same   cell  

population.   In  bilaterian  models,  WIF  has  been  demonstrated  to  compete  with  Wnts  for  Fz  

binding,   thereby   antagonising   the   canonical  Wnt   system   and   subsequent   stabilisation   and  

Page 104: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

85  

nuclear  translocation  of  β-­catenin.  Groucho,  on  the  other  hand,  represses  the  transcriptional  

targets  of  Wnt  signalling  by  binding  TCF/LEF  transcription  factors  in  the  absence  of  nuclear  

β-­catenin.   Expression   of   WIF   and   Groucho   together   suggests   that   β-­catenin   is   not  

transcriptionally  active  in  the  oral  pore  and  is  more  likely  to  be  associated  with  Cadherin  at  

the  plasma  membrane.  Evidence  for  a  Type-­‐III  Cadherin-­‐β-­catenin  interaction  in  cells  of  the  

oral   pore,   which   are   potentially   undergoing   involution,   is   consistent   with   an  

invasive/migratory  type  function  for  Am_ACadherin.    

 

Genes  up  stream  of  the  planar  cell  polarity  pathway  were  also  found  to  be  expressed  in  the  

oral  region  of  Acropora  larvae.  AmWnt16  is  expressed  in  a  restricted  pattern  in  a  ring  of  cells  

at   the   edge   of   the   oral   pore.   Bilaterian   orthologues   of  Wnt16   have   been   demonstrated   to  

activate   the   planar   cell   polarity   pathway   whilst   inhibiting   canonical   Wnt   signalling   in  

bilaterians.   These   effects   constitute   non-­‐canonical   Wnt   signalling.   The   functional  

significance   of   AmWnt16   in   coral   development   has   not   yet   been   clearly   demonstrated,  

however   gene   expression   is   abolished   by   the   presence   of   nuclear   beta-­‐catenin   following  

alsterpaullone  treatment  (Ukolova  et  al.,  unpublished),  which   is  consistent  with  previously  

described   reciprocal   antagonism   between   the   canonical   and   non-­‐canonical   Wnt   systems  

(Bryja   et   al.,   2009;   Topol   et   al.,   2003).   AmAxin   is   also   expressed   in   the   ectodermal   cells  

surrounding   the   mouth   of   coral   larvae.   In   bilaterians,   Axin   is   a   constituent   of   the   GSK3β  

complex  responsible  for  the  degradation  of  cytoplasmic  β-­catenin  and  is  capable  of  binding  

β-­catenin   directly.   Expression   coinciding   with   Wnt16   is   consistent   with   the   expected  

negative   regulation   of   the   canonical   Wnt   system.   The   role   of   Axin   as   part   of   the   GSK3β  

complex  outside  the  Bilateria  is  however  currently  under  scrutiny  due  to  the  absence  of  the  

beta-­‐catenin   binding   motif   in   Amphimedon,   Nematostella   and   Acropora   Axin   orthologues  

(Srivastava  et  al.,  2010;  Ukolova  et  al  unplublished).    

 

The  presence  of  a  functional  planar  cell  polarity  system  at  the  outer  lip  of  the  oral  pore  may  

have  roles  in  orientating  cilia  appropriately  for  directing  food  to  the  gastric  cavity  or  simply  

in   defining   the   structure   of   the   oral   pore   from   surrounding   ectodermal   tissue.   The  

expression  patterns  of  planar  cell  polarity  effectors,  however,  contradict   the  existence  of  a  

non-­‐canonical  Wnt  mediated  planar  cell  polarity  in  this  area.    In  situ  hybridisation  of  AmFmi,  

AmDsh,  AmVangl,  and  AmDs  failed  to  identify  expression  of  components  from  either  the  Fmi-­‐

Fz  or  FAT-­Ds  PCP  systems  at  the  outer  lip  of  the  oral  pore.  The  only  possible  PCP  component  

expressed   in   the   oral   pore   was   AmFz4.   Although   AmFz4   expression   may   overlap   that   of  

AmWnt16,   co-­‐expression   is   not   necessarily   suggestive   of   a   role   in   PCP   signalling.   Frizzled  

proteins  are  recognized  to  hold  diverse   functions  so  no  conclusion  as   to   the   implication  of  

AmFz4  in  the  oral  pore  can  be  drawn  without  the  support  of  functional  data.    

Page 105: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Five       Developmental  roles  for  cadherins  from  Acropora  millepora  

86  

Despite   the   apparent   lack   of   PCP   component   expression,   the   suggested   role   of   Wnt16  

expression  in  oral  pore  development  cannot  be  ignored.  Protein  localisation  studies  are  the  

only   conclusive   indicator   of   planar   cell   polarity   and  provide   added   sensitivity   over   in   situ  

hybridisation.  These  experiments  may  uncover  asymmetric  distribution  of  protein  within  a  

limited  cell  population  thereby  re-­‐enforcing  non-­‐canonical  Wnt  signalling  as  a  factor  in  oral  

pore  development.  Likewise,  protein   localisation  and  further  analysis  of   the  morphological  

movements   during   oral   pore   formation   could   clarify   the   role   of   Am_ACadherin.   Further  

investigation   involving   both   protein   localisation   and   in   vivo   functional   studies   are   also  

required   to   clarify   the   roles   of   Cadherin-­‐catenin   signalling   and   planar   cell   polarity   in  

cnidarian   gastrulation.   Of   particular   interest   is   the   influence   of   these   cadherins   on   the  

nuclear   translocation   of  β-­catenin.   It   has   already   been   demonstrated   in  Nematostella   that  

over   expression   of   the   CCD   can   inhibit   gastrulation,   however   no   direct   studies   into   the  

function  of  ‘classic’  cadherins  have  been  undertaken  outside  the  Bilateria.    

5.5 Conclusion Investigation   into   the  Cadherin  complement  of   cnidarians  has  revealed  an  ancestral  origin  

for   two   adhesion   systems   that   are   important   in   bilaterian   development.   Here   I   have  

described  that  the  conserved  Cadherin-­‐catenin  axis,  active  during  bilaterian  development,  is  

conserved  in  cnidarians  and  likely  to  have  originated  in  the  eumetazoan  ancestor.  Whilst  the  

function  of  this  system  in  cnidarians  is  yet  to  be  tested,  early  investigations  into  expression  

in  Acropora   suggest   roles   in   involution   rather   than   the   tissue   stabilising   functions   seen   in  

bilaterians.   The   possibility   that   the   function   of   the   Cadherin-­‐catenin   axis   is   simplified   in  

Acropora  is  also  evidenced.  Components  of  the  planar  cell  polarity  pathway,  from  signalling  

to   membrane   bound   effectors,   are   also   conserved   in   cnidarians.   Expression   in   both  

gastrulation   and   oral   pore   development   in   Acropora   implies   planar   cell   polarity   is   not  

limited   to   previously   described   functions   in   bilaterian   development   and   is   of   broader  

morphogenic  significance  than  currently  recognised.  

 

Page 106: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

87  

Chapter 6: Integrins of Acropora millepora

6.1 Introduction Cohesion   of   cells   to   the   extracellular   matrix   (ECM)   is   critical   to   the   evolution   of   animal  

multicellularity  and  morphogenesis  of   complex  metazoan  body  structures   (Abedin  &  King,  

2010).   The   integrin   family   of   transmembrane   cell   surface   receptors   are   the   primary  

mediators  of  cell-­‐ECM  interactions  in  bilaterians  (De  Arcangelis  &  Geogres-­‐Labouesse,  2000)  

and   have   been   implicated   in   a   broad   array   of   biological   processes   including   gastrulation,  

neuron   outgrowth   and   leukocyte   trafficking.   Integrin   genes   are   present   in   all   metazoans  

investigated  to  date,  although  the  number  of  α  and  β-­‐subunits  varies  greatly  between  taxa  

(Sebé-­‐pedrós   et   al.,   2010).   The   diversity   of   integrin   αβ   heterodimers   and   the   ability   to  

rapidly   switch   between   high   and   low   affinity   states   in   response   to   intracellular   stimuli  

(inside-­‐out)  or  extracellular  ligand  binding  (outside-­‐in)  (Ginsberg  et  al.,  2005;  Hynes,  2002;  

Takagi   et   al.,   2002)   is   central   to   the   versatility   of   integrin   function.   This   integration   of  

dynamic   cell   adhesion   with   bi-­‐directional   signalling   allows   cellular   behaviours   such   as  

migration,   growth,   differentiation   and   deposition   of   basement   membrane   components  

(Brown,  2000)  to  be  guided  by  positional  cues  (Ramos  et  al.,  1996;  Streuli,  2009),  providing  

a  basis  for  many  of  the  key  events  in  animal  development.  

 

The   role   of   integrins   in   facilitating   morphogenesis   and   tissue   development   is   conserved  

throughout   the   Bilateria   (Brower,   2003;   Knack   et   al.,   2008;   Reber-­‐Müller,   et   al.,   2001;  

Whittaker   &   Desimone,   1993)   and   functional   investigations   have   demonstrated   that   the  

integrin   signalling   system   is   highly   specific   in   terms   of   protein   expression,   ligand   binding  

and   heterodimer   combination   (Humphries   et   al.,   2006;   Hynes,   2002).   Whereas   protein  

expression  is  governed  by  transcriptional  regulation,  integrin  heterodimer  combination  and  

ligand   binding   are   inextricably   linked.   The   α   and   β   integrin   subunits   make   an   unequal  

contribution   to   ligand   interactions,  with   the  α-­‐subunit   holding   the   greatest   influence  over  

ligand   specificity   and   the   β-­‐subunit   being   primarily   responsible   for   signal   transduction  

through  cytoplasmic   interactions  and  formation  of  cytoskeletal  connections  (Berman  et  al.,  

2003;  Legate,  et  al.,  2006;  Martin-­‐Bermudo  et  al.,  1997;  Nishiuchi  et  al.,  2003).    As  a  single  β-­‐

subunit   may   associate   with   many   α-­‐subunits   (Kinashi,   2005),   different   αβ   integrin  

combinations   are   capable   of   eliciting   similar   cellular   behaviours   on   a   range   of   substrates  

through  specific   ligand  binding.  This   is  particularly   significant   to  developmental  processes  

as  diversity  in  the  ligand  specificity  can  facilitate  behaviours  such  as  cohesion,  polarisation  

Page 107: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

88  

and   migration   on   basement   membranes   with   various   physical   properties,   thereby  

contributing  to  the  co-­‐ordination  of  many  distinct  tissues  during  development.    

 

The   most   diverse   integrin   complement   belongs   to   mammals,   containing   18α   and   8β  

subunits  and  although  only  24  combinations  are  expressed  as  functional  integrin  receptors  

(Hynes,  2002),  the  complexity  of  this  complement  is  far  greater  than  other  bilaterians  such  

as  sea  urchin  (3α  &  4β),   fly  (5α  &  2β),  and  worm  (2α  &  1β)  (Brower,  2003;  Putnam  et  al.,  

2007;   Schmitt  &  Brower,   2001).   Although   there   are   differences   in   the   number   of   integrin  

subunits   between   bilaterians,   ligand   specificities   from   different   model   systems   are   often  

similar,   allowing   all   described   integrin   receptors   to   be   broadly   categorised   as   a   Laminin,  

RGD   tripeptide,   Collagen   or   Leukocyte-­‐specific   type   according   to   their   ligand   binding  

properties   (Huhtala   et   al.,   2005;   Hynes,   2002).   Mammals,   flies,   worms   and   sea   urchin   all  

contain   at   least   1   integrin   receptor   that   binds   Laminin   and   1   that   binds   RGD   tripeptide  

containing   proteins   (eg.   Fibronectin,   Tiggrin),   suggesting   the   last   common   ancestor   of  

bilaterians   exhibited   similar   ligand   specificities.   Collagen   binding   and   leukocyte-­‐specific  

integrin  receptors  are  found  only  in  chordates  and  appear  to  be  independent  diversifications  

linked  to  the  evolution  of  circulating  adaptive  immune  cells  and  complex  collagen  structures.    

 

In   contrast   to   the  wealth  of   information  regarding   integrin   function   in  higher  animals,   the  

expression,  heterodimer  formation  and  ligand  binding  properties  of  lower  animal  integrins  

have   received   little   attention.   Recent   genomic   surveys   of   basal   metazoan   phyla   have  

discovered   that   the   cnidarian   and   sponge   integrin   complement   is   similar   to   that   of   other  

invertebrates,  possessing  up  to  2α  &  4β,  and  5α  &  7β  respectively  (Sebé-­‐pedrós  et  al.,  2010);  

Chapter   4).   Despite   similarity   in   gene   numbers   between   lower   animals   and   bilaterian  

invertebrates,  phylogenetic  analyses   including  sequences   from  Nematostella  have   failed   to  

determine  a  clear  relationship  between  the  integrins  of  cnidarians  and  bilaterians  (Knack  et  

al.,   2008;  Magie   &  Martindale,   2008)   offering   little   insight   as   to   the   function   of   cnidarian  

integrins.    

 

Although   there   are   differences   in   integrin   receptors   between   phyla,   a   number   of  

publications  suggest   integrin  cytoplasmic  signalling   is  remarkably  similar   to   that  of  higher  

animals,   in   even   the   simplest   metazoans.   Investigations   into   integrin   systems   of  

representative   cnidarians,   sponges   and   lower   metazoans   (eg.   Trichoplax   adhaerens)   have  

identified   the   presence   of   complete   integrin   subunits   and   all   of   the   major   cytoplasmic  

components   required   for   canonical   integrin   signalling   in   every   animal   model   considered.  

Investigations   extending   beyond   the   animal   kingdom   also   identified   a   complete   signalling  

complement  in  Capsaspora  owczarzaki,  a  filose  amoeboid  nucleariid  serving  as  an  out  group  

Page 108: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

89  

to   the  Metazoa  (Nichols  et  al.,  2006;  Sebé-­‐pedrós  et  al.,  2010).  Despite   the   integrin  system  

traditionally   being   considered   an   animal   novelty   (Rokas,   2008),   the  presence   of   canonical  

integrin   signalling   in   such   a   distant  Metazoan   relative   suggests   that   the   cellular   signalling  

events   following   integrin   ligand   binding   are   highly   constrained   and   have   been   conserved  

since  before  the  first  metazoans  evolved.  

 

In   addition   to   maintenance   of   integrin   signalling   from   a   basal   Opsithokont   ancestor,   the  

distribution  of   integrin  gene  expression   is  also  conserved   throughout   the  animal  kingdom.  

The   jelly-­‐fish  Podocoryne   carnea   (Reber-­‐Müller   et   al.,   2001),   the   coral  Acropora  millepora  

(Knack   et   al.,   2008),   and   all   bilaterian  models   investigated   to   date   each   express  α   and   β  

integrins   in   the   presumptive   mesendoderm   prior   to   gastrulation   (Bökel   &   Brown,   2002;  

Davidson,  Hoffstrom,  Keller,  &  DeSimone,  2002;  Marsden  &  Burke,  1998;  Ramos,  Whittaker,  

&  Desimone,  1996).  Despite  diverse  modes  of  gastrulation  (See  Chapter  7.1),  expression  of  

integrins   in  mesendodermal  cells  crosses  the  diploblast  –  triploblast  divide,  demonstrating  

an   unusually   high   degree   of   conservation   in   the   pattern   of   expression   consistent   with  

integrins  playing  an  indispensible  role  during  animal  development.    

 

Whereas  evidence  is  available  for  the  conservation  of  cytoplasmic  signalling  and  expression  

of   integrins   in   at   least   one   aspect   of   metazoan   development,   gastrulation,   there   is   no  

evidence  to  suggest  ligand  specificity  is  equally  conserved  between    cnidarian  and  bilaterian  

integrins.   Investigation  of  cnidarian   integrin   ligand  specificity  aimed  to  address  the   lack  of  

functional   data   from   non-­‐bilaterian   models   and   clarify   the   roles   of   integrins   in   the  

ureumetazoan  ancestor.  As  phylogenetics  is  demonstrated  to  be  of   limited  predictive  value  

(Knack   et   al.,   2008),   the   ligand   binding   specificities   of   cnidarian   integrins   must   be  

determined  empirically  using  an  ancestrally  informative  model.  Anthozoan  cnidarians  such  

as  the  coral  Acropora  millepora  offer  a  unique  perspective  on  the  ancestral  role  of  integrins  

during   development,   having   retained   much   of   the   genetic   complexity   from   the   common  

eumetazoan  ancestor  (Technau  et  al.,  2005).  They  are  also  the  most  basal  phylum  to  possess  

true  tissues  and  are  therefore  likely  to  be  highly  informative  regarding  the  genetic  origins  of  

tissue  morphogenesis,  a  process  which  is  strongly  influenced  by  integrin  mediated  adhesion.    

 

Page 109: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

90  

Investigation  of   integrin-­‐extracellular  matrix   interaction   in  higher  animals,   such  as   flies,   is  

routinely  performed  by  assessing  structural  changes  of  cultured  cells  in  response  to  contact  

with   potential   ECM   ligands   (Jannuzi   et   al.,   2002;  Nieves   et   al.,   2010).   The  maintenance   of  

coral  cells   in  culture  has  not  yet  been  established  and  developing  such  a  system  is  beyond  

the  scope  of  the  present  investigation.  To  overcome  this  obstacle,  it  was  necessary  to  turn  to  

an  established  experimental   system  already  proven   to  be  useful   in  assessing   the  structure  

and  function  of  integrins.  Cultured  Drosophila  S2  cells  have  often  been  employed  to  conduct  

such  investigations  and  hold  several  advantages  over  other  model  systems  including  access  

to  a  wide  variety  of  genetic  markers,  allowing  exploration  of  cellular  affects,  availability  of  

inducible   expression   vectors   and   convenient   &   efficient   knockdown   of   endogenous  

integrins.   Investigation   of   coral   integrin   ligand   specificity   was   therefore   conducted   using  

transgenic  expression  of  coral  αβ  subunit  combinations  in  Drosophila  S2  cells    and  exposing  

transfected  cells  to  a  variety  of  known  Drosophila  integrin  ligands.  These  studies  provide  a  

basis   for   direct   comparison   between   higher   animal   ligand   specificity   and   that   of  

developmentally  significant  coral  integrins.  The  phylogenetic  distribution  of  integrin  α  and  β  

subunits   from  a  wider   range   of   cnidarians  was   also   considered   in   order   to   determine   the  

broader  relevance  of  coral  ligand  specificity  in  an  evolutionary  context.  

 

Page 110: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

91  

6.2 Methods 6.2.1 Phylogenetic analyses integrins   from   Acropora   millepora   and   Nematostella   vectensis   were   identified   using   the  

method   described   in   Chapter   3.   Maximum   likelihood   analysis   of   β-­‐Integrin   subunits   was  

performed   using   MolPhy   with   1000   bootstrap   replicates   (Knack   et   al.,   2008).   Maximum  

likelihood   analysis   of   α-­‐Integrin   subunits   was   performed   using   PhyML   (1000   bootstrap  

replicates)   and   includes   cnidarian   sequences   (AmItgα2,  AmItgα3,   NvItgα2)   not   present   in  

published   phylogenetic   analyses.     integrin   phylogenies   are   based   on   extensively   edited  

alignments  presented  in  Supplementary  Figure  6.1  (α-­‐Integrin  alignment)  &  6.2  (β-­‐Integrin  

alignment).    

 

6.2.2 Preliminary ligand binding assay Clones   of  AmItgα1,   ItgβCN1   and  AmItgβ2   were   isolated   from   the  Acropora   millepora   EST  

project   and   RNA   isolates   as   described   in   Chapter   2.2   &   2.3.   Cloning   of   the   9   expression  

constructs   used   throughout   the   following   experiments   was   performed   using   a   series   of  

overlap   PCRs   as   detailed   in   Chapter   2.5.   Procedural   aspects   of   the   following   experiments,  

including  the  maintenance  of  Drosophila  S2  cell  cultures,  are  presented   in  Chapter  2.6-­‐2.9.  

Preliminary   assessment   of   the   ligand  binding  properties   of   coral   integrins  was  performed  

using   cell   spreading   on   Rbb-­‐Tiggrin,   Vitronectin,   Fibronectin,   Tennectin,   Twow,   PacI,  

Trimeric  Laminin  (Drosophila),  and  sucrose  fractionated  Laminin.  Wells  pre-­‐incubated  with  

PBS  were  used  as  negative   controls   for   each   cell   types.  Cells   expressing   ItgαPS1   ItgβPS   or  

ItgαPS2   ItgβPS  were   used   as   positive   controls   for   interaction  with   Laminin   and  RGD   type  

ligands   respectively.  Combinations  of   coral   integrins   (excluding   tagged  β   constructs)  were  

co-­‐transfected   (Cellfectin   –   Invitrogen)   with   a   constitutively   expressing   eGFP   construct,  

pH8CO  vector  (Rebay  et  al.,  1991)  and  500ng  Mysopheroid  (ItgβPS)  RNAi.  Cell  spreading  on  

Laminin  type  substrates  was  performed  using  5x  1:5  serial  dilutions  of  stock   laminin.    Cell  

spreading  was  assessed  by  phase  contrast  microscopy  under  an   inverted   light  microscope  

(Zeiss).      

 

Page 111: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

92  

6.2.3 Optimisation of cell spreading conditions Serum  free-­‐  M3  medium  (no  added  cations),  BES-­‐Tyrodes  (1mM  Mg2+,  10µM  Ca2+,  1%  BSA),  

Robb’s   Saline   (1mM  Mg2+,   10µM  Ca2+,   1%  BSA)   and  PBS   (1mM  Mg2+,   10µM  Ca2+,   1%  BSA)  

were  compared  for  their  ability  to  support  specific  integrin  mediated  cell  spreading  on  Rbb-­‐

Tiggrin.   Cells   expressing   AmItgα1   AmItgβ2   or   ItgαPS2   ItgβPS   (positive   control)   were  

included  in  the  cell  spreading  assay,  conducted  in  replicate  as  described  in  Chapter  2.8.    

 

The   impact   of   Mg2+   and   Ca2+   concentration   on   the   percentage   of   cells   exhibiting   integrin  

mediated   cell   spreading   and   the   morphology   of   spreading   cells   was   assessed   using   the  

following   concentrations   of   cations   in   Robb’s   saline   with   1%   BSA   (Table   6.1).   Cells  

expressing  AmItgα1  AmItgβ2  or   ItgαPS2   ItgβPS   (positive  control)  were   included   in   the  cell  

spreading  assay,  which  was  conducted  in  replicate  as  described  in  Chapter  2.8.    

 

Combination   Mg2+  (MgCl2)  

Concentration  

(mM)  

Ca2+  (CaCl2)  

Concentration  

(mM)  

1   50   10  

2   5   0.2  

3   0.1   0.2  

4   0.01   0.2  

5   0  (EDTA)   0  (EDTA)  

6   1   0.002  

7   1   0.02  

8   1   0.2  

Table   6.1   Concentrations   of   Mg2+   (MgCl2)   and   Ca2+   (CaCl2)   added   to   Robb’s   Saline   for   optimisation   of   cell  spreading   conditions.   Integrin   activation   and   ligand   interaction   is   dependant   on   the   availability   of   divalent  cations  in  the  surrounding  medium.  The  divalent  cation  concentration  in  the  extracellular  fluid  surrounding  coral  integrins   (sea   water)   is   expected   to   differ   from   that   for   Drosophila   integrins   (hemolymph),   therefore   the  concentration  of  divalent  cations  required  for  optimum  integrin  activation  may  also  differ.  Comparison  of  S2  cell  supporting  media   identified   Robb’s   Saline   to   give   the   highest   degree   of   integrin  mediated   cell   spreading.   The  divalent   cation   concentration   included   in   preparation   of   Robb’s   Saline   was   altered   according   to   the   8  combinations  shown  in  the  table  before  use  as  a  supporting  medium  for  cell  spreading  assays.  

Page 112: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

93  

6.2.4 Analysis of integrin surface expression integrin   expressing   cells   were   prepared   for   flow   cytometry   as   described   in   Chapter   2.9.  

Secondary   detection   at   546nm  was   used   for   cells   transiently   transfected  with   integrin   (α  

and  β)  and  eGFP  expression  constructs.  Cells  exhibiting  detectable   levels   in   the  GFP  range  

were  considered  successfully  transfected,  whilst  cells  exhibiting  detectable  emission  in  both  

the  GFP  and  546nm  ranges  were  considered  integrin+.  Integrins  tagged  with  the  HA  epitope  

were   detected   by   direct   immuno-­‐fluorescence   at   488nm,   therefore   cells   were   not  

transfected  with  the  eGFP  expression  vector.    

 

 

 

Page 113: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

94  

6.3 Results 6.3.1 Integrin identification and phylogenetic analysis Investigation   of   integrin   diversity   in   four   representative   cnidarians   conducted   using  

JCUSMART  (See  Chapter  3)  identified  similar  numbers  of  α  and  β  subunits  in  Hydra,  Clytia,  

Nematostella   and   Acropora.   Whilst   the   complete   complement   of   Nematostella   has  

previously  been  reported  (Putnam  et  al.,  2007;  Srivastava  et  al.,  2010),  the  present  analysis  

identified  2  novel  α-­‐subunits  from  Acropora  millepora  and  previously  undescribed  integrins  

from  Hydra   (1α   &   2β)   and   Clytia   (1α   &   1β).   Due   to   limitations   of   the   available   data,   the  

number  of   integrins   identified   in  Hydra  and  Clytia  are   likely  to  represent  only  a  portion  of  

the   total   complement,   however   the   Acropora   (3α   and   2β)   and   Nematostella   (2α   &   4β)  

integrin  complement  is  expected  to  encompass  all  distinct  genes  present  in  each  genome.    

 

Maxmium  Likelihood  analysis  performed  on  a  selection  of   integrin  sequences  was  broadly  

consistent   with   previous   investigations   (Ewan   et   al.,   2005;   Hughes,   2001;   Huhtala   et   al.,  

2005;   Knack   et   al.,   2008).   Sequences   from   Clytia   and   Hydra,   which   are   potentially  

informative,  were  excluded  from  the  analysis  as  gene  models  were  not  of  sufficient  length  to  

allow  accurate  phylogenetics.  Integrin  phylogenetics  is  complicated  by  homoplasy  and  poor  

conservation   of   primary   sequence,  making   unambiguous   alignment   difficult,   therefore   the  

trees  presented  here  are  based  upon  extensively  edited  alignments  (Supplementary  Figure  

6.1).    

 

Analysis  of  integrin  α-­‐subunits  shows  grouping  of  sequences  with  RGD  and  Laminin  binding  

properties   into   2   distinct   clades,   with   the   Cnidarian   sequences   forming   a   separate   clade.  

Deuterostome  and  protostome  sequences  were  present  in  both  the  RGD  and  Laminin  clades  

suggesting   the   capacity   to   bind   both   ligand   types  was   already   established   in   the   common  

bilaterian  ancestor.  The  position  of  the  cnidarian  α  sequences  in  an  indpendent  clade  is  not  

informative   as   to   the   ligand   binding   specificities   of   basal   metazoans.   This   analysis   also  

revealed  that  NvItgα2  and  AmItgα3  are  closely  related,   forming  the  Cnidarian  Minor  Clade  

however,  association  with  the  other  cnidarian  sequences  (Cnidarian  Major  Clade)  is  poorly  

supported.    

 

Phylogenetics   of   β-­‐Integrins   is   also   consistent   with   published   data,   showing   clustering   of  

chordate   β1,   β4   and   β3   families   and   independent   grouping   of   non-­‐chordate   sequences  

(urchin,   Fly,   Cnidarian,   Sponge)   according   to   taxonomy.   This   pattern   demonstrates   the  

independent   expansion   of   β-­‐Integrins   in   several   lineages,   including   the   Cnidaria   where  

Nematostella  encodes  2  sequences  orthologous  to  each  of  the  Acropora  β-­‐Integrins.    

Page 114: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

95  

Figure  6.1  Maximum  likelihood  phylogenetic  analysis  of  representative  α-­‐Integrins.  Numbers  at  branch  points  indicate   the   percentage   of   1000   bootstrap   replicates   supporting   the   topology   resolved   using   PhyML.   Integrin  sequences  α7,  α6,  α3,  α5,  αV,  α8  and  αIIb   taken   from  human.  Bilaterian  sequences  are  resolved   into  Laminin,  RGD  and  Alpha  4/9  clades  consistent  with  previous  analyses.  The  ambiguous  position  of  ItgαPS3  is  likely  due  to  the  highly  derived  nature  of  this  protein  when  compared  with  other  Drosophila  integrins.  The  position  of  GcItgα  away   from   the   distinct   clades   is   suggested   to   result   from   early   divergence.   This   position   would   be   further  resolved  by  inclusion  of  other  sponge  sequences.  In  contrast  to  the  bilaterian  sequences,  which  group  in  a  ligand  specific   manner,   the   cnidarian   sequences   form   an   independent   clade.   This   grouping   suggests   functional  divergence  had  already  occurred  in  the  Urbilateria.  Two  novel  cnidarian  sequences  (NvItga2  and  AmItga3)  are  only  weakly  associated  with  the  other  cnidarian  sequences,  reflective  of  their  sequence  divergence.  The  presence  of  two  distinct  cnidarian  clades  suggests  that  cnidarian  integrins  may  interact  with  multiple  ligands.    

 

Page 115: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

96  

Figure   6.2   (Excerpt   from   Knack   et   al.,   2008)  Maximum   likelihood   phylogenetic   analysis   of   representative   β-­‐Integrins.   Numbers   at   branch   points   indicate   the   percentage   of   1000   bootstrap   replicates   supporting   the  topology   resolved   using   MolPhy.   In   contrast   to   the   α-­‐integrin   phylogeny,   the   grouping   of   the   β-­‐subunits   in  lineage  specific  clades  suggests  beta  integrins  have  evolved  through  a  number  of  lineage  specific  expansions,  as  is  consistent  with  previous  publications.  Cnidarian  sequences  clade  together  with  strong  bootstrap  support.  Within  the   Cnidarian   clade,   Acropora   and  Nematostella   sequences   show   2   sub-­‐clades   consisting   of   ItgβCn1,   NvItgβ3,  NvItgβ4,  and  AmItgβ2,  NvItgβ1,NvItgβ2,  PcItgb.  The  position  of  Acropora  and  Nematostella  sequences  into  two  sub-­‐clades  suggests  the  sea  anemone  possess  2  β-­‐Integrins  for  each  coral  β-­‐Integrin,  which  may  be  the  result  of  a  recent  duplication  in  Nematostella.    

 

 

Page 116: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

97  

 

6.3.2 Ligand Binding of coral integrins

Preliminary  ligand  binding  Assay  The   preliminary   cell   spreading   assay   to   assess   the   ligand   binding   properties   of   coral  

integrins  was  performed  under  non-­‐optimised  conditions  using  the  following  ligands:    

• Rbb-­‐Tiggrin  

• Vitronectin  

• Fibronectin  

• Tennectin  

• Twow  

• PacI  

• Drosophila  Trimeric  Laminin  

• Sucrose  fractionated  Drosophila  Laminin    

 

Assessment   of   transfection   efficiency   by   visualisation   of   eGFP   expression   prior   to   cell  

spreading   showed   that   ~30%   of   the   total   cell   population   expressed   GFP   2   days   after  

transformation.  Accordingly,  ~30%  of  control  cells  for  RGD  tripeptide  ligands  (transformed  

with   αPS2   +   βPS)   spread   on   Rbb-­‐Tiggrin,   Vitronectin,   Fibronectin,   Tennectin,   Twow,   and  

PacI.   Positive   control   cells   for   Laminin   interaction   (transfected  with  αPS1   +  βPS),   spread  

weakly  on  the  trimeric  Laminin  and  sucrose  fractionated  Laminins,  indicating  the  quality  of  

the  available  Drosophila  Laminin  substrates  was  less  than  ideal.  Cells  transfected  with  coral  

integrins   showed   both   a   low   percentage   of   spread   cells   (~   2-­‐5%   above   empty   vector  

transfected   controls)   and   a   small   degree   of   spreading   on   all   substrates,   suggesting  

interactions  with  the  tested  substrates  may  only  be  weak.  The  highest  degree  of  spreading  

was  observed   in  AmItgα1β2  and  AmItgα1β1   transformed  cells  on  Rbb-­‐Tiggrin,  a  53  amino  

acid  recombinant  portion  of   the  RGD  containing  Drosophila  Tiggrin  protein  (Jannuzi  et  al.,  

2002),   consisting  of  25  bases  up  and  down  stream  of   the  RGD  sequence.  Rbb-­‐Tiggrin   also  

facilitates   a   particularly   strong   interaction   with   the   primary   Drosophila   RGD-­‐binding  

integrin   (αPS2βPS),   resulting   in   a   highly   spread   morphology.   Rbb-­‐Tiggrin   was   therefore  

used  to  assess  RGD-­‐ligand  binding  in  all  subsequent  experiments.    

 

Page 117: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

98  

0ptimisation  of  Cell  spreading  conditions  In  order  to  determine  the  optimal  buffer  for  cell  spreading  assays,  4  buffers,  Serum  free-­‐  M3  

medium   (no   added   cations),   BES-­‐Tyrodes   (1mM  Mg2+,   10µM  Ca2+,   1%  BSA),  Robb’s   Saline  

(1mM  Mg2+,  10µM  Ca2+,  1%  BSA)  and  PBS  (1mM  Mg2+,  10µM  Ca2+,  1%  BSA),  were  compared  

for   their   impact   on   cell   morphology   and   the   capacity   to   allow   coral   integrin   mediated  

spreading  on  Rbb-­‐Tiggrin.  More  than  95%  cells  stably  transfected  with  αPS2βPS  spread  to  a  

diameter  of  no  less  than  3x  that  of  the  nucleus  in  all  media.  By  comparison,  very  few  of  the  

coral   expressing   cells   demonstrated   notable   integrin   mediated   cell   spreading.   In   all  

transfections,   cells   appeared   to   have   a  more   regular  morphology   (consistent  with   healthy  

cells)   in   M3   media   than   saline   based   media,   with   PBS   causing   the   highest   degree   of   cell  

death.  Although  the  most  protective  media   for  S2  cells  was  M3,  cells   in  this  media  showed  

the  smallest  degree  of   spreading  on  Rbb-­‐Tiggrin.  The  highest  degree  of   cell   spreading  and  

the  most  acceptable   level  of  negative   impact  on  cell  health  was  observed  in  cells  spread  in  

Robb’s  saline,  therefore  subsequent  experiments  were  conducted  using  only  this  medium.  

 

Investigations   into   the   optimal   divalent   cation   concentration   for   integrin   activation   were  

also   assessed  morphologically.  High   concentrations   of   divalent   cations   (5mM  Mg2+   +   1mM  

Ca2+  and  above)  resulted  in  formation  of  numerous  cell  processes,  which  were  inconsistent  

with   integrin   mediated   adhesion.   Concentrations   of   less   than   1mM   Mg2+   or   0.2mM   Ca2+  

facilitated   cell   spreading   in   only   a   small   proportion   of   the   cell   population,   whereas   1mM  

Mg2+  and  0.2mM  Ca2+  allowed  optimal  activation  of  coral  integrins  with  a  maximum  of  7%  of  

cells  in  the  AmItgα1  +  AmItgβ2  transfected  sample  spreading  beyond  background  levels  on  

Rbb-­‐Tiggrin.  Spreading  in  all  other  coral  samples  was  observed  to  be  between  2%  and  5%  of  

the  population  under  the  same  conditions  compared  to  over  30%  in  αPS2βPS  control  cells  

(transient  transfection).  

 

Page 118: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

99  

Surface  expression  of  integrins  following  transient  transfection  Expression   of   integrins   on   the   cell   surface   assessed   by   flow   cytometry   of   duplicate   cell  

transfections  showed  that  for  each  of  the  8  transfections,  30-­‐35%  of  the  total  cell  population  

expressed  GFP  (Table  6.2),  indicating  transfection  was  successful  in  all  samples.  The  number  

of   transfected   (GFP+)   cells   staining   with   anti-­‐PS1   and   anti-­‐PS2   antibodies   was   higher   in  

ItgαPS1   (9.8%)   and   ItgαPS2   (10.0%)   expressing   cells   than   pHSMCS   transfected   negative  

controls   (1.5%   and   0.4%   respectively),   indicating   that   approximately   10%   of   the   total  

population  expresses  detectible   levels  of  Drosophila   integrins  2  days  after  stress   induction  

of   the   heat   shock   promoter   (ie.   during   transfection).   Immunostaining   of   coral   integrin  

transfected   cells   with   antibodies   against   AmItgα1,   AmItgβ1,   and   AmItgβ2   showed   no  

detectable  levels  of  surface  expression  (secondary  detection).  

 

Flow  cytometry  1  day  after  transfection  and  in  the  presence  of  Mn2+  performed  on  a  replica  

set  of  transfections  demonstrated  5-­‐10%  of  the  population  was  GFP+,  however  also  failed  to  

detect   coral   integrins  using   the   anti-­‐  AmItgα1,  AmItgβ1,   and  AmItgβ2   antibodies   (data  not  

shown).    

 

Expression  of  Acropora  β-­‐Integrins  containing  epitope  (HA  or  c-­‐MYC)  tagged  Drosophila  βPS  

serine  loops  inserted  into  the  extracellular  hybrid  domain  was  assessed  by  flow  cytometry  2  

days  after  transfection  (Table  6.3).  Cells  transfected  with  αPS2  +  βPS-­‐HA  showed  expression  

in   ~24%   of   the   total   population   above   empty   vector   (pHSMCS)   transfected   controls.  

Similarly,  cells  transfected  with  αPS2  +  βPS-­‐MYC  exceeded  expression  in  controls  by  ~16%.  

In   contrast   to   the   clear   expression  of  Drosophila   integrins,   the  percentage  of   the   total   cell  

population  expressing  AmItgα1AmItgβ1-­‐HA  was  only  1.8%  above  empty  vector  transfected  

controls  and  AmItgα1AmItgβ2-­‐MYC  was  detected  in  only  ~1%  of  the  total  population  above  

the   control   level.     Together,   this   suggests   that  whilst   coral   integrins   are   expressed   on   the  

surface  of  transfected  cells,  they  are  only  present  in  a  minimal  proportion  of  the  transfected  

cell  population  

Page 119: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

100  

 

Cell  Line   %  of  Total  GFP+  

Antibody   %  of  Total  GFP+/integrin+  

pHSMCS   34.5   α-­‐ItgαPS1  α-­‐Mouse  546   1.2  

ItgαPS1  ItgβPS   31.3   α-­‐ItgαPS1  α-­‐Mouse  546   9.8  

pHSMCS   35.2   α-­‐ItgαPS2  α-­‐Mouse  546   0.4  

ItgαPS2  ItgβPS   23.3   α-­‐ItgαPS2  α-­‐Mouse  546   10.0  

pHSMCS   35.4   α-­‐AmItgα1  α-­‐Rabbit  546   0.0  

AmItgα1  AmItgβ1   34.9   α-­‐AmItgα1  α-­‐Rabbit  546   0.1  

AmItgα1  AmItgβ2   30.8   α-­‐AmItgα1  α-­‐Rabbit  546   0.1  

AmItgα1-­‐PS2  AmItgβ1-­‐PS   34.6   α-­‐AmItgα1  α-­‐Rabbit  546   0.0  

AmItgα1-­‐PS2  AmItgβ2-­‐PS   31.7   α-­‐AmItgα1  α-­‐Rabbit  546   0.0  

AmItgα1-­‐PS2  AmItgβ2L>D-­‐PS   35.7   α-­‐AmItgα1  α-­‐Rabbit  546   0.1  

pHSMCS   34.4   α-­‐AmItgβ1  α-­‐Rabbit  546   0.1  

AmItgα1  AmItgβ1   34.6   α-­‐AmItgβ1  α-­‐Rabbit  546   0.0  

AmItgα1-­‐PS2  AmItgβ1-­‐PS   35.1   α-­‐AmItgβ1  α-­‐Rabbit  546   0.0  

pHSMCS   34.7   α-­‐AmItgβ2  α-­‐Rabbit  546   0.1  

AmItgα1  AmItgβ2   31.0   α-­‐AmItgβ2  α-­‐Rabbit  546   0.1  

AmItgα1-­‐PS2  AmItgβ2-­‐PS   31.9   α-­‐AmItgβ2  α-­‐Rabbit  546   0.1  

AmItgα1-­‐PS2  AmItgβ2L>D-­‐PS   36.9   α-­‐AmItgβ2  α-­‐Rabbit  546   0.1  

Table   6.2   Percentage   of   cells   expressing   detectable  α   and   β   integrins   on   the   cell   surface   following   transient  transfection   (as   detected   by   subunit   specific   antibodies   and   anti-­‐rabbit   Alexa546   secondary   antibodies).   The  Antibody   column   shows   the   specificity   of   the   primary   (top)   and   secondary   (bottom)   antibodies   used   for  detection  of  integrins.  Secondary  antibodies  were  conjugated  with  the  Alexa546  fluorophore.  The  percentage  of  GFP+   cells   in   each   transfection   indicates   30-­‐35%   of   the   total   population   were   transfected   effectively.   Cells  transfected   with   Drosophila   integrins   show   integrin   expression   in   8-­‐10%   of   the   total   cell   population   above  empty  vector  controls.  Integrin  expression  was  not  detected  in  cells  transfected  with  coral  integrins,  suggesting  primary  anti-­‐bodies  against  coral  integrins  did  not  bind  to  target  epitopes.  

 

Page 120: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

101  

.    

 

Cell  Line   %  of  Total  GFP+  

Antibody   %  of  Total  integrin+  

%  of  Total  Expressing  integrin  

pHSMCS   -­‐   α-­‐HA  488   3.17    ItgαPS2  ItgβPS-­‐HA   -­‐   α-­‐HA  488   29.46   26.29  AmItgα1  AmItgβ1-­‐HA   -­‐   α-­‐HA  488   4.97   1.8  

Cell  Line   %  of  Total  GFP+  

Antibody   %  of  Total  GFP+/integrin+  

%  of  Total  Expressing  integrin  

pHSMCS   19.13   α-­‐MYC  α-­‐Rabbit  546  

0.21      

ItgαPS2  ItgβPS-­‐MYC     35.01   α-­‐MYC  α-­‐Rabbit  546   18.14   17.84  

ItgαPS2  ItgβPS-­‐MYC   34.15   α-­‐Rabbit  546   0.27    

AmItgα1  AmItgβ2-­‐MYC     27.17   α-­‐MYC  α-­‐Rabbit  546  

1.23     1.02  

AmItgα1  AmItgβ2-­‐MYC     27.8   α-­‐Rabbit  546   0.18      

Table   6.3   Percentage   of   cells   expressing   epitope   tagged   β   integrins   on   the   cell   surface   following   transient  transfection  (as  detected  by  anti-­‐HA  or  anti-­‐MYC  antibodies).  The  percentage  of  GFP+  cells  in  each  transfection  indicates   20-­‐35%   of   each   population   were   transfected   effectively.     Anti-­‐HA   antibodies   were   tagged   with  Alexa488,  which  possesses  the  same  peak  emission  wavelength  as  GFP,  as  such  cells  transfected  with  HA  tagged  integrins  were  not   co-­‐transfected  with  GFP.  The  percentage  of   the   total   cell   population   expressing  Drosophila  integrins  (26%  for  HA-­‐tagged  integrins  and  18%  for  MYC  tagged  integrins)  was  much  higher  than  that  of  coral  (1.8%   for   HA   tagged   integrins   and   1%   for   MYC   tagged   integrins),   indicating   that   whilst   expressed   in   a   low  percentage  of  the  population,  coral  integrins  were  present  on  the  cell  surface.  

 

Cell  spreading  of  GFP+/AmItgβ+  cells  The   ~1%   of   cells   expressing   both   GFP   and   surface   β-­‐Integrins   spread   poorly   on   all  

substrates   follow   cell   sorting.   All   samples   exhibited   between   20%   and   25%   dead   or  

damaged  cells  which   is   likely  due  to  extended  periods   in  divalent  cation  free  Robb’s  saline  

during   cell   sorting   and   the   physical   stress   of   the   sorting   process.   Only   70%   of   healthy  

αPS2βPS  expressing  cells  spread  on  Rbb-­‐Tiggrin,  25%  less  than  expected.  Spreading  of  coral  

integrin   expressing   cells   was   similarly   poor   with   ~2%   of   healthy   cells   spreading   in   each  

sample,   indicating   that   the  cell   sorting  processes  had  a  substantial  negative   impact  on  cell  

viability  and  spreading.    

Page 121: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

102  

6.4 Discussion The   range   of   substrates   that   stimulate   integrin   mediated   cellular   behaviours   such   as  

migration,   differentiation   and  matrix   deposition,   is   strongly   influenced   by   the   diversity   of  

integrin  subunits  expressed  by  the  cell.  These  cellular  behaviours  govern  a  wide  variety  of  

developmental  processes.  As  such,  understanding  the  diversity  of   integrins   throughout   the  

Metazoa  provides   insight   into  the  developmental  roles,  ancestral   function  and  evolution  of  

the  integrin  family.    

 

6.4.1 Novel Coral integrins may interact with 2 distinct ligand

types Examination   of   large   protein   datasets   for   Acropora,   Nematostella,   Hydra,   and   Clytia   has  

demonstrated   that   cnidarians   possess   similar   numbers   of   α   and   β   subunits   to   higher  

invertebrates,  which  may   appear   somewhat   surprising   given   the   relative   simplicity   of   the  

cnidarian   body   plan.   However,   the   relationship   between   morphological   complexity   and  

genetic   complexity   is   not   linear   (Ball   et   al.,   2004)   and   phylogenetic   analysis   of   integrins  

provides  another  example  of  this  disparity.  Maximum-­‐Likelihood  analyses  (Figures  6.1  and  

6.2)   show   that   cnidarian   sequences   form  a  phylum  specific   clade   in  both  α   and  β   integrin  

phylogenies,  indicating  that  integrin  diversity  among  the  Cnidarian  integrin  complement  has  

resulted   from   a   number   of   independent   duplications   occurring   after   the   divergence   of  

cnidarians  from  bilaterian  evolution.  Several  lineage  specific  expansions  have  also  occurred  

in   the   Bilateria   as   evidenced   by   the   existence   of   3   clades   of   vertebrate   β-­‐Integrins   and  

grouping   of   α-­‐subunits   from   each   bilaterian   phyla   according   to   their   ligand   binding  

specificity.   Despite   the   clear   evolutionary   path   of   bilaterian   integrins,   a   high   degree   of  

primary   sequence   divergence   and   homoplasy   effects   have   obscured   the   evolutionary  

relationship  between  cnidarian  and  bilaterian  sequences,  leaving  little  clue  as  to  the  function  

of  basal  cognates.    

 

Inclusion   of   2   novel   coral   sequences   in   the   α-­‐subunit   phylogenetic   analysis   has  

demonstrated  that  NvItga2  and  AmItga3  form  a  clade  only  weakly  associated  with  the  other  

cnidarian   α-­‐Integrins,   suggesting   they   share   a   common   origin   independent   of   other  

described   cnidarian  α-­‐subunits.     By   contrast,   the  2   coral  β-­‐subunits   are   closely   associated  

with  each  other  and  have  a  clear  relationship  to  the  integrins  of  Nematostella  (2  β-­‐Integrins  

orthologous   to   each  Acropora   sequence),  which   could   suggest  2  duplication   events  within  

the   cnidarian   lineage   or   maintenance   of   2   ancestral   genes.   The   number   of   sequences   in  

Nematostella   (2α   &   4β)   and   Acropora   (3α   &   2β)   combined   with   the   phylogenetic  

distributions   suggest   the   ureumetazoan   ancestor   contained   2α   integrins   and   1   or   2β  

Page 122: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

103  

sequences.  As  the  ligand  binding  specificity  of  integrin  receptors  is  largely  dependant  on  the  

α-­‐subunit,  the  independent  origin  of  the  2  cnidarian  α-­‐subunits  clades  implies  the  cnidarian  

integrin  complement  facilitates  interaction  with  2  distinct  ligand  types.  Given  cnidarians  are  

considered   informative   as   to   the   genetic   complement   of   the   Eumetazoan   ancestor,   this  

animal   is  also   likely  to  have  possesed  the  capacity  to  bind  2  distinct   ligand  types.  Whether  

these  ligands  bare  any  relation  to  bilaterian  ligands  was  the  focus  of  the  functional  studies  

presented  here.    

 

6.4.2 Integrins containing AmItgα1 interact with RGD tripeptide

ligands Preliminary   investigation  of   ligand  binding   showed   that  none  of   the  5  αβ   combinations  of  

coral   integrins  spread  significantly  on  RGD  or  Laminin  based  substrates  compared   to  cells  

expressing   Drosophila   integrins.   This   result   could   have   been   observed   for   a   number   of  

reasons   including   failure   of   transfection   and   failure   of   integrins   to   bind   efficiently   to  

substrates   resulting   from   sub-­‐optimal   activation   or   vastly   different   ligand   specificity.   Co-­‐

transfection  with   constitutively  expressed  GFP  demonstrated   the   transfection  efficiency   to  

be   consistently   30-­‐35%   of   the   total   population,   a   figure   which   was   confirmed   by   flow  

cytometry   and   supported   by   the   proportion   of   Drosophila   ItgαPS2   expressing   cells   that  

spread   on   RGD   peptides.   Poor   cell   spreading  mediated   by   coral   integrins   is   therefore   not  

likely  due  to  failure  of  transfection.  

 

The  capacity   for   integrins   to  switch  between   low  and  high  affinity  conformations   is  highly  

influenced  by  the  availability  of  divalent  cations,  which  interact  directly  with  amino  acid  side  

chains  to  facilitate  activation  (Takagi  et  al.,  2002).  The  cell  media  (M3  media)  used  to  carry  

out   previous   investigations   of   integrin   structure-­‐function   using   the   Drosophila   S2   cell  

system  is  specifically  designed  to  mimic  the  extracellular  fluid  contacting  Drosophila  cells  in  

vivo.   This  media   contains   18mM  Mg2+   and  6.8mM  Ca2+   and   allows   efficient   activation   of  

Drosophila   integrin   receptors,   however,   the   extracellular   fluid   encountered   by   coral  

integrins  is  seawater,  which  is  vastly  different  in  composition  and  contains  50mM  Mg2+  and  

10mM  Ca2+   in  a  common  artificial  preparation.  Performing  cell   spreading  experiments  on  

Rbb-­‐Tiggrin  using  range  cation  concentrations  and  a  simplified  saline  media  allowed  up  to  

8%  of  cells   transfected  with  AmItgα1  +  AmItgβ2   to  spread  on  Rbb-­‐Tiggrin.  This   figure  was  

7%   above   spreading   of   empty   vector   control   cells   and   provided   an   indication   that   coral  

integrin  receptors  containing  the  AmItgα1  subunit  bind  to  RGD  tripeptide  ligands.    

 

 

 

Page 123: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

104  

In  order  for  the  observed  spreading  on  RGD  ligands  to  be  attributed  to  interaction  with  coral  

integrins,   the   presence   of   coral   integrins   on   the   cell   surface   had   to   be   confirmed.   The  

complete  lack  of  GFP+/integrin+  cells  in  all  samples  detected  with  coral  specific  antibodies  

(Table  6.2)  strongly  suggests  the  antibodies  do  not  bind  to  target  epitopes.  These  polyclonal,  

peptide   derived   antibodies   have   confirmed   specificity   for   their   target   peptides   (data   not  

shown),   however   appear   unable   to   recognise   the   folded   integrin   structure   despite   the  

location  of  the  target  epitope  on  an  exposed  surface  of  the  protein  structure  in  both  high  and  

low   affinity   conformations.   Detection   of   epitope   tagged   β-­‐subunits   using   anti-­‐HA   or   anti-­‐

MYC  antibodies  was  able  to  detect  expression  in  1%  of  the  cells  transfected  with  AmItgα1-­‐

AmItgβ1-­‐HA   and   AmItgα1-­‐AmItgβ2-­‐MYC   constructs   compared   to   26%   or   18%   of   cells  

transfected  with  ItgαPS2-­‐ItgβPS-­‐HA/MYC  respectively  (Table  6.3).  Although  expression  only  

occurs   in   a   small   percentage   of   the   total   population,   the   detection   of   epitope   tagged   β-­‐

subunits  confirms  that  coral  integrins  were  successfully  expressed  on  cell  surface.  

 

The   percentage   of   coral   integrin   transfected   cells   that   spread   on  Rbb-­‐Tiggrin   (2-­‐7%)  was  

higher  than  that  of  cells  expressing  detectable  levels  of  epitope  tagged  integrins  on  the  cell  

surface   (1%),  which   is   consistent  with   control   transfections  using   the   same  epitope   (18%  

surface  expression,  30%  spreading  on  Rbb-­‐Tiggrin).  The  presence  of  a  higher  percentage  of  

cells   spreading   than   exhibiting   detectable   surface   expression   in   both   coral   integrin   and  

control   transfected   cells   suggests   that   spreading   in   coral   integrin   transfected   populations  

was  in  fact  mediated  by  integrin-­‐ligand  interaction.  

 

Although  only  a  small  percentage  of  cells  expressed  coral  integrins  successfully,  exploration  

of   the   ligand  binding  specificity  of  AmItgα1  containing  heterodimers  has  provided  the  first  

indications  that  like  bilaterians,  cnidarians  also  possess  integrins  which  demonstrate  affinity  

for  RGD  tripeptide  containing  ligands.  RGD  sequences  are  common  in  bilaterian  extracellular  

matrix   proteins,   occurring   in   a   range   of   developmentally   expressed   proteins   including  

Fibronectin,   Vitronectin,   Osteopontin,   Easter,   Tiggrin   Fibrinogen,   Fibrillin,   and  

Thrombospondin   (Barczyk   et   al.,   2010;   Humphries   et   al.,   2006).   Recent   data   has   revealed  

that  many  of   these  proteins  known  to  act  as   integrin   ligands  are  not  present   in  cnidarians  

(see   chapter   4),  which   limits   the   range   of   conserved  potential   ligands.   Cnidarians   possess  

multiple   representatives   of   Fibrinogen,   Fibrillin   and   Thrombospondin   containing   xGD  

sequences  that  may  facilitate  integrin  binding  in  place  of  RGD  sequences.  Such  tolerance  to  

changes   in   the   first  position  of   the  recognition  motif  has  previously  been  demonstrated   in  

the  case  of  Drosophila   thrombospondin  where  a  KGD  sequence   facilitates  binding  of  αPS2  

integrins   (Bentley  &  Adams,   2010).   Identifying  which   of   the  matrix   proteins   conserved   in  

cnidarians   and   higher   animals   are   capable   of   mediating   integrin   adhesion   requires  

Page 124: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Six       Integrins  of  Acropora  millepora  

105  

identification   of   xGD   motifs   in   a   wider   range   of   proteins   and   comprehensive   functional  

assays  encompassing  the  recently  identified  AmItgα2  and  AmItgα3  subunits.    

6.5 Conclusions Whilst   the  number  of  α   and  β   integrins  present   in   some   representatives  of   lower  animals  

has   recently   been   acknowledged,   the   true   complexity   of   the   basal   metazoan   integrin  

repertoire  is  only  now  coming  to  light.  The  relationship  of  integrin  genes  from  2  anthozoans  

within  the  context  of  the  broader  metazoan  complement  has  for  the  first  time  suggested  that  

integrins   from   outside   the   Bilateria   also   demonstrate   affinity   for   2   types   of   ligand.   The  

distinct   ligand  specificities   found  in  anthozoans  are   likely  to  reflect  the  binding  capacity  of  

integrins   from  the  Ureumetazoan  ancestor,  although   the  depth  of   their  origin   in  metazoan  

evolution   is   unclear,   requiring   further  data   from   the  Porifera.   Furthermore,   the   indication  

that  AmItgα1   specifically   binds   RGD   tripeptide   sequences,   combined  with   the   ubiquity   of  

xGD   sequences   in   conserved   matrix   proteins,   such   as   thrombospondin,   implies   that   RGD  

tripeptide  proteins  represent  one  of   the  two  predicted  ancestral   integrin   ligand  types.  The  

developmental  roles  of   the  full  range  of  cnidarian   integrins   is  yet  to  be  explored,  however,  

understanding   the   ligand   specificity   of   one   cnidarian   α-­‐subunit   expressed   during  

gastrulation  has  provided  a   solid  basis   for   future   investigations   into  potentially   conserved  

roles  for  integrins  in  diploblastic  and  triploblastic  development.    

 

 

Page 125: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

106  

Chapter 7: General Discussion

7.1 Modes of gastrulation in cnidarians Cnidarians  are  considered  the  earliest  branching  (“lowest”)  members  of  the  animal  kingdom  

to  display  true  gastrulation  owing  to  their  formation  of  a  single  gastric  cavity  (archenteron)  

via  ordered  re-­‐arrangement  of  cellular  structure.  Despite  these  re-­‐arrangements  resulting  in  

only  two  embryonic  germ  layers  and  a  relatively  simple  body  plan,  morphological  evidence  

has   revealed   that   all   methods   of   gastrulation   known   from   studies   of   triploblastic  

development  are  also  displayed  within  the  phylum  Cnidaria  (Byrum  and  Martindale,  2004;  

(Kraus   &   Technau,   2006).   These   methods   include   invagination,   immigration/ingression,  

delamination  and  epiboly  as  well  as  mixed  modes  of  gastrulation  (Figure  7.1  ).  

 

Acropora  millepora   and  Nematostella   vectensis   are   the   best   studied   examples   of   cnidarian  

gastrulation   in   terms  of  morphology  and  genetic   control.  Both  species  are  anthozoans,   the  

basal   class   of   cnidarian   (Figure   7.2)   and   have   shared   phylogeny   to   the   level   of   sub-­‐class  

(Hexcorallia).   As   such,   Acropora   and   Nematostella   are   considered   closely   related   on   an  

evolutionary   time-­‐scale   relative   to   classical   models   of   comparative   embryology   (eg.  

Drosophila,  Xenopus,  Gallus),  and  are  ideally  positioned  for   investigations  of  evolution  and  

development  (Ball  et  al.,  2002;  Ball  et  al.,  2004).  However,  in  spite  of  their  close  evolutionary  

relationship   A.millepora   and   N.vectensis   exhibit   significant   differences   in   gastrulation  

strategy.    

Page 126: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

107  

Figure  7.1  Cnidarians  exhibit  a  wide  variety  of  modes  of  gastrulation  including  delamination,  invagination,  epiboly  and  ingression   (a).   The   diversity   of   cnidarian   modes   of   gastrulation   encompass   all   observed   bilaterian   modes   of  gastrulation.   Images   of   gastrulation   in   selected   bilaterian  models   are   shown   (b-­‐f).   Mixed  modes   of   gastrulation   are  common   in   bilaterians   as   demonstrated   in   X.Laevis,   which   combines   epiboly   of   presumptive   ectodermal   cells   with  invagination  of  the  presumptive  mesoderm  (e).  Invagination  and  ingression  are  combined  in  amniotes  such  as  chick  (f)  and  human,  where  the  primitive  streak  is  formed  by  invagination  of  the  presumptive  ectoderm.  As  cell  division  drives  ectodermal  cells  towards  the  primitive  streak,  they  begin  to  lose  epithelial  character,  with  completion  of  the  epithelial  to  mesenchymal  transition  marked  by  ingression  /  immigration  into  the  blastocoel.  Adapted  from  Byrum  &  Martindale,  2004  (a);  Fujimoto  et  al.,  2004  (b);  Ball  et  al.,  2004  (c);  Wu  &  McClay,  2007  (d);  Gilbert,  2003  (e);  Wolpet  et  al.,  2010  (f)  

Page 127: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

108  

 

Figure  7.2  Anthozoans  (eg.  Acropora  millepora  and  Nematostella  vectensis)  are  accepted  to  be  basal  among  the  Cnidaria  (Ball  et  al.,  2004;  Technau  et  al.,  2005).  Unlike  other  classes  of  cnidarians,  anthozoans  possess  a  circular  mitochondrial   genome,  which   is   consistent  with   the  mitochondrial   genome  of  bilaterians   (Bridge  et   al.,   1992).  The  basal  position  of  anthozoans  is  also  supported  by  phylogenetic  studies  of  rRNA  sequences  (Odorico  &  Miller,  1997).   As   the   basal   class,   anthozoans   are   most   likely   to   reflect   developmental   aspects   of   the   Eumatezoan  ancestor,   making   them   useful   comparators   for   investigating   evolution   and   development.   The   diversity   of  anthozoan   developmental   strategies   complicates   this   comparison,   however,   consideration   of   data   from  developmentally  distinct  anthozoans  that  are  closely  related  on  an  evolutionary  time  scale,  such  as  Nematostella  vectensis  and  Acropora  millepora,  assists  in  resolving  many  potential  ambiguities  of  anthozoan  development.    

 

Gastrulation   in   Nematostella   vectensis   primarily   occurs   by   invagination,   with   limited  

evidence   for  a   coinciding   immigration  of   a  minor   cell  population   (See  Kraus  and  Technau,  

2006;  Magie  and  Martindale,  2007  for  discussion).    Prior  to  gastrulation,  the  128  cell  stage  

embryo  somewhat  resembles  a  prawn-­‐chip  stage  embryo  of  A.millepora  (Figure  7.3;  Figure  

1.2),   which   develops   further   into   a   spherical   pre-­‐gastrulation   blastula.   At   the  

commencement   of   gastrulation,   the   blastula   invaginates,   creating   a   blastopore.   As   the  

invagination  deepens,  cells  of  the  presumptive  endoderm  migrate  towards  the  aboral  pole,  

whilst   the   cells   adjacent   to   the   presumptive   ectoderm   maintain   contact   with   the   inner  

surface   of   the   presumptive   ectoderm   and   exhibit   a   polarised   morphology   typical   of  

migrating   cell   types.   At   the   conclusion   of   gastrulation,   the   presumptive   endoderm   is   in  

proximity  to  the  interior  of  the  presumptive  ectoderm,  separated  by  an  acellular  connective  

tissue  layer  known  as  the  mesoglea.  By  this  stage,  the  blastopore  has  developed  pharyngeal  

structure  derived  of  ectodermal  tissue  and  is  now  considered  an  oral  pore.    

 

Page 128: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

109  

Whereas   invagination   is   common   in   the   Bilateria   (eg.   fly,   frog   and   sea   urchin)   and   the  

dominant   mode   of   gastrulation   in   anthozoans   (Kraus   &   Technau,   2006),   the   mode   of  

gastrulation  exhibited  by  A.millepora  is  remarkable  and  peculiar  even  among  cnidarians.  In  

contrast   to   Nematostella   and   other   animals   that   form   a   spherical   blastula   prior   to  

gastrulation,   cells   of   the  A.millepora   embryo   are   organised   into   a   flat   bilayer   (prawn-­‐chip  

stage)   prior   to   gastrulation   that   persists   beyond   the   128   cell   stage.   At   the   onset   of  

gastrulation,  the  cells  thicken  leaving  a  concavity  on  the  side  of  the  presumptive  endoderm.  

As  the  concavity  deepens,  the  blastopore  becomes  apparent  and  eventually  closes  to  make  a  

spherical  bi-­‐layer  embryo  (Hayward  et  al.,  2004).    Opening  of  the  oral  pore  and  elongation  of  

the   body   column   then   marks   the   commencement   of   the   planula   larva   stage,   which   is  

morphologically   similar   to   that   of   other   cnidarians   in   which   the   mesoglea   is   apparent  

(Figure  7.3)  

 

Figure  7.3  Gastrulation  strategies  of  Acropora  millepora  and  Nematostella  vectensis  are  distinct  despite  a  close  evolutionary  relationship.  Gastrulation  in  Acropora  (A)  is  preceded  by  formation  of  a  flat  cellular  bilayer,  which  reduces   in   circumference   and   thickens   at   the   onset   of   gastrulation.     The   edges   then   begin   to   fold   upward  producing   a   concavity   on   the   side   of   the   presumptive   endoderm.   As   the   concavity   deepens   (gastrula)   the  blastopore   becomes   apparent   and   eventually   closes   to   make   a   sphere   (Hayward   et   al.,   2004).   By   contrast,  Nematostella   gastrulation   (B)   is   preceded   by   blastula   formation   and   occurs   by   involution   of   presumptive  endoderm   from  one   side  of   the  blastula   (Lee  et   al.,   2007).  Unlike  Acropora,   the  blastopore  does  not   close  and  becomes   the   larval   oral   pore.   Involvement   of   a   conserved   set   of   developmental   genes   in   both   modes   of  gastrulation  implies  the  existence  of  differences  in  gene  expression  and  the  involvement  of  downstream  effectors  of  morphological  change,  such  as  cell  adhesion  molecules.  

 

   

Page 129: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

110  

7.2 Genetic determinants of cnidarian gastrulation Most  studies  of   cnidarian  early  development  have   focussed  on  assessing   the  expression  of  

transcription  factors  such  as  Snail,  Twist,  Brachyury,  Otx,  Pax,  Sox  genes  and  the  Wnt  system  

(Hayward   et   al.,   2004;   Martindale   et   al.,   2004;   Momose   &   Schmid,   2006;   Shinzato   et   al.,  

2008;   Smith   et   al.,   1999).   Transcription   factors   represent   the   classical   targets   of  

developmental   genetic   investigation   largely   owing   to   the   broad   scale  

developmental/morphological   affects   following   expression   of   some   transcription   factors.  

For  example,  Pax-­6  (Eyeless)  knockdown  in  Drosophila  produces  an  eyeless  phenotype  and  

over-­‐expression   results   in   ectopic   eyes   (Halder   et   al.,   1995).  Although   the   effects   of   other  

transcription  factors  may  be  more  subtle,  the  ability  to  influence  the  activity  of  whole  gene  

networks  make  transcription  factors  convenient  targets  for  investigating  the  development  of  

atypical  model  systems  such  as  cnidarians.    

 

Comparative  analyses  between  cnidarians  and  bilaterians  into  the  diversity  and  expression  

of  transcription  factors  have  identified  two  important  points:  (1)  many  transcription  factors  

involved   in   bilaterian   gastrulation   were   already   established   at   the   time   of   cnidarian  

divergence   (although   examples   of   specification   and   diversification   are   evident   within  

specific   gene   families)   (Nichols,   W.   Dirks,   Pearse,   &   King,   2006;   Putnam   et   al.,   2007;  

Srivastava  et  al.,  2010;  Technau  et  al.,  2005)  and  (2)  many  of  the  transcription  factors  that  

function   in   bilaterian   gastrulation   also   contribute   to   cnidarian   gastrulation   (de   Jong   et   al.,  

2006;   Martindale,   2005;   Martindale   et   al.,   2004;   Matus   et   al.,   2006).   Although   these  

principles   are   well   evidenced,   the   diversity   of   gastrulation   strategies   observed   among  

cnidarians  implies  that  genes  responsible  for  cellular  re-­‐organisation  during  gastrulation  are  

dissimilar   in   expression   and/or   function   between   species   -­‐   even   in   closely   related   and  

genetically   similar   species   such   as   Acropora   millepora   and   Nematostella   vectenesis.   This  

complex  relationship  between  genetic  complement  and  morphological  events  is  highlighted  

by  the  substantial  differences  observed  in  the  mode  of  gastrulation  utilised  by  Acropora  and  

Nematostella  (Figure  7.3).  To  further  understand  how  networks  of  similar  genes  function  to  

produce  vastly  different  phenotypes,  investigations  must  consider  not  only  the  expression  &  

function  of   transcription   factors,   but   also   the   function  of   downstream  genes   that   facilitate  

cellular  behaviours  such  as  division,  apoptosis  and  migration.    

 

Page 130: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

111  

Cell   adhesion   molecules   are   the   primary   effectors   of   a   number   of   cellular   behaviours  

including  cell  migration  and  cell  &  tissue  polarisation,  which  are   likely   to  contribute  to  re-­‐

organisation  in  all  modes  of  gastrulation.  The  most  comprehensive  survey  into  the  diversity  

of  cnidarian  adhesion  molecules,  presented  in  Chapter  4,  revealed  that  cnidarians  contain  at  

least  8  of  the  major  adhesion  genes  demonstrated  to  function  during  bilaterian  gastrulation  

(Table   7.1).   Members   of   the   Cadherin   and   integrin   families   are   of   particular   importance  

among   the   genes   identified   as   they   have  well   defined   roles   in   facilitating   cell  movements  

during  bilaterian  gastrulation  (Bökel  &  Brown,  2002;  Halbleib  &  Nelson,  2006;  Shimizu  et  al.,  

2005;  Yagi  &  Takeichi,  2000).  The  identification  of  cnidarian  orthologues  to  so  many  critical  

gastrulation   genes   supports   the   early   evolution   of   not   only   the   transcriptional   genes  

implicated  in  gastrulation,  but  also  a  wide  variety  of  the  terminal  effectors,  more  than  might  

be  expected  from  morphological  comparison.    

 

Although  identifying  the  conserved  adhesion  proteins  with  potential  roles  in  gastrulation  is  

an   important   first   step,   the   simple   presence   of   these   genes   in   cnidarians   provides   little  

insight   into   their   function  and  significance  to  cnidarian  gastrulation.   In  addition  to  protein  

identification,   the   JCUSMART   analysis   also   allowed   the   domain   structure   of   proteins  with  

potential   roles   in   cnidarian   gastrulation   to   be   assessed.   Where   complete   models   were  

available,   it   was   found   that   the   domain   structure   of   cnidarian   adhesion   proteins   are  

consistent  with  those  of  higher  animal  homologues,  suggesting  a  similar  capacity  for  protein  

level   interactions,   particularly   of   regulatory   mechanisms.   This   implies   some   degree   of  

functional  similarity  between  cnidarian  and  bilaterian  orthologous  adhesion  proteins  (Table  

7.1),  which  is  further  evidenced  by  motif  conservation  including  the  CCD  &  PCCD  complex  in  

type-­‐III   cadherins   (Chapter   5.4.1)   and   the  MIDAS,  ADMIDAS  &  NPxY/F  motifs   in   integrins  

(Knack  et  al.,  2008).    

 

In  determining  the   influence  of  conserved  cnidarian  adhesion  proteins  on  gastrulation,   the  

temporal   and   spatial   patterns   of   gene   expression   must   also   be   considered.   In   situ   RNA  

hybridisation   of  Acropora  millepora   embryos   has   demonstrated   that   integrins,   planar   cell  

polarity   implicated   cadherins,   and   components   of   the   Wnt   system   (eg.   β-­‐catenin)   are   all  

expressed  during   gastrulation   (Knack   et   al.,   2008;  Chapter  5).  Whilst   these   genes   are   also  

expressed  during  bilaterian  gastrulation,  several  aspects  of  their  expression  in  Acropora  are  

not  consistent  with  bilaterian  modes  of  gastrulation  and  allow  a  new  model  to  be  proposed  

for  adhesion  protein  function  during  gastrulation  of  Acropora  millepora.  

Page 131: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

112  

Gastrulation  related  adhesion  Gene  

Maximum  Number  of  Models  Identified  

in  cnidarians  

Pathway  Functions   Molecular  Function   Reference  

Flamingo  (Starry  Night  /  CELSR)  

1  • Homophilic  cell  adhesion  • Selective  Recruitment  of  Fz  and  Vangl  

Chen  et  al.,  2008;  

Usui  et  al.,  1999;  Wu  &  Mlodzik,  2009  

Frizzled   4  

• Receptor  for  Wnt  Ligands  • Recruits  DSH  to  plasma  membrane  during  PCP  

• Binds  cytoplasmic  DSH    • ligand  binding  of  Vangl  prior  to  cell-­‐autonomous  PCP  

Wu  &  Mlodzik,  2008;  Guo  et  al.,  2004;  Wang  et  al.,  2006;      

Van  Gogh    (Strabismus

)  1  

• Planar  cell  polarity  (Fmi-­Fz  group)  

• Invagination  • Convergent  extension  • Directional  cell  division  

• Interaction  with  FAT-­Ds  group  

• ligand  binding  of  Fz  prior  to  cell-­‐autonomous  PCP  

Bastock  et  al.,  2003;  Wu  &  Mlodzik,  2008;  Jessen  et  al.,  

2002  

FAT   3   • Heterophilic  ligand  binding  of  Ds  

Seifert  &  Mlodzik,  2007  

Dachsous   1  

• Planar  cell  polarity  (FAT-­Ds  group)  

• Invagination  • Convergent  extension  • Directional  cell  division  Interaction  with  Fmi-­Fz  group  

• Heterophilic  ligand  binding  of  Ft  

Seifert  &  Mlodzik,  2007  

Type  –III  cadherins   2-­‐3  

• Adherins  junction  component  

• Invagination  • Mobility  of  presumptive  mesoderm  

• Mesoderm  specification  

• Neural  development  

• Homophilic  ligand  interactions  Stabilise  tissue  (DE/G  Cadherin)  

• Increase  tissue  mobility  (DN-­Cadherin)  

• Binds  β-­catenin  at  plasma  membrane  

Wu  &  McClay,  2007;  Byrum  et  al  2009;  Iwai  et  al.,  1997  

α-­‐Integrins   3  

• Heterodimer  formation  with  β-­‐Integrins  

• Primary  influence  over  ligand  binding  

• Major  Ligand  types:  RGD,  Laminin,  Collagen,  Leukocyte  specific  

Oloumi  et  al.,  2004;  Schmidt  &  Friedl,  2010;  Hynes  et  al.,  

2002;  Marsden  and  Burke,  1998  

β-­‐Integrins   4  

• Cell  motility  • Mesoderm  migration  • Stable  adhesion  to  basement  membranes  

• Extracellular  matrix  deposition  

• Influence  proliferation,  differentiation  &  apoptosis    

• Heterodimer  formation  with  α-­‐Integrins  

• Cytoskeletal  connections  • Binds  ILK  

Oloumi  et  al.,  2004;  Schmidt  &  Friedl,  2010;  Hynes  et  al.,  

2002;  Marsden  and  Burke,  1998  

Table   7.1   Adhesion   gene   families   demonstrated   to   function   during   bilaterian   gastrulation   are   conserved   in   cnidarians.  Examination  of  the  cnidarian  adhesome  has  revealed  at  least  8  of  the  gene  families  that  have  conserved  function  throughout  the  Bilateria  are  also  present  in  cnidarians.  These  families  include  the  cell  adhesion  components  of  the  2  planar  cell  polarity  pathways   (Fmi-­Fz,   Ft-­Ds),   integrins   and   Type-­‐III   cadherins.   The   high   degree   of   conservation   of   protein   architecture   and  functional  motifs  between  cnidarian  models  and  bilaterian  proteins  suggest  that  cnidarians  are  capable  of  a  similar  range  of  cellular   re-­‐arrangements   such  as   convergent  extension,  directional   cell  division,  planar  cell  polarity  and   integrin  mediated  motility.   Involvement   of   these   proteins   during   cnidarian   gastrulation   is   likely,   however   the   variety   of   cnidarian  modes   of  gastrulation  suggest  these  processes  are  demonstrated  selectively  across  a  range  of  cnidarian  taxa.    

Page 132: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

113  

7.3 Acropora millepora exhibits an inside-out mode of

gastrulation 7.3.1 The mobile presumptive ectoderm and un-coupling of β-

catenin from mesendoderm development  

In   most   bilaterians,   the   regions   of   an   embryo   fated   to   become   endoderm,   mesoderm   and  

ectoderm   are   determined   well   before   morphological   changes   of   gastrulation   have  

commenced.   Asymmetrical   distribution   of   maternal   mRNA,   proteins,   organelles   and  

cytoskeletal   elements   define   the   anterior-­‐posterior   (AP)   axis   prior   to   fertilisation   and  

subsequent   signalling   cascades   then   guide   cell   fate   (Lee   et   al.,   2007).   Although   the   site   of  

gastrulation  is  variable  among  bilaterians  with  respect  to  the  AP  and  DV  axes  it  is  consistently  

influenced   by   a   conserved   network   of   signalling   genes   including   β-­catenin,   bmp2/4/dpp,  

Brachyury,  Forkhead,  Otx,  Snail,  and  Twist  (Martindale,  2005).  Among  these  influential  genes,  

the   role   of   β-­catenin   appears   to   be   particularly   well   conserved   with   the   accumulation   of  

nuclear  β-­catenin  protein  marking  the  site  of  cell  migration  and  the  future  blastopore  (Lee  et  

al.,  2007;  Logan  et  al.,  1999;  Range  et  al.,  2005).    

 

The   influence   of   nuclear  β-­catenin  accumulation   appears   to   be   conserved   from  prior   to   the  

cnidarian-­‐bilaterian   divergence,   as   both   cnidarians   and   bilaterians   that   gastrulate   by  

invagination   exhibit   a   similar  domain  of   nuclear  β-­catenin   localisation  prior   to   gastrulation.  

Blastula   stage   embryos   of   Nematostella   vectensis   (Sea   anemone)   (Matus   et   al.,   2006)   and  

Clytia  hemispherica  (Hydrozoan  -­‐  jelly  fish)  (Momose  &  Houliston,  2007)  exhibit  high  levels  of  

nuclear  β-­catenin  in  the  presumptive  mesendoderm,  at  the  site  of  gastrulation.  This  finding  is  

consistent   with   protein   localisation   analyses   in   bilaterians   including   Lytechinus   variegates  

which   shows  nuclear  β-­catenin   in  mesendodermal   cells   (Weitzel   et   al.,   2004;  Wu  &  McClay,  

2007).  Like  β-­‐catenin,  the  domain  of  Dishevelled  (Dsh)  expression  is  also  indicative  of  the  site  

of  mesendoderm  formation  in  Nematostella  and  Lytechinus,  as  well  as  the  scleractinian  corals  

Pocillopora  meandrina,   and  Fungia   scutaria   (Marlow  &  Martindale,   2007).   Inhibition   of  Dsh  

expression   is   sufficient   to   inhibit   the   onset   of   gastrulation   in   both   Nematostella   and  

Lytechinus  embryos   (Lee  et  al.,  2007),  as   is  β-­catenin   inhibition.  The  domains  of  expression  

for  Dsh  and  β-­catenin  overlap  and  the  similarity  in  phenotypes  produced  upon  knockdown  are  

explained  by  their  cellular  activity  and  protein  level  interactions.    

 

Page 133: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

114  

In  Acropora  millepora   however,   the   domain   of  β-­catenin  expression   (as   indicated   by   in   situ  

RNA  hybridisation)  and  nuclear  localisation  of  β-­catenin  (and  Dishevelled)  is  restricted  to  the  

presumptive  ectoderm.  This  domain  of  expression  is  opposite  to  what  might  be  expected  from  

investigation   of   blastula   forming   animals,   where   expression   occurs   in   the   presumptive  

meso/endoderm.   Furthermore,   the   expression   centres   around   the   pole   furthest   the   site   of  

blastopore   development.   To   understand   the   implications   of   these   expression   patterns,   the  

cellular  function  of  β-­catenin  must  be  considered.  

 

Translocation  of  β-­catenin  to  the  nucleus  is  a  key  component  of  the  canonical  Wnt  signalling  

pathway   in  which  binding  of   soluble  Wnt  protein   to  Frizzled   receptors   results   in  decreased  

ubiqutination   of   β-­catenin   (mediated   by   Dsh).   Subsequently,   free   (unbound)   β-­catenin  

accumulates  in  the  cytoplasm  and  nuclear  translocation  occurs.  In  the  nucleus  β-­catenin  is  an  

obligatory   co-­‐factor   to   the   TCF/LEF-­‐1   transcription   complex,   which   activates   a   network   of  

genes   including   the   Snail   family.   The   net   result   of   this   activation   is   down-­‐regulation   of  

epithelial   characteristics   such   as   cell   adhesion   and   proliferation,   accompanied   by   a  marked  

increase   in   cell   mobility,   survival   and   matrix   deposition   consistent   with   a   mesenchymal  

phenotype.   Restriction   of   β-­catenin   and   Dsh   expression   to   the   presumptive   ectoderm   of  

Acropora   embryos   is   therefore   suggestive   of   an   increased  mobility   of   the   ectoderm   rather  

than  meso/endoderm  prior  to  gastrulation.  

 

Up-­‐regulation   of   the   Snail   family   of   transcription   factors   downstream   of   nuclear  β-­‐catenin-­‐

TCF/LEF  activation  is  conserved  among  bilaterians  and  is  widely  considered  a  necessary  step  

in  the  formation  of  the  archenteron  and  mesenchymal  development.  In  Acropora  however,  the  

domain  of  β-­catenin  expression  in  the  presumptive  ectoderm  (Shinzato  unpublished;  Chapter  

5.3.3)   opposes   the   expression   Am_Snail   (Hayward   et   al.,   2004),   demonstrating   a   clear  

uncoupling  of  this  conserved  mechanism,  which  would  otherwise  be  expected  to  play  a  major  

role   in   facilitating   the   tissue   mobility   required   for   gastrulation.   A   similar   uncoupling   of  

mesendoderm   specification   from   archenteron   formation   has   also   been   suggested   in  

Nematostella.   In   Nematostella,   the   domains   of   β-­catenin   and   snail   expression   overlap,  

however,   Kumburegama   et   al   (2011)   have   demonstrated   embryos   inhibited   in   β-­‐catenin  

signalling   still   undergo   invagination   but   fail   to   express   AmSnail   and   specify   endoderm.    

Whether  such  an  uncoupling  is  common  among  the  Cnidaria  remains  to  be  determined,  as  do  

the  factors  that  drive  endoderm  specification  both  up  and  down-­‐stream  of  Snail  expression.  

 

Page 134: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

115  

7.3.2 Maintaining stability in the presumptive endoderm In   addition   to   its   transcriptional   role   down-­‐stream  of   canonical  Wnt   signalling,  β-­catenin   is  

also  implicated  in  the  regulation  of  stable  cell  adhesion  and  planar  cell  polarity.  In  chordates,  

E-­Cadherin   is   the   predominant   epithelial   marker   responsible   for   cell-­‐cell   adhesion   and  

maintaining   the   stability   of   tissues/   cell   sheets   through   lateral   homophilic   interaction.   An  

analogous  role  is  played  by  DE-­Cadherin   in  Drosophila  and  G-­‐Cadherin  in  sea  urchin,  despite  

significantly   varied   structures.   At   the   plasma   membrane,   β-­catenin   binds   directly   to   the  

cytoplasmic   region   of   active   catenin   binding   Cadherin   (E/DE/G),   linking   it   to   cytoskeletal  

Actin.  The  tissue  stabilising  activity  of  catenin  binding  cadherins  is  therefore  linked  to  the  β-­

catenin  balance.  Additionally,  nuclear  translocation  of  β-­catenin  in  response  to  canonical  Wnt  

signalling   results   in   down-­‐regulation   of   E-­Cadherin   expression   via   TCF   and   Snail   mediated  

repression,   as   well   as   protein   level   Cadherin   degradation.   Conversely,   stabilisation   of  

adherens   junctions   (AJ   ;   the   junction   type   where   E-­Cadherin   is   most   prevalent)   by   over  

expression  of  E-­Cadherin  is  sufficient  to  inhibit  β-­catenin  translocation  and  gastrulation.    

 

The   change   in   epithelial   phenotype   from   stable   epithelium   to   migratory   (Epithelial   to  

mesenchymal   transition)   is   also   influenced   by   the   expression   of   another   catenin-­‐binding  

Cadherin,   N-­Cadherin.   During   gastrulation,   down-­‐regulation   of   E-­Cadherin   occurs  

concurrently   with   up-­‐regulation   of  N-­Cadherin   (DN-­Cadherin   in   Drosophila),   which   is   both  

necessary   &   sufficient   for   producing   a   migratory   cell   phenotype.   Expression   of   catenin  

binding   cadherins   can   therefore   produce   either   stable   or   invasive   phenotypes   in   chordates  

and  protostomes  although  an  analogous  Cadherin  has  not  been  identified  in  sea  urchins.  

 

Given   the   domain   of   nuclear   β-­catenin   in   Acropora   prawnchip   stage   embryos,   it   would   be  

expected   that   a   catenin-­‐binding   Cadherin   functionally   analogous   to   E/DE/G-­‐Cadherin   (ie.  

Stabilises  the  epithelium)  is  expressed  in  the  presumptive  mesendoderm.  This  pattern  would  

be  inverse  to  what  is  observed  in  bilaterians  where  E/DE/G-­‐Cadherin  expression  is  restricted  

to  the  presumptive  ectoderm,  outside  the  nuclear  β-­catenin  domain.  Alternatively,  a  migratory  

type  catenin  binding  Cadherin  functionally  analogous  to  N-­Cadherin  would  have  an  expected  

expression   restricted   to   the   presumptive   ectoderm.  However,   only   a   single   catenin-­‐binding  

Cadherin,  Am_ACadherin,  was  identified  in  Acropora  (Chapter  4.3.1)  and  no  mRNA  expression  

could  be  detected  during  gastrulation  (Chapter  5.3.3).  This  result  suggests  the  unique  absence  

of   a   tissue   stabilising   catenin  binding  Cadherin  during  Acropora  gastrulation  and   raises   the  

question  of  how  presumptive  endoderm  stability  is  maintained  throughout  morphogenesis.  

 

Page 135: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

116  

The  Acropora  integrins,  AmItgα1,  ItgβCN1,  and  AmItgβ2,  are  each  expressed  specifically  in  the  

presumptive  endoderm  throughout  gastrulation  (Knack  et  al.,  2008).  In  bilaterians,  integrins  

have  been  shown  to  interact  with  a  range  of  cell  surface  and  matrix  proteins  to  produce  both  

stable  interactions  and  cell  motility.  Integrin  signalling  through  integrin  Linked  Kinase  (ILK)  is  

also   critical   to   matrix   deposition.   Acropora   contains   all   of   the   genes   required   for   integrin  

signalling  through  ILK  including  ILK,  PINCH,  Parvin,  and  FAK  (Chapter  4.3.2)  and  although  the  

precise  mechanism  is  unknown,  the  production  of  the  mesoglea,  a  thin  connective  tissue  layer  

between  the  ectoderm  and  endoderm,  is  apparent  towards  the  end  of  gastrulation,  suggesting  

matrix  accumulation  occurs  during  gastrulation.    

 

The  prospect  that  Acropora  integrins  stabilise  the  endodermal  tissue  through  interaction  with  

and   deposition   of   extracellular   matrix   proteins   in   a   positive   feedback   loop   (as   observed  

higher  animals)   is  therefore  not  unreasonable.     Identifying  which  matrix  proteins  present   in  

the   mesoglea   are   likely   candidates   for   integrin   interaction   is   an   area   for   further   study,  

although  this  task  is  greatly  aided  by  results  in  Chapter  6,  which  indicate  AmItgα1  containing  

integrin  heterodimers  are  likely  to  interact  with  RGD  type  ligands.  

 

7.3.3 Co-ordinating expansion of the presumptive ectoderm The   folding   of   presumptive   ectoderm   around   the   presumptive   endoderm,   the   hallmark  

feature  of  Acropora  millepora’s  unique  mode  of  gastrulation,   is  accompanied  by  2   important  

observations:  1)  The  cells  of  each  germ  layer  continue  to  divide  throughout  gastrulation  (as  

detectable  by  examination  with  a  light  microscope),  and  2)  the  ectodermal  tissue  maintains  a  

relatively   constant   depth   of   1-­‐2cells   (Ball   et   al.,   unpublished).   Together   these   observations  

imply  expansion  of   the  ectodermal   tissue  occurs  by  a  co-­‐ordinated  process   that  maintains  a  

single  cohesive  epithelial  sheet.    

 

Maintenance  and  expansion  of  an  epithelium  in  a  single  plane  commonly  results  from  planar  

cell  polarity  (PCP),   in  which  the  orientation  of   individual  cells  are  directionally  co-­‐ordinated  

(polarised)   throughout   a   tissue.   Cellular   polarisation   is   characterised   by   asymmetrical  

localisation   of   PCP   adhesion   proteins   and   associated   regulatory   proteins.   These   proteins  

function  in  2  parallel  groups;  the  core  group  consisting  of  Frizzled  (Fz),  Dishevelled  (Dsh),  Van  

Gogh  (Vang;  also  known  as  Strabismus  -­‐Stbm),  Prickle  (Pk),  Flamingo  (Fmi),  Diego  (Dgo);  and  

the  Dachsous   group  consisting  of  FAT   (Ft),  Dachsous   (Ds)  and  Four-­‐jointed   (Fj).  Both  groups  

are   conserved   throughout   the  Bilateria   (with   lineage   specific   expansion  of   some  members),  

however   their   distribution   among   the   Cnidaria   has   not   previously   been   investigated.   In  

Chapter   5.3.1,   JCUSMART   analysis   allowed   orthologues   of   all   major   planar   cell   polarity  

Page 136: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

117  

components   to  be   identified   in   cnidarians,  with   the   exception  of   the   cytoplasmic   regulation  

proteins  Diego  and  Four-­jointed.    

 

In  addition  to  local  polarisation  of  individual  cells,  broad  gradients  of  expression  and  protein  

activity   result   in  global  polarity  across   the   tissue.  The  Drosophila  wing   is  among   the  classic  

examples  of  both  global  and  cellular  polarity.  Cellular  polarity  is  detected  by  localisation  of  Fz-­

Dsh-­Dgo-­Fmi   to   the   distal   plasma   membrane   and   Vang-­Pk-­Fmi   at   the   proximal   plasma  

membrane,  whilst  global  polarity  is  demonstrated  by  clear  gradients  of  Dachsous  expression  

(high  proximal,  low  distal)  and  Four-­jointed  expression  (low  proximal  and  high  distal)  across  

the  wing.  (Wu  and  Mlodzik,  2009).      

 

Expression  of  Am_Daschous  and  Am_Van_Gogh  in  gradients  across  the  presumptive  ectoderm  

of   gastrulating   Acropora   embryos   (Chapter   5.3.3)   is   consistent   with   the   global   expression  

gradients  observed  in  polarised  epithelia  such  as  the  Drosophila  wing  (Dachsous)  and  mouse  

phalangeal  limb  buds  (Van  Gogh;  (Gao  et  al.,  2011).  The  expression  patterns  of  these  Acropora  

genes   suggest   PCP   is   involved   in   co-­‐ordinating   the   expansion   of   the   presumptive   ectoderm  

during  gastrulation.  PCP  is  commonly  implicated  during  bilaterian  gastrulation  in  facilitating  

convergent  extension  (Shindo  et  al,  2008;  Wang  et  al.,  2006)  and  has  recently  been  implicated  

in   Nematostella   gastrulation,   where   expression   of   Vang   at   the   animal   pole   is   required   for  

archenteron  invagination  as  demonstrated  by  morpholino  knockdown  (Kumburegama  et  al.,  

2011).   In   both   Acropora   and  Nematostella,  Vang   expression   is   restricted   to   the   germ   layer  

exhibiting  nuclear  β-­catenin  localisation  (the  proposed  mobile  germ  layer),  which  supports  a  

role   for   PCP   in   directing   cell   mobility   across   different   modes   of   cnidarian   gastrulation.  

However,  in  contrast  to  Acropora  where  AmVangl  is  expressed  in  a  gradient  along  a  potential  

second  axis,  Nv_Vang  expression  centres  around  the  animal  pole  and  forms  a  gradient  along  

the  oral-­‐aboral  axis.  This  inconsistency  in  expression  implies  that  whilst  PCP  is  involved  in  the  

morphogenic   movements   of   both   Acropora   and   Nematostella,   mobility   in   the   Acropora  

presumptive   ectoderm   is   not   a   simple   translocation   of   the   gene   expression   and   cell  

movements  leading  to  archenteron  invagination  in  blastula  forming  animals.    

 

The  precise  role  of  planar  cell  polarity  during  Acropora  gastrulation  is  not  yet  clear,  although  

one   common   function   of   PCP   stands   out   as   a   favourable   possibility.   The   prospect   of  

convergent   extension   (CE;   the   PCP   mediated   extension   of   a   tissue   along   a   single   axis   by  

cellular  intercalation)  occurring  in  the  presumptive  ectoderm  seems  unlikely,  as  intercalation  

of  cells  has  not  been  reported.  Furthermore,  the  region  of  PCP  gene  expression  is  quite  broad,  

encompassing  the  entire  tissue,  which  is  in  contrast  to  expression  patterns  during  bilaterian  

CE  events.  The  existence  of  a  PCP  in  order  to  orientate  auxiliary  structures  (eg.  hairs,  cilia)  as  

Page 137: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

118  

observed  in  both  the  Drosophila  wing  and  Mouse  cochlea,  is  another  possibility,  although  cilia  

are   not   evident   on   the   ectodermal   surface   until   after   gastrulation   in   Acropora.   Whilst  

expression   of   PCP   genes   prior   to   gastrulation  may   aid   in   co-­‐ordinating   ciliary   beat   in   later  

development,   the  delay   in  assembly  of   cilia   implies  a  more   fundamental   function   for  PCP   in  

early  development.    

 

PCP  has  been  demonstrated  to  influence  the  axis  of  cell  division  in  a  range  of  model  systems,  

including  Drosophila  and  Sea  Urchin.  In  Drosophila  wing  development  and  during  sea  urchin  

gastrulation,   PCP   gene   activity   restricts   cell   division   to   a   single   direction,   allowing   the   cell  

sheet  to  expand  in  a  single  plane.    Restriction  of  division  to  a  single  plane  is  consistent  with  

the  morphological  observations  of  Acropora  development,  hence   the  expression  of  AmVangl  

and  AmDachsous   throughout   the   presumptive   ectoderm   and   across   a   potential   second   axis,  

may  function  to  maintain  the  direction  of  cell  division.  This  rationale  also  offers  a  mechanism  

for  maintaining   flexible   intercellular   connections   in   the  proposed  mobile   germ   layer,  which  

shows   no   sign   of   classical   stabilising   proteins   such   as   N-­Cadherin   and   integrin.   Whilst   an  

active  PCP  directing  the  axis  of  cell  division  and  maintaining  the  stability  of  the  presumptive  

ectoderm  is  at  present  the  most  attractive  prospect,  understanding  of  PCP  in  cnidarians  is  in  

its  infancy.  Further  investigations  into  the  Acropora  PCP  system,  its  influence  on  the  direction  

of  cell  division  and  potential  roles  in  cilia  mediated  motility  are  required.  Focusing  on  protein  

localisation  and  functional  inhibition  analyses  would  provide  the  most  direct  and  informative  

evidence  into  the  presence  and  function  of  planar  cell  polarity  during  Acropora  development.  

Investigating   these   aspects   in  Nematostella   and  Clytia   as  well   as  Acropora  would  provide   a  

solid  basis  for  drawing  more  general  conclusions  regarding  the  role  of  PCP  in  cnidarians.  

 

The  inside-­‐out  model  of  coral  gastrulation  presented  here  represents  a  consolidation  of  much  

of   the   available   molecular   and   morphological   evidence   obtained   from   Acropora   millepora,  

however,  each  aspect  of  the  model  holds  potential  for  further  investigation.  Questions  remain  

as  to  the  transcriptional  targets  of  nuclear  β-­catenin  in  conjunction  with  TCF/LEF  such  as  the  

manner   in   which   nuclear   β-­catenin   influences   the   profile   of   adhesion  molecule   expression,  

and  the  consequences  of  this  relationship  for  ectodermal  mobility.  The  uncoupling  of  nuclear  

β-­‐catenin   signalling   from   Snail   expression   and   mesendoderm   specification   also   requires  

exploration   in   Acropora   and   may   offer   a   new   perspective   on   mechanisms   of   tissue   re-­‐

organisation   involving   differential   adhesion   in   cnidarians.   Other   questions   surround   the  

purpose  of  Dachsous   and  Van  Gogh  expression   in   the  presumptive  ectoderm.  Are  other  PCP  

genes  expressed?  Are  the  patterns  of  protein  localisation  as  expected  for  PCP  or  do  they  have  

additional   roles   in   the   development   basal   cnidarians   not   seen   in   higher   animals?   The  

influence   of   canonical   and   non-­‐canonical   Wnt   signalling   on   β-­catenin   nuclearisation   and  

Page 138: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Seven       General  Discussion  

119  

establishment  of  PCP  also  remains  to  be  explored  in  Acropora.  Investigating  these  aspects  of  

Acropora  development  require  substantial  methodological  development   to  allow  creation  of  

gene   knockdowns,   detailed   exploration   of   sub-­‐cellular   protein   localisation   and   profiling   of  

changes  in  gene  expression  during  development  and  in  response  to  genetic  manipulation.    

 

 

Page 139: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Eight       General  Conclusion  

120  

Chapter 8: General Conclusions  

The  importance  of  cell  adhesion  and  dynamic  changes  in  adhesive  state,  which  are  accepted  to  

be   essential   aspects   of   normal   bilaterian   development   and   function,   have   received   little  

attention   in   the   context   of   cnidarian  development.     This   project   has   addressed   some  of   the  

major  deficits  surrounding  understanding  of  cnidarian  adhesion  systems,  including  the  nature  

of  the  cnidarian  adhesion  complement  or  “adhesome”,  the  involvement  of  cadherins  in  early  

coral  development,  and  the   identification  of   the  major   integrin   ligand  type.  Consideration  of  

these  aspects  of  cnidarian  adhesion  along  with  previously  published  data  has  also  facilitated  a  

new  model  of  Acropora  gastrulation  to  be  proposed.    

 

Investigating  the  nature  of  the  cnidarian  adhesome  in  a  manner  that  would  incorporate  data  

from   multiple   sources   required   development   of   a   single   platform   for   identification   and  

analysis  of  adhesion  molecules.  Chapter  3  details  the  development  of  such  a  platform,  called  

JCUMSART,  which   allows  multiple   large   protein   datasets   to   be   assessed   for   protein  models  

with  specific  features.  Although  the  analysis  and  data  storage  pipeline  was  originally  designed  

for   identification   of   adhesion   molecules,   it   has   a   demonstrated   capacity   for   broader  

application,  being  used  for  identification  of  selenium  processing  proteins  as  well  as  NOD  and  

Caspase  related  proteins.  

 

The  survey  of  cnidarian  adhesomes  (Chapter  4)  encompassed  data   from  4  model  cnidarians  

(Acropora  millepora,   Hydra  magnipapillata,   Clytia   hemispherica   and   Nematostella   vectensis),  

exhibiting   different   developmental   strategies   and   life   cycles.   The  differences   between   these  

species  allowed  both  an  overview  of  the  capacity  of  adhesion  in  cnidarians  and  comparison  of  

specific   aspects   of   their   adhesomes.   A   high   degree   of   similarity   between   cnidarian   and  

bilatarian  adhesomes  suggested  many  of   the  adhesion  components  affecting  developmental,  

innate   immune   and   defensive   processes   were   already   established   in   the   ureumetazoan  

ancestor.   All   4   cnidarian   species   possessed   an   abundance   of   secreted   pattern   recognition  

proteins  with  possible  immune  function,  which  is  a  clear  advantage  in  an  aquatic  environment  

where  microbial  transfer  is  easily  facilitated.    

 

Page 140: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Eight       General  Conclusion  

121  

Novelty  among  the  cnidarians  also  centred  around  secreted  pattern  recognition  proteins  with  

2  families  (Collectin  and  Coll-­‐IG)  of  PRR’s  being  identified  for  the  first  time  in  cnidarians.  It  is  

unclear,  whether  the  generalised  expansion  of  pattern  recognition  receptors  in  the  Cnidaria  is  

primarily   associated   with   humoral   immunity   or   symbiont   uptake,   which   would   hold  

significant  implications  for  studies  assessing  the  genetic  component  of  coral  bleaching.  

 

Type-­‐III   cadherins  were  among   the  proteins   identified   for   the   first   time   in   cnidarians  using  

the   JCUSMART.  Cadherins  with   type-­‐III   structure   include  DE  and  G  Cadherin  which  stabilise  

embryonic  germ  layers  during  embryogenesis  of  invertebrates.  An  analogous  role  is  played  by  

Type-­‐I   cadherins   in   vertebrates   (eg.   E-­Cadherin).   These   proteins   are   of   particular   interest  

during   development   due   to   conserved   roles   in   β-­catenin   regulation,   central   to   germ   layer  

specification.   Sequence   analysis   shows   that   a   single   type-­‐III   Cadherin,   Am_ACadherin,   is  

present   in   Acropora   millepora,   providing   an   opportunity   to   assess   conservation   of   the  

adhesion-­‐germ   layer   specification  mechanism   in   a  model  organism  with  a  peculiar  mode  of  

gastrulation  (Chapter  5).  Surprisingly,  Am_ACadherin   is  not  expressed  during  gastrulation  of  

Acropora   millepora,   demonstrating   a   significant   departure   from   an   otherwise   conserved  

specification  system  (Chapter  5.4.2).  Another  member  of  the  Cadherin  family,  Dachsous,  was  

found  to  be  expressed  during  coral  gastrulation  (Chapter  5.4.2),  implying  a  role  for  planar  cell  

polarity  in  coral  morphogenesis.  This  prospect  is  supported  by  the  expression  of  another  PCP  

gene,  Van  Gogh,  which  is  expressed  in  a  similar  pattern.    

 

The  cell  adhesion  survey  also  identified  that  the  integrin  pathway  is  strongly  conserved  in  all  

cnidarians   considered.  The   complement  of   cnidarian  α   and  β   integrins   is   in   alignment  with  

the  complexity  predicted  by  previous  studies.  In  both  Nematostella  and  Acropora,  JCUSMART  

allowed   identification  of  novel  α-­‐Integrin   subunits.  Phylogenetic   analysis  demonstrates   that  

these  sequences  are  divergent  with  respect  to  other  coral  integrins.  The  α-­‐Integrin  is  accepted  

to   be   the   major   contributor   to   integrin   heterodimer   ligand   specificity   and   as   such,   the  

divergence   of   the   novel  α   subunits   suggests   cnidarians   are   capable   of   binding   two   distinct  

ligands   (Chapter   6.4.1).   Ligand   binding   experiments   conducted   by   transgenic   expression   of  

coral   integrins   in   a   drosophila   S2   cell   system   suggested   that   one   of   the   ligands   is   an   RGD  

sequence  (Chapter  6.4.2).  The  RGD  sequence  is  common  among  extracellular  matrix  proteins  

and  the  evidence  provided  here  provides  a  solid  basis  for  future  investigation  into  the  role  of  

integrins  during  coral  development  though  manipulation  of  matrix  proteins.  

 

Page 141: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Chapter  Eight       General  Conclusion  

122  

Consideration  of  results  from  each  chapter  of  the  project  allowed  a  novel  model  of  Acropora  

gastrulation  to  be  developed  (Chapter  7.3).  This  model   is   inside-­‐out  with  respect  to  blastula  

forming  animals,   largely  owing   to   the  expression  of  β-­catenin   in   the  presumptive  ectoderm,  

rather   than   presumptive   endoderm.   The   model   suggests   an   increased   mobility   of   the  

presumptive  ectoderm  with  respect  to  the  presumptive  endoderm.  In  the  absence  of  a  tissue  

stabilising  Type-­‐III  Cadherin,  the  presumptive  endoderm  is  proposed  to  be  stabilised  through  

integrin   mediated   interaction   with   and   lay-­‐down   of   extra-­‐cellular   matrix   proteins.   These  

proteins,  which  are  likely  to  possess  accessible  RGD  sequences,  ultimately  form  a  component  

of  the  mesoglea.  Mobile  interactions  between  cells  in  the  presumptive  ectoderm  are  proposed  

to  be  facilitated  by  components  of  the  planar  cell  polarity  pathway,  which  may  also  act  to  co-­‐

ordinate  the  direction  of  ectodermal  cell  division  as  the  presumptive  ectoderm  folds  around  

the  presumptive   endoderm.  Whilst   each   aspect   of   this  model  warrants   future   investigation,  

this   is   the   first   such   model   to   be   proposed   for   what   is   a   distinctive   and   unique   mode   of  

gastrulation,   which   may   hold   broader   implications   for   our   understanding   of   endoderm  

specification  and  the  roles  of  cell  adhesion  in  cnidarians.  

 

Page 142: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

123  

Reference List 1. Abedin,  M.,  &  King,  Nicole.  (2010).  Diverse  evolutionary  paths  to  cell  adhesion.  Trends  in  

cell  biology,  1-­‐9.  Elsevier  Ltd.  doi:10.1016/j.tcb.2010.08.002  

2. Abedin,  M.,  &  King,  Nicole.  (2009).  The  premetazoan  ancestry  of  cadherins.  Science  (New  York,  N.Y.),  319(5865),  946-­‐8.  doi:10.1126/science.1151084  

3. Abraira,  V.  E.,  Satoh,  T.,  Fekete,  D.  M.,  &  Goodrich,  L.  V.  (2010).  Vertebrate  Lrig3-­‐ErbB  interactions  occur  in  vitro  but  are  unlikely  to  play  a  role  in  Lrig3-­‐dependent  inner  ear  morphogenesis.  PloS  one,  5(2),  e8981.  doi:10.1371/journal.pone.0008981  

4. Ainsworth,  T  D,  Kramasky-­‐Winter,  E.,  Loya,  Y.,  Hoegh-­‐Guldberg,  O,  &  Fine,  M.  (2007).  Coral  disease  diagnostics:  what’s  between  a  plague  and  a  band?  Applied  and  environmental  microbiology,  73(3),  981-­‐92.  doi:10.1128/AEM.02172-­‐06  

5. De  Arcangelis,  A.,  &  Geogres-­‐Labouesse,  E.  (2000).  Integrin  and  ECM  functions:  roles  in  vertebrate  development.  Trends  in  Genetics,  16(9),  389-­‐395.  doi:10.1016/S0168-­‐9525(00)02074-­‐6  

6. Ball,  E.  E.,  Hayward,  D.  C.,  Reece-­‐Hoyes,  J.  S.,  Hislop,  N.  R.,  Samuel,  G.,  Saint,  R.,  Harrison,  P.  L.,  et  al.  (2002).  Coral  development:  from  classical  embryology  to  molecular  control.  The  International  journal  of  developmental  biology,  46(4),  671-­‐8.    

7. Ball,  E.  E.,  Hayward,  D.  C.,  Saint,  R.,  &  Miller,  David  J.  (2004).  A  simple  plan-­‐-­‐cnidarians  and  the  origins  of  developmental  mechanisms.  Nature  reviews.  Genetics,  5(8),  567-­‐77.  doi:10.1038/nrg1402  

8. Barczyk,  M.,  Carracedo,  S.,  &  Gullberg,  D.  (2010).  Integrins.  Cell  and  tissue  research,  339(1),  269-­‐80.  doi:10.1007/s00441-­‐009-­‐0834-­‐6  

9. Bendtsen,  J.  D.,  Nielsen,  Henrik,  von  Heijne,  Gunnar,  &  Brunak,  Søren.  (2004).  Improved  prediction  of  signal  peptides:  SignalP  3.0.  Journal  of  molecular  biology,  340(4),  783-­‐95.  doi:10.1016/j.jmb.2004.05.028  

10. Bentley,  A.  a,  &  Adams,  J.  C.  (2010).  The  evolution  of  thrombospondins  and  their  ligand-­‐binding  activities.  Molecular  biology  and  evolution,  27(9),  2187-­‐97.  doi:10.1093/molbev/msq107  

11. Berman,  A.  E.,  Kozlova,  N.  I.,  &  Morozevich,  G.  E.  (2003).  Integrins :  Structure  and  Signaling.  Biochemistry  Moscow,  68(12).  

12. Blom,  N.,  Gammeltoft,  S.,  &  Brunak,  S.  (1999).  Sequence  and  structure-­‐based  prediction  of  eukaryotic  protein  phosphorylation  sites.  Journal  of  molecular  biology,  294(5),  1351-­‐62.  doi:10.1006/jmbi.1999.3310  

13. Bridge,  D.,  Cunningham,  C.  W.,  Schierwater,  B,  DeSalle,  R.,  &  Buss,  L  W.  (1992).  Class-­‐level  relationships  in  the  phylum  Cnidaria:  evidence  from  mitochondrial  genome  structure.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  89(18),  8750-­‐3.    

14. Brower,  Danny  L.  (2003).  Platelets  with  wings:  the  maturation  of  Drosophila  integrin  biology.  Current  Opinion  in  Cell  Biology,  15(5),  607-­‐613.  doi:10.1016/S0955-­‐0674(03)00102-­‐9  

15. Brown,  N  H.  (2000).  Cell-­‐cell  adhesion  via  the  ECM:  integrin  genetics  in  fly  and  worm.  Matrix  Biol.,  19,  191-­‐201.  

16. Bryja,  V.,  Andersson,  E.  R.,  Schambony,  A.,  Esner,  M.,  Biris,  K.  K.,  Hall,  A.  C.,  Kraft,  B.,  et  al.  (2009).  The  Extracellular  Domain  of  Lrp5  /  6  Inhibits  Noncanonical  Wnt  Signaling  In  Vivo.  Molecular  Biology  of  the  Cell,  20(2007),  924  -­‐936.  doi:10.1091/mbc.E08  

Page 143: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

124  

17. Bunch,  T.  A.,  Miller,  S.  W.,  &  Brower,  D  L.  (2004).  Analysis  of  the  Drosophila  beta  PS  subunit  indicates  that  regulation  of  integrin  activity  is  a  primal  function  of  the  C8  -­‐C9  loop.  Exp.  Cell  Res.,  294,  118-­‐129.  

18. Bunch,  T.  a,  &  Brower,  D  L.  (1992).  Drosophila  PS2  integrin  mediates  RGD-­‐dependent  cell-­‐matrix  interactions.  Development  (Cambridge,  England),  116(1),  239-­‐47.    

19. Burger,  M.  M.,  Turner,  R.  S.,  Kuhns,  W.  J.,  &  Weinbaum,  G.  (1975).  A  Possible  Model  for  Cell-­‐Cell  Recognition  Via  Surface  Macromolecules.  Philosophical  Transactions  of  the  Royal  Society  B:  Biological  Sciences,  271(912),  379-­‐393.  doi:10.1098/rstb.1975.0059  

20. Byrum,  C.  A.,  and  Martindale,  M.  Q.  (2004)  Gastrulation  in  the  Cnidaria  and  Ctenophora.  In  "Gastrulation.  From  Cells  to  Embryos"  (C.  D.  Stern,  Ed.),  pp.  33-­‐50.  Cold  Spring  Harbor  Laboratory  Press,  Cold  Spring  Harbor,  NY  

21. Bökel,  C.,  &  Brown,  Nicholas  H.  (2002).  Integrins  in  development:  moving  on,  responding  to,  and  sticking  to  the  extracellular  matrix.  Developmental  cell,  3(3),  311-­‐21.    

22. Cambi,  A.,  Koopman,  M.,  &  Figdor,  C.  G.  (2005).  How  C-­‐type  lectins  detect  pathogens.  Cellular  microbiology,  7(4),  481-­‐8.  doi:10.1111/j.1462-­‐5822.2005.00506.x  

23. Carreira-­‐Barbosa,  F.,  Kajita,  M.,  Morel,  V.,  Wada,  H.,  Okamoto,  H.,  Arias,  a  M.,  Fujita,  Y.,  et  al.  (2009).  Flamingo  regulates  epiboly  and  convergence/extension  movements  through  cell  cohesive  and  signalling  functions  during  zebrafish  gastrulation.  Development,  136(5),  877-­‐877.  doi:10.1242/dev.034751  

24. Chen,  G.,  &  Courey,  A.  J.  (2000).  Groucho  /  TLE  family  proteins  and  transcriptional  repression.  Zebrafish,  249,  1-­‐16.  

25. Choi,  Y.  S.,  Gumbiner  B.,  Expession  of  cell  adhesion  molecule  E-­‐cadherin  in  Xenopus  embryos  begins  at  gastrulation  and  predominates  in  the  ectoderm,  Journal  of  cell  biology,  108(6),  2449-­‐2458.  

26. Chuai,  M.,  &  Weijer,  C.  J.  (2009).  Regulation  of  cell  migration  during  chick  gastrulation.  Current  opinion  in  genetics  &  development,  19(4),  343-­‐9.  doi:10.1016/j.gde.2009.06.007  

27. Dam,  T.  K.,  &  Brewer,  C.  F.  (2010).  Lectins  as  pattern  recognition  molecules:  the  effects  of  epitope  density  in  innate  immunity.  Glycobiology,  20(3),  270-­‐9.  doi:10.1093/glycob/cwp186  

28. Davidson,  L.  a,  Hoffstrom,  B.  G.,  Keller,  Raymond,  &  DeSimone,  D.  W.  (2002).  Mesendoderm  extension  and  mantle  closure  in  Xenopus  laevis  gastrulation:  combined  roles  for  integrin  alpha(5)beta(1),  fibronectin,  and  tissue  geometry.  Developmental  biology,  242(2),  109-­‐29.  doi:10.1006/dbio.2002.0537  

29. DeSalvo,  M.  K.,  Voolstra,  C.  R.,  Sunagawa,  S.,  Schwarz,  J.  a,  Stillman,  J.  H.,  Coffroth,  M.  a,  Szmant,  a  M.,  et  al.  (2008).  Differential  gene  expression  during  thermal  stress  and  bleaching  in  the  Caribbean  coral  Montastraea  faveolata.  Molecular  ecology,  17(17),  3952-­‐71.  doi:10.1111/j.1365-­‐294X.2008.03879.x  

30. Emanuelsson,  O.,  Nielsen,  H,  Brunak,  S,  &  von  Heijne,  G.  (2000).  Predicting  subcellular  localization  of  proteins  based  on  their  N-­‐terminal  amino  acid  sequence.  Journal  of  molecular  biology,  300(4),  1005-­‐16.  doi:10.1006/jmbi.2000.3903  

31. Ewan,  R.,  Huxley-­‐Jones,  J.,  Mould,  a  P.,  Humphries,  M.  J.,  Robertson,  D.  L.,  &  Boot-­‐Handford,  R.  P.  (2005).  The  integrins  of  the  urochordate  Ciona  intestinalis  provide  novel  insights  into  the  molecular  evolution  of  the  vertebrate  integrin  family.  BMC  evolutionary  biology,  5(1),  31.  doi:10.1186/1471-­‐2148-­‐5-­‐31  

Page 144: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

125  

32. Fanto,  M.,  &  Mcneill,  H.  (2004).  Planar  polarity  from  flies  to  vertebrates.  Journal  of  Cell  Science,  117,  527-­‐533.  

33. Forêt,  S.,  Knack,  B.,  Houliston,  E.,  Momose,  T.,  Manuel,  M.,  Quéinnec,  E.,  Hayward,  D.  C.,  et  al.  (2010).  New  tricks  with  old  genes:  the  genetic  bases  of  novel  cnidarian  traits.  Trends  in  genetics  :  TIG,  26(4),  154-­‐158.  doi:10.1016/j.tig.2010.01.003  

34. Fujimoto,  T.,  Kataoka,  T.,  Otani,  S.,  Saito,  T.,  Aita,  T.,  Yamaha,  E.,  Arai,  K.  (2004),  Zoological  Science,  21(7),  747-­‐755.  

35. Fung,  S.,  Wang,  F.  A.  Y.,  Chase,  M.,  &  Godt,  D.  (2008).  Expression  Profile  of  the  Cadherin  Family  in  the  Developing  Drosophila  Brain.  Brain,  488,  469  -­‐  488.  doi:10.1002/cne  

36. Gao,  B.,  Song,  H.,  Bishop,  K.,  Elliot,  G.,  Garrett,  L.,  English,  M.  a,  Andre,  P.,  et  al.  (2011).  Wnt  Signaling  Gradients  Establish  Planar  Cell  Polarity  by  Inducing  Vangl2  Phosphorylation  through  Ror2.  Developmental  cell,  20(2),  163-­‐76.  Elsevier  Inc.  doi:10.1016/j.devcel.2011.01.001  

37. Gates,  R.  D.,  Baghdasarian,  G.,  &  Muscatine,  L.  (1992).  Temperature  Stress  Causes  Host  Cell  Detachment  in  Symbiotic  Cnidarians:  Implications  for  Coral  Bleaching.  Biological  Bulletin,  182(3),  324.  doi:10.2307/1542252  

38. Ginsberg,  M.  H.,  Partridge,  A.,  &  Shattil,  S.  J.  (2005).  Integrin  regulation.  Current  opinion  in  cell  biology,  17(5),  509-­‐16.  doi:10.1016/j.ceb.2005.08.010  

39. Gilbert,  S.  F.  (Editor)  (2003).  Developmental  biology,  7th  edition.  Sinauer  Associates  (Sunderland,  MA).  

40. Gong,  Y.,  Mo,  C.,  &  Fraser,  Scott  E.  (2004).  Planar  cell  polarity  signalling  controls  cell  division  orientation  during  zebrafish  gastrulation.  Nature,  430(August),  689-­‐693.  doi:10.1038/nature02789.Published  

41. Grasso,  L.  C.,  Maindonald,  J.,  Rudd,  S.,  Hayward,  D.  C.,  Saint,  R.,  Miller,  David  J,  &  Ball,  E.  E.  (2008).  Microarray  analysis  identifies  candidate  genes  for  key  roles  in  coral  development.  BMC  genomics,  9,  540.  doi:10.1186/1471-­‐2164-­‐9-­‐540  

42. Guindon,  S.,  &  Gascuel,  O.  (2003).  A  Simple,  Fast,  and  Accurate  Algorithm  to  Estimate  Large  Phylogenies  by  Maximum  Likelihood.  Systematic  Biology,  52(5),  696-­‐704.  doi:10.1080/10635150390235520  

43. Gumbiner,  B.  M.  (2005).  Regulation  of  cadherin-­‐mediated  adhesion  in  morphogenesis.  Nat.  Rev.  Mol.  Cell  Biol,  6,  622-­‐634.  

44. Gupta,  G.,  &  Surolia,  A.  (2007).  Collectins:  sentinels  of  innate  immunity.  BioEssays  :  news  and  reviews  in  molecular,  cellular  and  developmental  biology,  29(5),  452-­‐64.  doi:10.1002/bies.20573  

45. Halbleib,  J.  M.,  &  Nelson,  W.  J.  (2006).  Cadherins  in  development:  cell  adhesion,  sorting,  and  tissue  morphogenesis.  Genes  &  Development,  20,  3199-­‐3214.  doi:10.1101/gad.1486806  

46. Halder,  G.,  Callaerts,  P.,  Gehring,  W.  H.  (1995).  Induction  of  ectopic  eyes  by  targeted  expression  of  the  eyeless  gene  in  Drosophila.  Science,  267  (5205),  1788-­‐1799.  

47. Hatakeyama,  T.,  Kohzaki,  H.,  Nagatomo,  H.,  Yamasaki,  N.,  Ca,  F.,  S-­‐,  S.,  &  Iii,  C.-­‐.  (1994).  Purification  and  Characterisation  of  Four  Ca  2+  -­‐Dependent  lectins  from  the  Marine  Invertebrate,  Cucumaria  echinata.  J.  Biochem,  116,  209-­‐214.  

48. Hatta,  K.,  Takagi,  S.,  Fujisawa  H.,  Takeichi  M.  (1987).  Spatial  and  temporal  expression  pattern  of  N-­‐cadherin  cell  adhesion  molecules  correlated  with  morphogenetic  processes  of  chicken  embryos.  Developmental  Biology,  120(1),  215-­‐227.  

Page 145: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

126  

49. Hayward,  D.  C.,  Miller,  David  J,  &  Ball,  E.  E.  (2004).  Snail  expression  during  embryonic  development  of  the  coral  Acropora :  blurring  the  diploblast/triploblast  divide?  Development  Genes  and  Evolution,  214,  257-­‐260.  doi:10.1007/s00427-­‐004-­‐0398-­‐0  

50. Hogg,  N.,  &  Bates,  P.  a.  (2000).  Genetic  analysis  of  integrin  function  in  man:  LAD-­‐1  and  other  syndromes.  Matrix  biology  :  journal  of  the  International  Society  for  Matrix  Biology,  19(3),  211-­‐22.    

51. Honda,  S.,  Kashiwagi,  M.,  Miyamoto,  K.,  Takei,  Y.,  &  Hirose,  S.  (2000).  Multiplicity,  structures,  and  endocrine  and  exocrine  natures  of  eel  fucose-­‐binding  lectins.  The  Journal  of  biological  chemistry,  275(42),  33151-­‐7.  doi:10.1074/jbc.M002337200  

52. Hughes,  A  L.  (2001).  Evolution  of  the  integrin  alpha  and  beta  protein  families.  J.  Mol.  Evol,  52,  63-­‐72.  

53. Huhtala,  M.,  Heino,  J.,  Casciari,  D.,  de  Luise,  A.,  &  Johnson,  M.  S.  (2005).  Integrin  evolution:  insights  from  ascidian  and  teleost  fish  genomes.  Matrix  biology  :  journal  of  the  International  Society  for  Matrix  Biology,  24(2),  83-­‐95.  doi:10.1016/j.matbio.2005.01.003  

54. Hulpiau,  P.,  &  van  Roy,  Frans.  (2009).  Molecular  evolution  of  the  cadherin  superfamily.  The  international  journal  of  biochemistry  &  cell  biology,  41(2),  349-­‐69.  doi:10.1016/j.biocel.2008.09.027  

55. Hulpiau,  P.,  &  van  Roy,  Frans.  (2011).  New  insights  into  the  evolution  of  metazoan  cadherins.  Molecular  biology  and  evolution,  28(1),  647-­‐57.  doi:10.1093/molbev/msq233  

56. Humbert,  P.  O.,  Grzeschik,  N.  a,  Brumby,  a  M.,  Galea,  R.,  Elsum,  I.,  &  Richardson,  H.  E.  (2008).  Control  of  tumourigenesis  by  the  Scribble/Dlg/Lgl  polarity  module.  Oncogene,  27(55),  6888-­‐907.  doi:10.1038/onc.2008.341  

57. Humphries,  J.  D.,  Byron,  A.,  &  Humphries,  M.  J.  (2006).  Integrin  ligands  at  a  glance.  Journal  of  cell  science,  119(Pt  19),  3901-­‐3.  doi:10.1242/jcs.03098  

58. Hynes,  Richard  O.  (2002).  Integrins:  Bidirectional,  Allosteric  Signaling  Machines.  Cell,  110(6),  673-­‐687.  doi:10.1016/S0092-­‐8674(02)00971-­‐6  

59. Jannuzi,  A.  L.,  Bunch,  T.  A.,  Brabant,  M.  C.,  Miller,  S.  W.,  Mukai,  L.  Z.,  M,  &  Brower,  D  L.  (2002).  Disruption  of  C-­‐Terminal  cytoplasmic  domain  of  !  PS  integrin  subunit  has  dominant  negative  properties  in  developing  Drosophila.  Mol.  Biol.  Cell,  4,  1352-­‐1365.  

60. Johnson,  K.  G.,  Mckinnell,  I.  W.,  Stoker,  A.  W.,  &  Holt,  C.  E.  (2001).  Retinal  Ganglion  Cell  Axon  Outgrowth  in  the  Developing  Xenopus  Visual  System  ABSTRACT :  Journal  of  Neurobiology,  49,  99-­‐117.  

61. Johnson,  K.,  &  Holt,  C.  E.  (2000).  Expression  of  CRYP-­‐α,  LAR,  PTP-­‐δ,  and  PTP-­‐ρ  in  the  developing  Xenopus  visual  system.  Mechanisms  of  Development,  92(2),  291-­‐294.  doi:10.1016/S0925-­‐4773(99)00345-­‐7  

62. de  Jong,  D.  M.,  Hislop,  N.  R.,  Hayward,  D.  C.,  Reece-­‐Hoyes,  J.  S.,  Pontynen,  P.  C.,  Ball,  E.  E.,  &  Miller,  David  J.  (2006).  Components  of  both  major  axial  patterning  systems  of  the  Bilateria  are  differentially  expressed  along  the  primary  axis  of  a  “radiate”  animal,  the  anthozoan  cnidarian  Acropora  millepora.  Developmental  biology,  298(2),  632-­‐43.  doi:10.1016/j.ydbio.2006.07.034  

63. Katoh,  Masuko,  &  Katoh,  Masaru.  (2006).  Cross-­‐talk  of  WNT  and  FGF  Signaling  Pathways  at  GSK3β  to  Regulate  beta-­‐catenin  and  Snail  Signalling  Cascades.  Therapy,  5(9),  1059-­‐1064.  

64. Kemler,  R.  (1992),  Classical  cadherins,  Seminars  in  Cell  Biology,  3  (3),  149-­‐155.  

Page 146: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

127  

65. Kimura,  A.,  Sakaguchi,  E.,  &  Nonaka,  M.  (2009).  Multi-­‐component  complement  system  of  Cnidaria:  C3,  Bf,  and  MASP  genes  expressed  in  the  endodermal  tissues  of  a  sea  anemone,  Nematostella  vectensis.  Immunobiology,  214(3),  165-­‐78.  doi:10.1016/j.imbio.2009.01.003  

66. Kimura-­‐yoshida,  C.,  Nakano,  H.,  Okamura,  D.,  Nakao,  K.,  Yonemura,  S,  Belo,  J.  A.,  Aizawa,  S.,  et  al.  (2005).  Canonical  Wnt  signalling  and  its  antagonist  regulate  anterior-­‐posterior  axis  polarization  by  guiding  cell  migration  in  mouse  visceral  endoderm.  Dev.  Cell,  9,  639-­‐650.  

67. Kinashi,  T.  (2005).  Intracellular  signalling  controlling  integrin  activation  in  lymphocytes.  Nature  reviews.  Immunology,  5(7),  546-­‐59.  doi:10.1038/nri1646  

68. King,  N.  (2004).  The  unicellular  ancestry  of  animal  development.  Dev.  Cell,  7,  313-­‐325.  

69. King,  Nicole,  Westbrook,  M.  J.,  Young,  S.  L.,  Kuo,  A.,  Abedin,  M.,  Chapman,  J.,  Fairclough,  S.,  et  al.  (2008).  The  genome  of  the  choanoflagellate  Monosiga  brevicollis  and  the  origin  of  metazoans.  Nature,  451(7180),  783-­‐8.  doi:10.1038/nature06617  

70. Klein,  T.  J.,  &  Mlodzik,  M.  (2004).  A  conserved  signalling  cassette  regulates  hair  patterning  from  Drosophila  to  man,  101(25),  9173-­‐9174.  

71. Knack,  B.  a,  Iguchi,  A.,  Shinzato,  C.,  Hayward,  D.  C.,  Ball,  E.  E.,  &  Miller,  David  J.  (2008).  Unexpected  diversity  of  cnidarian  integrins:  expression  during  coral  gastrulation.  BMC  evolutionary  biology,  8,  136.  doi:10.1186/1471-­‐2148-­‐8-­‐136  

72. Kortschak,  R.  D.,  Samuel,  G.,  Saint,  R.,  &  Miller,  David  J.  (2003).  EST  Analysis  of  the  Cnidarian  Acropora  millepora  Reveals  Extensive  Gene  Loss  and  Rapid  Sequence  Divergence  in  the  Model  Invertebrates.  Current  Biology,  13(24),  2190-­‐2195.  doi:10.1016/j.cub.2003.11.030  

73. Kraus,  Y.,  &  Technau,  U.  (2006).  Gastrulation  in  the  sea  anemone  Nematostella  vectensis  occurs  by  invagination  and  immigration:  an  ultrastructural  study.  Development  genes  and  evolution,  216(3),  119-­‐32.  doi:10.1007/s00427-­‐005-­‐0038-­‐3  

74. Krogh,  a,  Larsson,  B.,  von  Heijne,  G,  &  Sonnhammer,  E.  L.  (2001).  Predicting  transmembrane  protein  topology  with  a  hidden  Markov  model:  application  to  complete  genomes.  Journal  of  molecular  biology,  305(3),  567-­‐80.  doi:10.1006/jmbi.2000.4315  

75. Kumburegama,  S.,  Wijesena,  N.,  Xu,  R.,  &  Wikramanayake,  A.  H.  (2011).  Strabismus-­‐mediated  primary  archenteron  invagination  is  uncoupled  from  Wnt/SZ-­‐catenin-­‐dependent  endoderm  cell  fate  specification  in  Nematostella  vectensis  (Anthozoa,  Cnidaria):  Implications  for  the  evolution  of  gastrulation.  EvoDevo,  2(1),  2.  BioMed  Central  Ltd.  doi:10.1186/2041-­‐9139-­‐2-­‐2  

76. Kusserow,  A.,  Pang,  K.,  Sturm,  C.,  Hrouda,  M.,  Lentfer,  J.,  Schmidt,  H.  a,  Technau,  U.,  et  al.  (2005).  Unexpected  complexity  of  the  Wnt  gene  family  in  a  sea  anemone.  Nature,  433(7022),  156-­‐60.  doi:10.1038/nature03158  

77. Kvennefors,  E.  C.  E.,  Leggat,  W.,  Hoegh-­‐Guldberg,  Ove,  Degnan,  B.  M.,  &  Barnes,  A.  C.  (2008).  An  ancient  and  variable  mannose-­‐binding  lectin  from  the  coral  Acropora  millepora  binds  both  pathogens  and  symbionts.  Developmental  and  comparative  immunology,  32(12),  1582-­‐92.  doi:10.1016/j.dci.2008.05.010  

78. Kvennefors,  E.  C.  E.,  Leggat,  W.,  Kerr,  C.  C.,  Ainsworth,  Tracy  D,  Hoegh-­‐Guldberg,  Ove,  &  Barnes,  A.  C.  (2010).  Analysis  of  evolutionarily  conserved  innate  immune  components  in  coral  links  immunity  and  symbiosis.  Developmental  and  comparative  immunology,  34(11),  1219-­‐29.  doi:10.1016/j.dci.2010.06.016  

Page 147: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

128  

79. Lasi,  M.,  David,  C.  N.,  &  Böttger,  A.  (2010).  Apoptosis  in  pre-­‐Bilaterians:  Hydra  as  a  model.  Apoptosis  :  an  international  journal  on  programmed  cell  death,  15(3),  269-­‐78.  doi:10.1007/s10495-­‐009-­‐0442-­‐7  

80. Le,  T.  L.,  Yap,  A.  S.,  Stow,  J.  L.  (1999),  Recycling  of  E-­‐cadherin:  a  potential  mechanism  for  regulating  cadherin  dynamics.  Journal  of  cell  biology,  146(1),  219-­‐233.  

81. Lee,  P.  N.,  Kumburegama,  S.,  Marlow,  H.  Q.,  Martindale,  M.  Q.,  &  Wikramanayake,  A.  H.  (2007).  Asymmetric  developmental  potential  along  the  animal-­‐vegetal  axis  in  the  anthozoan  cnidarian,  Nematostella  vectensis,  is  mediated  by  Dishevelled.  Developmental  biology,  310(1),  169-­‐86.  doi:10.1016/j.ydbio.2007.05.040  

82. Legate,  K.  R.,  Montañez,  E.,  Kudlacek,  O.,  &  Fässler,  R.  (2006).  ILK,  PINCH  and  parvin:  the  tIPP  of  integrin  signalling.  Nature  reviews.  Molecular  cell  biology,  7(1),  20-­‐31.  doi:10.1038/nrm1789  

83. Letunic,  I.,  Doerks,  T.,  &  Bork,  Peer.  (2009).  SMART  6:  recent  updates  and  new  developments.  Nucleic  acids  research,  37(Database  issue),  D229-­‐32.  doi:10.1093/nar/gkn808  

84. Lin,  K.-­‐lin,  Wang,  J.-­‐terng,  &  Fang,  L.-­‐shing.  (2000).  Participation  of  Glycoproteins  on  Zooxanthellal  Cell  Walls  in  the  Establishment  of  a  Symbiotic  Relationship  with  the  Sea  Anemone,  Aiptasia  pulchella.  Zoological  Studies,  39(3),  172-­‐178.  

85. Logan,  C.  Y.,  Miller,  J.  R.,  Ferkowicz,  M.  J.,  &  Mcclay,  D.  R.  (1999).  Nuclear  beta-­‐catenin  is  required  to  specify  vegetal  cell  fates  in  the  sea  urchin  embryo.  Development,  126,  345-­‐357.  

86. Lupas,  A.,  van  Dyke,  M.,  Stock,  J.  (1991).  Predicted  coiled  coils  from  protein  sequences.  Science,  252(5010),  1162-­‐1164  doi:10.1126/science.252.5009.1162  

87. Magie,  C.  R.,  &  Martindale,  M.  Q.  (2008).  Cell-­‐cell  adhesion  in  the  cnidaria:  insights  into  the  evolution  of  tissue  morphogenesis.  The  Biological  bulletin,  214(3),  218-­‐32.    

88. Magie,  C.  R.,  Daly,  M.,  &  Martindale,  M.  Q.  (2007).  Gastrulation  in  the  cnidarian  Nematostella  vectensis  occurs  via  invagination  not  ingression.  Developmental  biology,  305(2),  483-­‐97.  doi:10.1016/j.ydbio.2007.02.044  

89. Marlow,  H.  Q.,  &  Martindale,  M.  Q.  (2007).  Embryonic  development  in  two  species  of  scleractinian  coral  embryos:  Symbiodinium  localization  and  mode  of  gastrulation.  Evolution  &  development,  9(4),  355-­‐67.  doi:10.1111/j.1525-­‐142X.2007.00173.x  

90. Marsden,  M.,  &  Burke,  R  D.  (1998).  The  betaL  integrin  subunit  is  necessary  for  gastrulation  in  sea  urchin  embryos.  Dev.  Biol.,  203,  134-­‐148.  

91. Martin-­‐Bermudo,  M.  D.,  Dunin-­‐Borkowski,  O.  M.,  &  Brown,  N  H.  (1997).  Specificity  of  PS  integrin  function  during  embryogenesis  resides  in  the  alpha  subunit  extracellular  domain.  The  EMBO  journal,  16(14),  4184-­‐93.    

92. Martindale,  M.  Q.  (2005).  The  evolution  of  metazoan  axial  properties.  Nature  reviews.  Genetics,  6(12),  917-­‐27.  doi:10.1038/nrg1725  

93. Martindale,  M.  Q.,  Finnerty,  J.  R.,  &  Henry,  J.  Q.  (2002).  The  Radiata  and  the  evolutionary  origins  of  the  bilaterian  body  plan.  Molecular  phylogenetics  and  evolution,  24(3),  358-­‐65.    

94. Martindale,  M.  Q.,  Pang,  K.,  &  Finnerty,  J.  R.  (2004).  Investigating  the  origins  of  triploblasty:  “mesodermal”  gene  expression  in  a  diploblastic  animal,  the  sea  anemone  Nematostella  vectensis  (phylum,  Cnidaria;  class,  Anthozoa).  Development  (Cambridge,  England),  131(10),  2463-­‐74.  doi:10.1242/dev.01119  

Page 148: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

129  

95. Matus,  D.  Q.,  Thomsen,  G.  H.,  &  Martindale,  M.  Q.  (2006).  Dorso/ventral  genes  are  asymmetrically  expressed  and  involved  in  germ-­‐layer  demarcation  during  cnidarian  gastrulation.  Current  biology  :  CB,  16(5),  499-­‐505.  doi:10.1016/j.cub.2006.01.052  

96. Miller,  David  J,  &  Ball,  E.  E.  (2000).  The  coral.  BioEssays,  22,  291-­‐296.  

97. Miller,  David  J,  Hemmrich,  G.,  Ball,  E.  E.,  Hayward,  D.  C.,  Khalturin,  K.,  Funayama,  N.,  Agata,  K.,  et  al.  (2007).  The  innate  immune  repertoire  in  cnidaria-­‐-­‐ancestral  complexity  and  stochastic  gene  loss.  Genome  biology,  8(4),  R59.  doi:10.1186/gb-­‐2007-­‐8-­‐4-­‐r59  

98. Miller,  J.  R.,  &  Mcclay,  D.  R.  (1997).  Characterisation  of  the  role  of  cadherin  in  regulating  cell  adhesion  during  sea  urchin  development.  Dev.  Biol.,  192,  323-­‐339.  

99. Momose,  T.,  &  Houliston,  E.  (2007).  Two  oppositely  localised  frizzled  RNAs  as  axis  determinants  in  a  cnidarian  embryo.  PLoS  biology,  5(4),  e70.  doi:10.1371/journal.pbio.0050070  

100. Momose,  T.,  &  Schmid,  Volker.  (2006).  Animal  pole  determinants  define  oral-­‐aboral  axis  polarity  and  endodermal  cell-­‐fate  in  hydrozoan  jellyfish  Podocoryne  carnea.  Developmental  biology,  292(2),  371-­‐80.  doi:10.1016/j.ydbio.2006.01.012  

101. Mott,  R.  (2000).  Accurate  formula  for  P-­‐values  of  gapped  local  sequence  and  profile  alignments.  Journal  of  molecular  biology,  300(3),  649-­‐59.  doi:10.1006/jmbi.2000.3875  

102. Nelson,  W.  J.,  &  Nusse,  R.  (2004).  Convergence  of  Wnt,  β-­‐catenin  and  cadherin  pathways.  Science,  303(March),  1483-­‐1487.  

103. Nichols,  S.  a,  Dirks,  W.,  Pearse,  J.  S.,  &  King,  Nicole.  (2006).  Early  evolution  of  animal  cell  signalling  and  adhesion  genes.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  103(33),  12451-­‐6.  doi:10.1073/pnas.0604065103  

104. Nicotra,  M.  L.,  Powell,  A.  E.,  Rosengarten,  R.  D.,  Moreno,  M.,  Grimwood,  J.,  Lakkis,  F.  G.,  Dellaporta,  S.  L.,  et  al.  (2009).  A  hypervariable  invertebrate  allodeterminant.  Current  biology,  19(7),  583-­‐9.  doi:10.1016/j.cub.2009.02.040  

105. Nieman,  M.  T.,  Prudoff,  R.  S.,  Johnson,  K.  R.,  &  Wheelock,  M.  J.  (1999).  N-­‐Cadherin  Promotes  Motility  in  Human  Breast  Cancer  Cells  Regardless  of  their  E-­‐Cadherin  Expression.  Cell,  147(3),  631-­‐643.  

106. Nieves,  B.,  Jones,  C.  W.,  Ward,  R.,  Ohta,  Y.,  Reverte,  C.  G.,  &  LaFlamme,  S.  E.  (2010).  The  NPIY  motif  in  the  integrin  beta1  tail  dictates  the  requirement  for  talin-­‐1  in  outside-­‐in  signalling.  Journal  of  cell  science,  123(Pt  8),  1216-­‐26.  doi:10.1242/jcs.056549  

107. Nishiuchi,  R.  (2003).  Characterisation  of  the  Ligand-­‐Binding  Specificities  of  integrin    3  1  and    6  1  Using  a  Panel  of  Purified  Laminin  Isoforms  Containing  Distinct      Chains.  Journal  of  Biochemistry,  134(4),  497-­‐504.  doi:10.1093/jb/mvg185  

108. Nollet,  F.,  Kools,  P.,  Roy,  V.,  &  F.  (2000).  Phylogenetic  analysis  of  the  cadherin  superfamily  allows  identification  of  six  major  subfamilies  besides  several  solitary  members.  J.  Mol.  Biol,  299,  551-­‐572.  

109. Nordström,  K.  J.  V.,  Lagerström,  M.  C.,  Wallér,  L.  M.  J.,  Fredriksson,  R.,  &  Schiöth,  H.  B.  (2009).  The  Secretin  GPCRs  descended  from  the  family  of  Adhesion  GPCRs.  Molecular  biology  and  evolution,  26(1),  71-­‐84.  doi:10.1093/molbev/msn228  

110. Oda,  H,  Tsukita,  S,  &  Takeichi,  M.  (1998).  Dynamic  behavior  of  the  cadherin-­‐based  cell-­‐cell  adhesion  system  during  Drosophila  gastrulation.  Developmental  biology,  203(2),  435-­‐50.  doi:10.1006/dbio.1998.9047  

111. Oda,  Hiroki,  &  Tsukita,  Shoichiro.  (1999).  Nonchordate  Classic  cadherins  Have  a  Structurally  and  Functionally  Unique  Domain  That  Is  Absent  from  Chordate  Classic  cadherins.  Developmental  Biology,  422,  406  -­‐  422.  

Page 149: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

130  

112. Odorico,  D.  M.,  &  Miller,  D  J.  (1997).  Variation  in  the  ribosomal  internal  transcribed  spacers  and  5.8S  rDNA  among  five  species  of  Acropora  (Cnidaria;  Scleractinia):  patterns  of  variation  consistent  with  reticulate  evolution.  Molecular  biology  and  evolution,  14(5),  465-­‐73.    

113. Oren,  M.,  Douek,  J.,  Fishelson,  Z.,  &  Rinkevich,  B.  (2007).  Identification  of  immune-­‐relevant  genes  in  histoincompatible  rejecting  colonies  of  the  tunicate  Botryllus  schlosseri.  Developmental  and  comparative  immunology,  31(9),  889-­‐902.  doi:10.1016/j.dci.2006.12.009  

114. Pancer,  Z.,  &  Cooper,  M.  D.  (2006).  The  evolution  of  adaptive  immunity.  Annual  review  of  immunology,  24,  497-­‐518.  doi:10.1146/annurev.immunol.24.021605.090542  

115. Putnam,  N.  H.,  Srivastava,  M.,  Hellsten,  U.,  Dirks,  B.,  Chapman,  J.,  Salamov,  A.,  Terry,  A.,  et  al.  (2007).  Sea  anemone  genome  reveals  ancestral  eumetazoan  gene  repertoire  and  genomic  organization.  Science  (New  York,  N.Y.),  317(5834),  86-­‐94.  doi:10.1126/science.1139158  

116. Ramos,  J.  W.,  Whittaker,  C.  A.,  &  Desimone,  D.  W.  (1996).  Integrin-­‐dependent  adhesive  activity  is  spatially  controlled  by  inductive  signals  at  gastrulation.  Development,  122,  2873-­‐2883.  

117. Range,  R.  C.,  Venuti,  J.  M.,  &  McClay,  D.  R.  (2005).  LvGroucho  and  nuclear  beta-­‐catenin  functionally  compete  for  Tcf  binding  to  influence  activation  of  the  endomesoderm  gene  regulatory  network  in  the  sea  urchin  embryo.  Developmental  biology,  279(1),  252-­‐67.  doi:10.1016/j.ydbio.2004.12.023  

118. Rebay,  I.,  Fleming  R.  J.,  Fehon,  G.  F.,  Cherbas,  L.,  Cherbas,  P.,  Artavanis-­‐Tsakonas  (1991).  Specific  EGF  repeats  of  Notch  mediate  interactions  with  Delta  and  Serrate:  Implications  for  notch  as  a  multifunctional  receptor.  Cell,  67(4),  687-­‐699.  doi:10.1016/0092-­‐8674(91)90064-­‐6  

119. Reber-­‐Müller,  S.,  Studer,  R.,  Müller,  P.,  Yanze,  N.,  &  Schmid,  V.  (2001).  Integrin  and  talin  in  the  jellyfish  Podocoryne  carnea.  Cell  biology  international,  25(8),  753-­‐69.  doi:10.1006/cbir.2000.0708  

120. Rodríguez,  I.  (2004).  The  dachsous  gene,  a  member  of  the  cadherin  family,  is  required  for  Wg-­‐dependent  pattern  formation  in  the  Drosophila  wing  disc.  Development  (Cambridge,  England),  131(13),  3195-­‐206.  doi:10.1242/dev.01195  

121. Rokas,  A.  (2008).  The  origins  of  multicellularity  and  the  early  history  of  the  genetic  toolkit  for  animal  development.  Annual  review  of  genetics,  42,  235-­‐51.  doi:10.1146/annurev.genet.42.110807.091513  

122. van  Roy,  F,  &  Berx,  G.  (2008).  The  cell-­‐cell  adhesion  molecule  E-­‐cadherin.  Cellular  and  molecular  life  sciences  :  CMLS,  65(23),  3756-­‐88.  doi:10.1007/s00018-­‐008-­‐8281-­‐1  

123. Sakarya,  O.,  Armstrong,  K.  a,  Adamska,  M.,  Adamski,  M.,  Wang,  I.-­‐F.,  Tidor,  B.,  Degnan,  B.  M.,  et  al.  (2007).  A  post-­‐synaptic  scaffold  at  the  origin  of  the  animal  kingdom.  PloS  one,  2(6),  e506.  doi:10.1371/journal.pone.0000506  

124. Schambony,  A.,  Kunz,  M.,  &  Gradl,  D.  (2004).  Cross-­‐regulation  of  Wnt  signalling  and  cell  adhesion.  Differentiation;  research  in  biological  diversity,  72(7),  307-­‐18.  doi:10.1111/j.1432-­‐0436.2004.07207002.x  

125. Schmitt,  D.  M.,  &  Brower,  D  L.  (2001).  Intron  dynamics  and  the  evolution  of  integrin  beta-­‐subunit  genes:  maintenance  of  an  ancestral  gene  structure  in  the  coral,  Acropora  millepora.  Journal  of  molecular  evolution,  53(6),  703-­‐10.  doi:10.1007/s002390010257  

126. Schneider,  I.  (1972).  Cell  lines  derived  from  late  embryonic  stages  of  Drosophila  melanogaster.  Journal  of  embryology  and  experimental  morphology,  27(2),  353-­‐65.    

Page 150: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

131  

127. Schultz,  J.,  Milpetz,  F.,  Bork,  P,  &  Ponting,  C.  P.  (1998).  SMART,  a  simple  modular  architecture  research  tool:  identification  of  signalling  domains.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  95(11),  5857-­‐64.    

128. Schwarz,  R.  S.,  Hodes-­‐Villamar,  L.,  Fitzpatrick,  K.  a,  Fain,  M.  G.,  Hughes,  Austin  L,  &  Cadavid,  L.  F.  (2007).  A  gene  family  of  putative  immune  recognition  molecules  in  the  hydroid  Hydractinia.  Immunogenetics,  59(3),  233-­‐46.  doi:10.1007/s00251-­‐006-­‐0179-­‐1  

129. Sebé-­‐pedrós,  A.,  Roger,  A.  J.,  Lang,  F.  B.,  King,  Nicole,  &  Ruiz-­‐trillo,  I.  (2010).  Ancient  origin  of  the  integrin-­‐mediated  adhesion  and  signalling  machinery.  PNAS.  doi:10.1073/pnas.1002257107/-­‐/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1002257107  

130. Seifert,  J.  R.  K.,  &  Mlodzik,  M.  (2007).  Frizzled/PCP  signalling:  a  conserved  mechanism  regulating  cell  polarity  and  directed  motility.  Nature  reviews.  Genetics,  8(2),  126-­‐38.  doi:10.1038/nrg2042  

131. Serini,  G.,  Valdembri,  D.,  &  Bussolino,  F.  (2006).  Integrins  and  angiogenesis:  a  sticky  business.  Experimental  cell  research,  312(5),  651-­‐8.  doi:10.1016/j.yexcr.2005.10.020  

132. Shimizu,  T.,  Yabe,  T.,  Muraoka,  O.,  Yonemura,  Shigenobu,  Aramaki,  S.,  Hatta,  K.,  Bae,  Y.-­‐K.,  et  al.  (2005).  E-­‐cadherin  is  required  for  gastrulation  cell  movements  in  zebrafish.  Mechanisms  of  development,  122(6),  747-­‐63.  doi:10.1016/j.mod.2005.03.008  

133. Shindo,  A.,  Yamamoto,  T.  S.,  &  Ueno,  N.  (2008).  Coordination  of  cell  polarity  during  Xenopus  gastrulation.  PloS  one,  3(2),  e1600.  doi:10.1371/journal.pone.0001600  

134. Shinzato,  C.,  Iguchi,  A.,  Hayward,  D.  C.,  Technau,  U.,  Ball,  E.  E.,  &  Miller,  David  J.  (2008).  Sox  genes  in  the  coral  Acropora  millepora:  divergent  expression  patterns  reflect  differences  in  developmental  mechanisms  within  the  Anthozoa.  BMC  evolutionary  biology,  8,  311.  doi:10.1186/1471-­‐2148-­‐8-­‐311  

135. Shook,  D.,  &  Keller,  Ray.  (2003).  Mechanisms,  mechanics  and  function  of  epithelial–mesenchymal  transitions  in  early  development.  Mechanisms  of  Development,  120(11),  1351-­‐1383.  doi:10.1016/j.mod.2003.06.005  

136. Skouloudaki,  K.,  Puetz,  M.,  Simons,  M.,  Courbard,  J.-­‐R.,  Boehlke,  C.,  Hartleben,  B.,  Engel,  C.,  et  al.  (2009).  Scribble  participates  in  Hippo  signalling  and  is  required  for  normal  zebrafish  pronephros  development.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  106(21),  8579-­‐84.  doi:10.1073/pnas.0811691106  

137. Smith,  K.  M.,  Gee,  L.,  Blitz,  I.  L.,  &  Bode,  H.  R.  (1999).  CnOtx,  a  member  of  the  Otx  gene  family,  has  a  role  in  cell  movement  in  hydra.  Developmental  biology,  212(2),  392-­‐404.  doi:10.1006/dbio.1999.9337  

138. Srivastava,  M.,  Begovic,  E.,  Chapman,  J.,  Putnam,  N.  H.,  Hellsten,  U.,  Kawashima,  T.,  Kuo,  A.,  et  al.  (2008).  The  Trichoplax  genome  and  the  nature  of  placozoans.  Nature,  454(7207),  955-­‐60.  doi:10.1038/nature07191  

139. Srivastava,  M.,  Simakov,  O.,  Chapman,  J.,  Fahey,  B.,  Gauthier,  M.  E.  a,  Mitros,  T.,  Richards,  G.  S.,  Conaco,  C.,  Dacre,  M.,  Hellsten,  U.,  Larroux,  C.,  Putnam,  N.  H.,  Stanke,  M.,  Adamska,  M.,  Darling,  A.,  Degnan,  S.  M.,  Oakley,  T.  H.,  Plachetzki,  D.  C.,  Zhai,  Y.,  Adamski,  M.,  Calcino,  A.,  Cummins,  S.  F.,  Goodstein,  D.  M.,  Harris,  C.,  Jackson,  D.  J.,  Leys,  S.  P.,  Shu,  S.,  Woodcroft,  B.  J.,  Vervoort,  M.,  Kosik,  K.  S.,  Manning,  G.,  Degnan,  B.  M.,  &  Rokhsar,  D.  S.  (2010a).  The  Amphimedon  queenslandica  genome  and  the  evolution  of  animal  complexity.  Nature,  466(7307),  720-­‐726.  doi:10.1038/nature09201  

Page 151: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

132  

140. Srivastava,  M.,  Simakov,  O.,  Chapman,  J.,  Fahey,  B.,  Gauthier,  M.  E.  a,  Mitros,  T.,  Richards,  G.  S.,  Conaco,  C.,  Dacre,  M.,  Hellsten,  U.,  Larroux,  C.,  Putnam,  N.  H.,  Stanke,  M.,  Adamska,  M.,  Darling,  A.,  Degnan,  S.  M.,  Oakley,  T.  H.,  Plachetzki,  D.  C.,  Zhai,  Y.,  Adamski,  M.,  Calcino,  A.,  Cummins,  S.  F.,  Goodstein,  D.  M.,  Harris,  C.,  Jackson,  D.  J.,  Leys,  S.  P.,  Shu,  S.,  Woodcroft,  B.  J.,  Vervoort,  M.,  Kosik,  K.  S.,  Manning,  G.,  Degnan,  B.  M.,  &  Rokhsar,  D.  S.  (2010b).  The  Amphimedon  queenslandica  genome  and  the  evolution  of  animal  complexity.  Nature,  466(7307),  720-­‐726.  Nature  Publishing  Group.  doi:10.1038/nature09201  

141. Streuli,  C.  H.  (2009).  Integrins  and  cell-­‐fate  determination.  Journal  of  cell  science,  122(Pt  2),  171-­‐7.  doi:10.1242/jcs.018945  

142. Strutt,  D.  (2003).  Frizzled  signalling  and  cell  polarisation  in  Drosophila  and  vertebrates.  Development  (Cambridge,  England),  130(19),  4501-­‐13.  doi:10.1242/dev.00695  

143. Takagi,  J.,  Petre,  B.  M.,  Walz,  T.,  &  Springer,  T.  a.  (2002).  Global  conformational  rearrangements  in  integrin  extracellular  domains  in  outside-­‐in  and  inside-­‐out  signalling.  Cell,  110(5),  599-­‐11.    

144. Takeichi,  M.,  Shirayoshi,  Y.,  Hatta,  K.,  Nose,  A.  (1986).  Cadherins:  their  morphogenetic  role  in  animal  development.  Progress  in  Clinical  and  Biological  Research  (New  York,  NY),  217B,  17-­‐27.  

145. Takeichi,  M.  (1988).  The  cadherins:  cell-­‐cell  adhesion  molecules  controlling  animal  morphogenesis.  Development  (Cambridge,  England),  102(4),  639-­‐55.    

146. Tan,  C.,  Costello,  P.,  Sanghera,  J.,  Dominguez,  D.,  Baulida,  J.,  de  Herreros,  a  G.,  &  Dedhar,  S.  (2001).  Inhibition  of  integrin  linked  kinase  (ILK)  suppresses  beta-­‐catenin-­‐Lef/Tcf-­‐dependent  transcription  and  expression  of  the  E-­‐cadherin  repressor,  snail,  in  APC-­‐/-­‐  human  colon  carcinoma  cells.  Oncogene,  20(1),  133-­‐40.  doi:10.1038/sj.onc.1204052  

147. Technau,  U.,  Rudd,  S.,  Maxwell,  P.,  Gordon,  P.  M.  K.,  Saina,  M.,  Grasso,  L.  C.,  Hayward,  D.  C.,  et  al.  (2005).  Maintenance  of  ancestral  complexity  and  non-­‐metazoan  genes  in  two  basal  cnidarians.  Trends  in  genetics  :  TIG,  21(12),  633-­‐9.  doi:10.1016/j.tig.2005.09.007  

148. Topol,  L.,  Jiang,  X.,  Choi,  H.,  Garrett-­‐Beal,  L.,  Carolan,  P.  J.,  &  Yang,  Y.  (2003).  Wnt-­‐5a  inhibits  the  canonical  Wnt  pathway  by  promoting  GSK-­‐3-­‐independent  beta-­‐catenin  degradation.  The  Journal  of  cell  biology,  162(5),  899-­‐908.  doi:10.1083/jcb.200303158  

149. Vincan,  E.,  &  Barker,  N.  (2008).  The  upstream  components  of  the  Wnt  signalling  pathway  in  the  dynamic  EMT  and  MET  associated  with  colorectal  cancer  progression.  Clinical  &  experimental  metastasis,  25(6),  657-­‐63.  doi:10.1007/s10585-­‐008-­‐9156-­‐4  

150. Wallingford,  J  B,  Rowning,  B.  A.,  Vogeli,  K.  M.,  Rothbächer,  U.,  Fraser,  S  E,  &  Harland,  R.  M.  (2000).  Dishevelled  controls  cell  polarity  during  Xenopus  gastrulation.  Nature,  405(6782),  81-­‐5.  doi:10.1038/35011077  

151. Wang,  J.,  Hamblet,  N.  S.,  Mark,  S.,  Dickinson,  M.  E.,  Brinkman,  B.  C.,  Segil,  N.,  Fraser,  Scott  E,  et  al.  (2006).  Dishevelled  genes  mediate  a  conserved  mammalian  PCP  pathway  to  regulate  convergent  extension  during  neurulation.  Development  (Cambridge,  England),  133(9),  1767-­‐78.  doi:10.1242/dev.02347  

152. Wang,  Q.,  Sun,  Z.-­‐X.,  Allgayer,  H.,  &  Yang,  H.-­‐S.  (2010).  Downregulation  of  E-­‐cadherin  is  an  essential  event  in  activating  beta-­‐catenin/Tcf-­‐dependent  transcription  and  expression  of  its  target  genes  in  Pdcd4  knockdown  cells.  Oncogene,  29(1),  128-­‐38.  Nature  Publishing  Group.  doi:10.1038/onc.2009.302  

153. Weis,  W.  I.,  Taylor,  M.  E.,  Drickamer,  K.  (1998)  The  C-­‐type  lectin  superfamily  in  the  immune  system.  Immunological  Reviews,  163,  19-­‐34.    

Page 152: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

133  

154. Weitzel,  H.  E.,  Illies,  M.  R.,  Byrum,  C.  a,  Xu,  R.,  Wikramanayake,  A.  H.,  &  Ettensohn,  C.  a.  (2004).  Differential  stability  of  beta-­‐catenin  along  the  animal-­‐vegetal  axis  of  the  sea  urchin  embryo  mediated  by  dishevelled.  Development  (Cambridge,  England),  131(12),  2947-­‐56.  doi:10.1242/dev.01152  

155. van  de  Wetering,  J.  K.,  van  Golde,  L.  M.  G.,  &  Batenburg,  J.  J.  (2004).  Collectins:  players  of  the  innate  immune  system.  European  journal  of  biochemistry  /  FEBS,  271(7),  1229-­‐49.  doi:10.1111/j.1432-­‐1033.2004.04040.x  

156. Whittaker,  C.  A.,  &  Desimone,  D.  W.  (1993).  Integrin  alpha  subunit  mRNAs  are  differentially  expressed  in  early  Xenopus  embryos.  Development,  117,  1239-­‐1249.  

157. Whittaker,  C.  a,  Bergeron,  K.-­‐F.,  Whittle,  J.,  Brandhorst,  B.  P.,  Burke,  Robert  D,  &  Hynes,  Richard  O.  (2006).  The  echinoderm  adhesome.  Developmental  biology,  300(1),  252-­‐66.  doi:10.1016/j.ydbio.2006.07.044  

158. Wikramanayake,  A.  H.,  Hong,  M.,  Lee,  P.  N.,  Pang,  K.,  Byrum,  C.  A.,  Bince,  J.  M.,  Xu,  R.,  et  al.  (2003).  An  ancient  role  for  nuclear  b  -­‐catenin  in  the  evolution  of  axial  polarity  and  germ  layer  segregation.  Nature,  426(November).  doi:10.1038/nature02116.1.  

159. Wilkinson,  T.  N.,  Bathgate,  R.  A.  (2007).  The  evolution  of  the  relaxin  peptide  family  and  their  receptors.  Advances  in  Experimental  Medicine  and  Biology,  612,  1-­‐13  

160. Wolpert,  L.,  &  Tickle,  C.  (Editors)  (2010),  Principles  of  Development.  4th  Edition,  Oxford  University  Press.    

161. Wood-­‐Charlson,  E.  M.,  &  Weis,  V.  M.  (2009).  The  diversity  of  C-­‐type  lectins  in  the  genome  of  a  basal  metazoan,  Nematostella  vectensis.  Developmental  and  comparative  immunology,  33(8),  881-­‐9.  doi:10.1016/j.dci.2009.01.008  

162. Wootton,  J.  C.  (1994),  Non-­‐globular  domains  in  protein  sequences:  Automated  segmentation  using  complexity  measures.  Computers  and  Chemistry,  18(3),  269-­‐285  doi:10.1016/0097-­‐8485(94)85023-­‐2    

163. Wu,  J.,  &  Mlodzik,  M.  (2009).  A  quest  for  the  mechanism  regulating  global  planar  cell  polarity  of  tissues.  Trends  in  cell  biology,  19(7),  295-­‐305.  doi:10.1016/j.tcb.2009.04.003  

164. Wu,  S.-­‐Y.,  &  McClay,  D.  R.  (2007).  The  Snail  repressor  is  required  for  PMC  ingression  in  the  sea  urchin  embryo.  Development  (Cambridge,  England),  134(6),  1061-­‐70.  doi:10.1242/dev.02805  

165. Xian,  W.,  Schwertfeger,  K.  L.,  Vargo-­‐Gogola,  T.,  &  Rosen,  J.  M.  (2005).  Pleiotropic  effects  of  FGFR1  on  cell  proliferation,  survival,  and  migration  in  a  3D  mammary  epithelial  cell  model.  The  Journal  of  cell  biology,  171(4),  663-­‐73.  doi:10.1083/jcb.200505098  

166. Yagi,  T.,  &  Takeichi,  M.  (2000).  Cadherin  superfamily  genes:  Functions,  genomic  organization,  and  neurologic  diversity.  Genes  &  Dev,  14,  1169-­‐1180.  

167. Yang,  J.  T.,  Bader,  B.  L.,  Kreidberg,  J.  a,  Ullman-­‐Culleré,  M.,  Trevithick,  J.  E.,  &  Hynes,  R  O.  (1999).  Overlapping  and  independent  functions  of  fibronectin  receptor  integrins  in  early  mesodermal  development.  Developmental  biology,  215(2),  264-­‐77.  doi:10.1006/dbio.1999.9451  

168. Yook,  J.  I.,  Li,  X.-­‐Y.,  Ota,  I.,  Fearon,  E.  R.,  &  Weiss,  S.  J.  (2005).  Wnt-­‐dependent  regulation  of  the  E-­‐cadherin  repressor  snail.  The  Journal  of  biological  chemistry,  280(12),  11740-­‐8.  doi:10.1074/jbc.M413878200  

169. Yook,  J.  I.,  Li,  X.-­‐Y.,  Ota,  I.,  Hu,  C.,  Kim,  H.  S.,  Kim,  N.  H.,  Cha,  S.  Y.,  Ryu,  J.  K.,  Choi  Y.  J.,  Kim,  J.,  Fearon,  E.  R.,  Weiss,  S.  J.  (2006).  A  Wnt-­‐Axin2-­‐GSK3beta  cascade  regulates  Snail1  activity  in  breast  cancer  cells.  Nature  cell  biology,  8(12),  1398-­‐406.  

Page 153: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Reference  List  

134  

170. Yoshida,  C.,  Takeichi  M.  (1982)  Teratocarinoma  cell  adhesion:  identification  of  a  cell-­‐surface  protein  involved  in  calcium-­‐dependent  cell  aggregation,  Cell,  28(2),  217-­‐224.  

171. Zhao,  H.,  Tanegashima,  K.,  Ro,  H.,  &  Dawid,  I.  B.  (2008).  Lrig3  regulates  neural  crest  formation  in  Xenopus  by  modulating  Fgf  and  Wnt  signalling  pathways.  Development,  135(7),  1283-­‐1293.  doi:10.1242/dev.015073.Lrig3    

 

 

Page 154: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

135  

Appendix A: Supplementary Material

Chapter 4 Supplementary Figure 4.1

Protein  Family   HMMPFAM  

Search  Terms  

BLAST  

Search  Terms  

Cadherin   1. Cad 2. cad NOT dict NOT scad 3. CA NOT EGF NOT egf

NOT CAP NOT CAD_1 NOT CARD NOT ICAR NOT Dicty NOT ICAT NOT CAS NOT Pro_CA NOT SCAMP NOT SCA7

4. Protocad 5. cadg  

6. Cadherin 7. Cadherin 8. Protocad 9. protocad 10. ProtoCad 11. Proto-cad 12. Proto-Cad 13. Proto-CAD 14. Dachsous 15. FAT NOT Fatty 16. Desmoglein 17. Desmocollin 18. CELR 19. CELSR 20. Selectin 21. selectin 22. falmingo 23. Flamingo 24. Calsyntenin 25. Calsyntenin 26. Starry 27. starry 28. E_value < 1E-25

integrin   29. ILK 30. ntegrin 31. INB 32. PSI 33. psinew 34. Talin 35. Talin 36. ICAP-1 37. FG-GAP 38. fg-gap 39. DISIN 40. LWEQ (Talin

diagnostic) 41. Int_alpha 42. int_alpha 43. ADAM  

44. ntegrin 45. isintegrin 46. Talin 47. Talin 48. ntergrin AND inked 49. E_value < 1E-15

lectin   50. lectin 51. lectin 52. PA-I 53. Intimin 54. intimin 55. APT

68. CELIII 69. ndosialin (Endosialin) 70. lectin 71. lectin 72. c-type 73. Attractin

Page 155: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

136  

56. Agglutinin 57. LECT 58. Knot1 59. PLEC 60. TECPR 61. ftp 62. ricin 63. Ricin 64. CRD 65. F5_F8 66. blect 67. B_lectin

74. attractin 75. Polycystin 76. polycystin 77. PKD 78. Pkd

Adhesion  LRR   79. LRR  80. LRR, 7tm_1  

Class  B  Adhesion  GPCR   81. 7tm_2 82. Frizzled  

83. Frizzled 84. Frizzled 85. FRIZZLED 86. Smoothened 87. smoothened 88. SMOOTHENED 89. E_value < 1E-10

Immunoglobulin  

Superfamily  

90. titin 91. -set 92. ig NOT Lig NOT signal

NOT align NOT lig 93. Ig 94. IG NOT PIG NOT AIG 95. Adhes 96. adhes 97. CAM NOT SCAMP

NOT calmodulin NOT Calmodulin  

98. cell AND adhesion 99. CAM NOT |CAM (ie.

"pipe"CAM - this occurs in some identifiers) NOT almodul

100. cam NOT camp NOT came

101. mmunoglobulin 102. robo 103. Robo 104. oundabout 105. Neogenin 106. neogenin 107. DCC 108. Netrin AND eceptor 109. olorectal AND

cancer 110. ontactin 111. BOC 112. rother AND of 113. CDO 114. ysteine AND

ioxygen 115. pinin 116. Pinin 117. 1E-20 118. Toll NOT olloid AND

recept 119. toll NOT olloid AND

recept 120. 1E-10

Extracellular  Matrix   121. LY NOT zf-LYAR 162. ollagen

Page 156: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

137  

NOT LYR NOT CAP_GLY - LDL RECEPTOR

122. NtA - AGRIN 123. Reeler 124. reeler 125. Reelin 126. Reelin 127. NIDO 128. REJ 129. PLAT / LH2 130. MANEC 131. manec 132. FAP  133. fn3 134. FN 135. LamN 136. aminin_N 137. aminin_I 138. collagen 139. Collagen 140. C4 NOT HC4 NOT

C48 NOT PC4 NOT -C4 141. fn1 142. TB NOT PTB NOT

BTB NOT TBP NOT TBC NOT TB2 NOT PNTB NOT TBPIP

143. Fib_ 144. fib_ 145. fibrinogen 146. FBG 147. G2F 148. COLFI 149. C8 NOT PLAC8 150. steopontin 151. OSTEO 152. LINK 153. COLFI 154. ECM1 155. Col_cut 156. FReD 157. FRED 158. fred 159. Fred 160. TSP 161. tsp

163. aminin 164. ibulin 165. ibrillin 166. ibrin 167. nectin 168. steopontin 169. enascin 170. yaluron 171. xtracellular AND

atrix 172. thrombospondin

Other   173. Dicty (Dicty_CAD) 174. dicty 175. C4 NOT HC4 NOT

DC4 NOT C4d 176. CD36 177. Spondin 178. AMOP 179. VWA

194. ZO1 195. mucin binding 196. collagen binding 197. osteonectin 198. fibrillin binding 199. notch 200. Titan 201. Nidogen

Page 157: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

138  

180. Sushi 181. notch 182. zu 183. MucBP 184. Collagen_bind 185. fn_bind 186. FBP 187. FAP 188. Fb_signal 189. amelogenin 190. ZP 191. FOLN 192. Kazal 193. LamNT

202. Usherin 203. Tensin 204. Slit 205. CSMD 206. Sidekick 207. sema 208. NL 209. cell AND adhesion 210. Cell AND adhesion 211. cell AND Adhesion 212. Cell AND Adheison 213. CAM NOT |CAM

NOT almodulin 214. cam NOT camp

NOT came 215. mmunoglobin 216. Robo 217. robo 218. oundabout 219. eogenin 220. DCC 221. Netrin AND receptor 222. olorectal AND

cancer ontactin 223. BOC 224. rother AND of 225. CDO 226. ysteine AND

ioxygen 227. pinin 228. Pinin

Supplementary   Figure   4.1   Terms   used   to   identify   adhesion   molecules   during   searches   of   JCUSMART  annotation  of  Nematostella,  Acropora,  Clytia  and  Hydra  datasets.   Independent   searches  and  search   terms  are   used   for  HMMPFAM   and  BLAST.   Boolean   search   terms  were   used   in   the   following   hierarchy:   “OR”   >  “AND”   >   “NOT”.   Each   bullet   point   in   the   Figure   constitutes   an   “OR”   statement.   E-­‐value   limits   (where  present)  apply  to  all  terms  in  the  search  statement.    

Page 158: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

139  

Supplementary Figure 4.2

 

Page 159: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

140  

 

Supplementary  Figure  4.2  Multiple  sequence  alignment  of  Talin  proteins  from  representative  metazoans  used  for  maximum  likelihood  analysis  (Figure  4.1).  Proteins  alignment  only  includes  the  region  of  overlap  between  Clytia  talin1  and  Clytia  talin2.  Alignment  is  coloured  by  percentage  identity  between  all  sequences  included  in  the  alignment.  

Genbank   Accessions:   Human_Talin1   NP_006280.3;   Human_Talin2   NP_055874.2;   Ciona_Talin   (Blom,  Gammeltoft,   &   S   Brunak,   1999);   Urchin_Talin   XP_001193631.1;   Danio_Talin1  NP_001009560.1;Danio_Talin2  NP_957487.2;  Drosophila_Rhea  NP_648238.1;  Apis_Rhea  XP_391944.4  

 

 

Page 160: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

141  

Supplementary  Figure  4.3  

Supplementary  Figure  4.3  Multiple  sequence  alignment  of  metazoan  haemolytic  lectins  used  for  maximum  likelihood   analysis   (Figure   4.2).   Alignment   is   coloured   by   percentage   identity   between   all   sequences  included   in  the  alignment.  Acropora  sequences  are   labelled  according  to  their  EST  of  origin  (Grasso  et  al.,  2008)  and  Clytia  sequences  correspond  to  Contigs  IL0ABA2YE22RM1  (1)  and  IL0ABA8YL09RM1  (2).  

Genbank  Accessions:  CEL-­III  BAC75827.1  

 

Page 161: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

142  

Supplementary Figure 4.4

Supplementary   Figure   4.4   In   situ   hybridization   of   haemolytic   lectin   A036-­‐E7   from  Acropora  millepora.  Expression  commences  in  planula  stage  larvae    and  continues  into  adult  life  as  demonstrated  by  cell  specific  staining   (A  &  B).   In   larvae   (A)   and  polyp   stages   (B)  haemolytic   lectin   is   expressed   in   the  oral   half   of   the  animal,  which  is  exposed  to  the  environment  after  settlement.  Cell  specific  staining  suggests  expression  is  restricted  to  nematoblasts,  the  precursor  cells  to  nemtaocysts.  In  situ  hybridization  of  sectioned  adult  tissue  (C)  demonstrates  expression  in  cells  basal  to  nematocysts,  which  hold  a  similar  shape  to  nematocysts  and  are   also   expected   to  be  nematoblasts.   Expression  of   haemolytic   lectin   in  nematoblasts,   suggests   a   role   in  cellular  defenses  in  coral.  Image  C  courtesy  of  T..Ainsworth  (unpublished).  

                       

Page 162: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

143  

 

Supplementary Figure 4.5 Am_LRIG3 1 ------MPRSNMASVNIVTAWIVMCLVLFG-------------AALR-KDPNAKACAFAK Nv_LRIG3 1 -----------MASWFSTFSWLVLYIWILC-------------VFVSSQQTEGTACLEIK A_mel_LRIG3 1 MSNTEQIFFDHRFVWKYKWAIVILPILFLT--------SSNFIKANKISYGNIKDNQCPV Dr_LRIG3 1 ------------MPQPARAVSSVLLLLLLS----------GFTAVTGDSRRT-EHEPCPS Xl_LRIG3 1 -----------MCTMPLSWRRIIYLLLLFT------PLVLGFKSLERRVRRD--RGPCPS Mm_LRIG3 1 -----------MGAPGLRAATAALGLLLCAGLGRAGPAGSGGHGAPGQLLDDDAQRPCPA Am_LRIG3 41 PCICFGTKVDCKNRSLRMIPEGIPRNTTHLDLSVNQLTTLDMTKLSRLTKLRVLL----- Nv_LRIG3 37 PCYCLGNRVNCEGKHLTAIPVGIPSDITALNLGYNNIVDLDPKQLLKFTALKELFNPIPG A_mel_LRIG3 53 ECDCLGNVVDCINLQLIGAPSGLPPWTEILGLKGNNIASLEPDVLLHLTKLKELDLSGNK Dr_LRIG3 38 VCSCTGNLADCSRLKAGRTVERLPARITRLDLSHNKLRVFPEALFSSLPQLSEIKLSNN- Xl_LRIG3 42 PCRCLGDLLDCSRRKLTVVPSNLPEWLVQLDLSHNKLSSIKASSMNHLHNLRELRLNNN- Mm_LRIG3 50 ACHCLGDLLDCSRRRLVRLPDPLPAWVTRLDLSHNRLSFIQTSSLSHLQSLQEVKLNNN- Am_LRIG3 96 ------------------------------------------LHKNQLREVPPWQALPSS Nv_LRIG3 97 SFNPIPGSFNPIPGGFNPIPGGFNPILVASIPFLVASILSCHLHHNNIRGIPPWDSFPST A_mel_LRIG3 113 FGDDFKIILSEGTHLQMLKVNKNQLTQVPDMFFVKNITHLALAHNSITDINGTALLNLQR Dr_LRIG3 97 ---EFESIPDLGP-------------------NAGNLSSLILASNRIGRVSSERLSPLLT Xl_LRIG3 101 ---ELQIIPDLGP-------------------LSANITLFSLTNNKIEVILPEHLTPYQS Mm_LRIG3 109 ---ELETIPNLGS-------------------ISANIRQLSLAGNAIDKILPEQLEAFQS Am_LRIG3 114 LQRLWLHQNLISVVPSQRLTKKMSLAMLSLNNNNISVIEPYAFANLTSIWSL-------- Nv_LRIG3 157 LMTLTLHHNKIVAIPSLNTTKQHALRNLYLNSNKISSIGHHAFTNLSNLQNLYSIAYLRY A_mel_LRIG3 173 LQNLDLSXNKISVIRNGSFLAPNCLHNRNLNKNQIKVIENGSLDNLTS-LEELRLN---- Dr_LRIG3 135 LETLDLSNNNIVDVYAGAFPPIP-LKNLFMNNNRISTLEHGCFSNLSSSLLVLKLN---- Xl_LRIG3 139 LETLDLSNNLLAELKAGSFPTLQ-LKYLYINNNRISTMQSGAFDNLSATLQVLTLN---- Mm_LRIG3 147 LETLDLSNNNISELRT-AFPPLQ-LKYLYINNNRVSSMEPGYFDNLASTLLVLKLN---- Am_LRIG3 166 -------------KLGRNKLEAIPVAALSQVTGLEILDLTKNSIREIRVRLSHSIKSVIK Nv_LRIG3 217 TSLTEYKKEDCIKKLGKNRLTSVPSDALSQLQSLKRLDLSRNFFTSILASAFNRLSSLEV A_mel_LRIG3 228 ----------------KNYLTQLK-DLFTNLKKLRILEINRNELQTIQGLSLRGLKNLKE Dr_LRIG3 190 ----------------KNRLNSIP-AKIFSLPHLQHLELSRNRLRRVEGLTFQGLHGLRS Xl_LRIG3 194 ----------------KNRISHIP-SKMFKLSNLQHLELNRNRIKEILGLTFQGLDSLKS Mm_LRIG3 201 ----------------RNRISAIP-PKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKS Am_LRIG3 213 LKLSKNKIYNISAFAFWEMEKMQELHLDNNNLTSISKTWFFGVPMLRILNFDNNRIRVIE Nv_LRIG3 277 LKLSKNRISTIRG-AFWGQNKLQQLYLDRNNFTAIQTSSFFGLRDLQNLYLQSNQISTII A_mel_LRIG3 271 LHLKKNKIETLDDGAFWPLENLTILELDFNLLTMVRKGGLFGLEHLQKLTLSHNRIRTIE Dr_LRIG3 233 LKMQRNGISRLMDGAFWGLNNMEVLQLEFNNLTEVSKGWLYGLLTLQQLHLSHNSISRIK Xl_LRIG3 237 LRIQRNSIARLMDGAFWGLSTMEVLQLDHNRLTEITKGWLYGLLMLQKLHLSQNAISSIS Mm_LRIG3 244 LKMQRNGVTKLMDGAFWGLSNMEVLQLDHNNLTEITKGWLYGLLMLRELHLSQNAINRIS Am_LRIG3 273 ESKMPGVNWKLAFRLQILILANNEFTHIYSTTFAHLKYLRRLILNTNRIHYLADEAFSDL Nv_LRIG3 336 TTKFA--DWRSFPVLRKLNLERNRLSHIQDTTFKHLLALKVLNLANNRIYHISQGSFSDL A_mel_LRIG3 331 -----IQAWDRCKEIIELDLSYNEISTIERDTFEFLEKLKKLKLDHNQITYIADGAFSST Dr_LRIG3 293 -----PDAWEFCQKLAELDLSWNQLSRLEEGSFVGLSVLEQLHIGNNRISFIADGAFRGL Xl_LRIG3 297 -----PDAWEFCQKLSELDVSFNQLTRLEESSFGGLGLLSGLHIGNNKINFIADGAFRGL Mm_LRIG3 304 -----PDAWEFCQKLSELDLTFNHLSRLDDSSFLGLSLLNALHIGNNKVSYIADCAFRGL Am_LRIG3 333 LSLQTLDLRYNALPSTALEG-GVFANLNSVWLVRLDGNRITRISASSFHGLTSAISMNLS Nv_LRIG3 394 RSLEGLDLSNNDISWTVEEMNGPFRGLTNLASLRLDGNRITAIAATAFLGLENIKYLNLS A_mel_LRIG3 386 PNLQILELKFNKISYMVEDINGAFDPLGQLWKLGLAHNRIKSINKNAFTGLSNVTELDLS Dr_LRIG3 348 TNLQTLDLKFNEISWTIEDMNGPFSALDNLRKLFLQGNRIRSVTRKSFTGLEMLEQLDLS Xl_LRIG3 352 SSLNSLDLKSNDISWTIEDMNGTFSGLERLQRLTLQDNRITSITKKAFSWLDALEYLDLS Mm_LRIG3 359 TSLKTLDLRNNEISWTIEDMSGAFSGLDRLRQLILQGNRIRSITKKAFAGLDTLEHLDLS Am_LRIG3 392 ANAISSIDRFAFYEMTSLQYLYFDTEKLICNCEIKWLPTWLREK-NIQDDVRGLCSYPEN Nv_LRIG3 454 ANIITSIQENSFQGMDKLQKLWLNTSQLMCDCKIKWFGSWLRSRPSTRHTVRARCLHPQT A_mel_LRIG3 446 GNNITSIQENAFVSMTRLTKLRMNSSVLVCDCGLQWLSMWLREH-SYTD-AEVYCGFPHW Dr_LRIG3 408 NNAIMSLQANAFSQMKKLSELHLNTSSLLCDCQLKWFSLWVAEQ-AFLALLNASCAHPHL Xl_LRIG3 412 DNAITSMQTNAFSQMKSLQQLYLNTTSLLCDCQLKWLPKWLAEN-NFQTFVNASCGHPQI Mm_LRIG3 419 GNAIMSLQSNAFSQMKKLQQLHLNTSSLLCDCQLRWLPQWVAEN-NFQSFVNASCAHPQL

Page 163: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

144  

Am_LRIG3 451 LAGRSILNISLSNLECDNSGSSPEVIKHPQGKKVLLGQNVTLRC---VVSWKNYSITVNW Nv_LRIG3 514 LYMKSVFNITPDAFVCDTSNPIPQISVHPPSQKAMRGDNVTLRCRVQVVQRNSSSVRLQW A_mel_LRIG3 504 LQGMSLTQLHHKNFTCDEYPK-PRIIEEPKSQMGIKGDNVTLVCR--ATSTAIARLHFTW Dr_LRIG3 467 LKGRSVFSIAQDEFVCDDFPK-PQITVQPETQSAIKGNNVTFVCS--AASSSDSPMTFAW Xl_LRIG3 471 LKGKIIFAVSPDDFVCDDFPK-PQITVQPETQSAIKGSNVTFICS--AASSSESPMTFAW Mm_LRIG3 478 LKGRSIFTVSPDGFVCDDFPK-PQITVQPETQSAIKGSDVSFTCS--AASSSDSPMTFAW Am_LRIG3 508 TKNGRPLKGAHLKIHTQSKDDY-----RGAYTSELHLRSVSRRDSGKYQCVAYSTEFVPV Nv_LRIG3 574 RLGYEVISERDITDFVRTDDDD-----IVTYNSDLFLISVDFSDAGLYQCIASN-KYGSQ A_mel_LRIG3 561 KHDNIEINDDNLQINTDSTENG-----VTEATSILHLTNVTHANAGKYQCMVTN-TYGTT Dr_LRIG3 524 KKDNELLSEPEIQNQAHVRAAAGETGELTEYTTTLQLRQVEFTSEGRYQCVISN-HFGSS Xl_LRIG3 528 KKDNELLHDSEIENFAHLRAQG---GDVMEYTTILRLRNVEFINEGKFQCVISN-HFGPT Mm_LRIG3 535 KKDNEALQDAEMENYAHLRAQG---GELMEYTTILRLRNVEFTSEGKYQCVISN-HFGSS Am_LRIG3 563 RSHWAQLSVLGFPKLTQTPTDVLVEPGKTFKLYCKAQGHPMPTLLWQKDGGRS-FPAADD Nv_LRIG3 628 FSKKARLEVLEFPVLTRKPHDVSVHVGGLIKLPCAATGYPVPVISWRMGDGKSKFPAAEE A_mel_LRIG3 615 YSAKAKLSILIYPSFSKIPHDIRVIAGSTARLECSAEGQPSPQIAWQKDGGND-FPAARE Dr_LRIG3 583 YSNKAKLTVNMLPFFTKTPMDLTIRAGATARLECAASGHPSPQIAWQKDGGTD-FPAARE Xl_LRIG3 584 YSVKAKLTVNMLPLFTKKPMDLTIRAGSTARLECAAVGHPTPQIAWQKNGGTD-FPAARE Mm_LRIG3 591 YSVKAKLTINMLPSFTKTPMDLTIRAGAMARLECAAVGHPAPQIAWQKDGGTD-FPAARE Am_LRIG3 622 RRIKYAEGLEVCEIRNAQYKDSGKYTCFAKNVAGSANASATVTVLEPPGFTGPWRKKVTV Nv_LRIG3 688 KRIEHLPSEHLFIIRNARGVDTGAYTCTATNGAGSINATAYVTVLEVPRFMQSMVSKR-V A_mel_LRIG3 674 RRMHMMPTDDVLFIVDVKTADSGVYSCTAQNLAGLIVANATLTILETPSFVKPMENKE-V Dr_LRIG3 642 RRMHVMPRDDVFFIVDVKTEDIGVYSCTAQNTAGAISANATLTVLETPSFLRPLLDRA-V Xl_LRIG3 643 RRMHVMPEDDVFFIVNVKTEDIGVYSCTAQNSAGSISANATLTVLETPSFLRPLMDRT-A Mm_LRIG3 650 RRMHVMPEDDVFFIVDVKIEDIGVYSCTAQNSAGSVSANATLTVLETPSFLRPLLDRT-V Am_LRIG3 682 SAGDSLVLECYVRGAPQPLVIWFKDGIKIQMNDRVVLTESRQLLVITKATDDDGGRYDCE Nv_LRIG3 747 RTGESAVLECKASGSPMPRFTWYKDDKKVTLSARVVAHG--QLLVFVTVLRDDEGTYTCQ A_mel_LRIG3 733 TVGGSIVLECMASGMPRPKLSWRKNGNPLLATERHFFTAEDQLLIIVDTRISDAGSYECE Dr_LRIG3 701 AKGETAVLQCIAGGSPPPRLNWTKDDSPLQATERHFFAAGNQLLIIVDAAEGDAGTYTCE Xl_LRIG3 702 SKGETTVLQCIVGGSPTPRVNWTKDDSPLVVTERHFFAAGNQHLIIVDTDLEDAGIYTCE Mm_LRIG3 709 TKGETAVLQCIAGGSPPPRLNWTKDDSPLVVTERHFFAAGNQLLIIVDSDVSDAGKYTCE Am_LRIG3 742 VANSQGNDTR-TMMVAIEPEKCTGVV----KKSNSNNSNYVKYDKKTFLGIIVVVVVACI Nv_LRIG3 805 VSNSLGTARQNTRLTVVEGSELQTCQ----DKES-------RYDKKTFLGIIVISVVTCV A_mel_LRIG3 793 MSNSLGSVVGASHLTVKPAPISTP-----------SPGSVNEDD---ILGLIIITVVCCA Dr_LRIG3 761 MSNPLGTERGNLRLSVLPNPNCDQGPAGGGAVGAAGSGRGPEDDGWTTVGIVIIAVVCCV Xl_LRIG3 762 VSNILGTERGNIHLTVLPNPTCDS---------PVNAIQTAEDDGWATAGIVIIAVVCCV Mm_LRIG3 769 MSNTLGTERGNVRLSVIPTPTCDS---------PHMTAPSLDGDGWATVGVVIIAVVCCV Am_LRIG3 797 VVTSMVWLFIQYNTLSCGKRRAPRRSLHTGPFGVDYSDESNSKALN-QEISYIPLKLSSS Nv_LRIG3 854 VGTSLVWLLVIYCARRGSHRR--RHKLRARPFQADGTDTTNSKLTHRDELSYIPLKSSSS A_mel_LRIG3 839 VGTSIVWVVIIYQTRRR-----LNNVAQGRPHAQPTPTLT--GTVADTQ----------- Dr_LRIG3 821 VGTSLVWVVIIYHTRRRNEDCSVTNTDETNLPADIPSYLSSQGTLAERQDGYMLPSESGS Xl_LRIG3 813 VGTSLVWVVIIYHTRRKNEDCSVTNTDETNLPVDTPSYLSSQGTLAERQDGYGS-SETGS Mm_LRIG3 820 VGTSLVWVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLADRQDGYIS-SESGS Am_LRIG3 856 SSTQTSRESPRSTATFLTASEAAQGRCAVATLAGCSSENASGSEEKSSGNDNISSENSLK Nv_LRIG3 912 GSTQTSRDSPRSTATFLASSDSHG----AAFPVSASIDTHSGSE-KTTG--NISSENSLK A_mel_LRIG3 881 THIYLETS------------SQHSKDSGTGDSTNPSSDQLQLCLP--------------- Dr_LRIG3 881 SHQFISSSIGGFYMPPKDMNSLCQLDTGSEADLEAAIDPLLCHYQGPVGSLLTPGAHYSA Xl_LRIG3 872 -HQFIASSMSGYFLQQRD-NGACNLDNGSEADLEVATDPLLFNYTGVPGPLYLRGNPYDP Mm_LRIG3 879 HHQFVTSSGGGFFLPQHDGAGTCHFDDSSEADVEAASDPFLCPFVGSTGPVYLQGNLYSP Am_LRIG3 916 ESRSSLASFCRSESSLPCCQEVVTSAQVHGSDSDSEKSRPTLAMFARNTS---------- Nv_LRIG3 965 GSHCSLTSSCPSVESEPVRQVVH--VQIHSSDSDSEKCKETSPTRRKETANL-------- A_mel_LRIG3 914 -----------------------------EEIVTCSVNNE-------------------- Dr_LRIG3 941 ELPDTYTVCVSEPR------LLSDSYSRKRDFYTCSSSLDPCDHMMLPHDIP-------- Xl_LRIG3 930 DAYEIFHAGYSMDRRTPNANFYESEYLKQKELGLFGHQHDDCYKIACSHGVQSLAGRIVG Mm_LRIG3 939 DPFEVYLPGCSSDPRTALMDHCESSYVKQDRFSCARPSEEPCERSLKSIPWP-HSRKLTD Am_LRIG3 966 --------------------------CSD---HDPGEHKLTFPDCIPYNKKTCTDHEKFS Nv_LRIG3 1015 -------------------------ACSQSDCEDASEHCGSAAQHCGTNAGYCGIPSNHC A_mel_LRIG3 925 --------------------------EEPSAVVNVGAPLLRYTNHERIVHENKDCAV--- Dr_LRIG3 987 -------------SCVDD------CETDQCVLPRSGSYMGTFGKAAWRPTQDHSAVILHE Xl_LRIG3 990 PTCSHKEDIEIK-MSLDTDILGLKHTVDQGILTSCSTYLGTFGKPVWRPQLDSPCGYVQP Mm_LRIG3 998 STYPPNEGHTVQTLCLNKSSVDFSTGPEPGSATSSNSFMGTFGKPLRRPHLDAFSSSAQP

Page 164: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

145  

Am_LRIG3 997 SK--DVTPDVCVTFYPPSEKETSCDTDVVESTLILT------------------------ Nv_LRIG3 1050 GTPLETSGTSSGHYRTFRGLGPEYDSNDVGSVLIKSKEMIVRTPSSEHFSTTHV------ A_mel_LRIG3 ------------------------------------------------------------ Dr_LRIG3 1028 N-----------------PYAALHAEEELTHTPSHTHSSVYEQPFDSRTIDSNPTTPLGS Xl_LRIG3 1049 SFSQLT-SHTIPQTKLNMQLENGKDESQRTNIPDENATFFPKITSDYQRTSGFQCYELDT Mm_LRIG3 1058 PDCQPRPCHGKSLSSPELDSESEENDKERTDFREENHRCTYQQIFHTYRTPDCQPCDSDT Am_LRIG3 1031 SK--DVTPDVCVTFYPPSEKETSCDTDVVESTLILT------------------------ Nv_LRIG3 1104 GTPLETSGTSSGHYRTFRGLGPEYDSNDVGSVLIKSKEMIVRTPSSEHFSTTHV------ A_mel_LRIG3 ------------------------------------------------------------ Dr_LRIG3 1071 N-----------------PYAALHAEEELTHTPSHTHSSVYEQPFDSRTIDSNPTTPLGS Xl_LRIG3 1108 SFSQLT-SHTIPQTKLNMQLENGKDESQRTNIPDENATFFPKITSDYQRTSGFQCYELDT Mm_LRIG3 1118 PDCQPRPCHGKSLSSPELDSESEENDKERTDFREENHRCTYQQIFHTYRTPDCQPCDSDT

Supplementary   Figure   4.5   Boxshade   alignment   of   full   length   Am_LRIG3   protein   with   representative  metazoan   LRIG3   orthologues   demonstrates   a   reasonable   degree   sequence   conservation   throughout   the  protein.   Shading   demonstrates     >50%   consensus   to  Am_LRIG3   (Black   –conservation,   Grey   –   conservative  substitution).  The  degree  of  conservation  supports  the  assignment  of  Acropora  protein  model  Contig16713  as  the  Acropora  orthologue  of  LRIG3,  which  was  initially  established  by  JCUSMART  analysis.    

Genbank   Accesions:   Mm_LRIG3   NP_796126.4;   Dr_LRIG3   NP_001103817.1;   Xl_LRIG3   NP_001103840.1  A_mel_LRIG3  XP_001121890.2  

 

 

   

 

 

 

 

Page 165: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

146  

Supplementary Figure 4.6 Am_PTPRD 1 MLFFKVAWLLALATIGVAVRAFRLTAIKNVITVNVRENVTLRWTYEVSRGERYTITWGTR Nv_PTPRD 1 ------------------------------------PTVTLTPKDFAGVTRGFVYMICNV Sp_PTPRD 1 --------------------------------ITQEQGEFMVTFPFGYHSGFNHGYNCAE Dr_PTPRD 1 ------------------------------------------------------------ Xl_XPTP-D 1 ------MQVPSCQTMNIARPVVVLLCFLLHAGAETPPKLTRTPVDQIGVSGGVASFICQA Mm_PTPRD 1 ------------------------------------------------------------ Am_PTPRD 61 ADLLFTQESWQKTAQPSPKMPTKYANRVKIVGKASLFIQRVDLSDDGFYNCHIQGDFVST Nv_PTPRD 25 TGSPMPTLTWYKNGSVIRNSR--IQIFTMPYGGLIRIGPLRAKIHKATYECEAD-NGVGP Sp_PTPRD 29 STNFASLRWIN---------------------------------YGKRASCLER------ Dr_PTPRD 1 ------------------------------------------------------------ Xl_XPTP-D 55 TGDPRPKIVRNKKGKKVSNQRFEVIEFDDGSGSVLRIQPLRTPRDEAIYECVASNSVG-- Mm_PTPRD 1 ------------------------------------------------------------ Am_PTPRD 121 SK----------DINLTVIDPPRILTQLPLELTWIEGNRQEINCDADGKPKPRVTWHKDG Nv_PTPRD 82 P-LRDSSTLIVHTASTKPAGFPRIAKHP-SFKQRRSGDDVTFTCAAVGTPTPNITWFKDR Sp_PTPRD 50 -VVDDGRKMVWVEADSLPAGYPEITSNPRRYMVVENNRPATIYCGATGNPEPEILWFKEF Dr_PTPRD 1 --------------DQLPAGFPTIDMGP-QLKVVERTRTATMLCAASGNPDPDISWFKDF Xl_XPTP-D 113 -EVATTTRLTVLREDQIPRGFPTIDMGP-QLKVVERTRTATMLCAASGNPDPEITWFKDY Mm_PTPRD 1 ------------------------------------------------------------ Am_PTPRD 171 SVVKSGHRR-----------------ATLEFKSVSYKDEGSYKCVAKN-IGGKKEKQ--- Nv_PTPRD 140 LPIVLNDP--RVSVLSD--------GRKLRITDLRESDNGKYSCVARNALGMVFSSQAMP Sp_PTPRD 109 VPIEANDR---ISMTDS----------GLQFSRAQLSDQGRYECAAKNSLGT-RYS--VE Dr_PTPRD 46 LPVNTSNN-GRIKQLRSESFGGTPIRGALQIEQSEESDQGKYECVATNNDGT-RYS--AP Xl_XPTP-D 171 LPVDTSNNNGRIKQLRS---------GALQIEQSEESDQGKYECVATNSAGT-RYS--AP Mm_PTPRD 1 ------------------------------------------------------------ Am_PTPRD 210 ----VKVNVLYAPKETNITTNLPQDTVDDGSIITITCEALGNPPPSYKFFINGKPIQDKK Nv_PTPRD 190 ARLFIYLTLSVVRSKPEFTLRPQDKTVDPDTDVELKCSARGSPTPSIVWEVDGSRISGQN Sp_PTPRD 153 AQVYVKD----RQVEPRFTILPENQEVVPGGSVNLTCAAYGSPMPRVRWMKAGMDLDDMD Dr_PTPRD 102 ANLYVRELREVRRVPPRFSIPPTDNEIMPGGSVNITCVAVGSPMPYVKWMLGSEDLTPED Xl_XPTP-D 219 ANLYV----RVRRIAPRFSIPPTNHEIMPGGSVNITCVAVGSPMPYVKWMLGSEDLTPED Mm_PTPRD 1 ---------------------------MPGGSVNITCVAVGSPMPYVKWMLGAEDLTPED Am_PTPRD 266 FERSGILSITAIGFKQRGIYSC-------------------------------------- Nv_PTPRD 250 ----G--ELIIRGIQRSGNYSCIADSNMGRVQAYAYVTVRLLPFAPSRPNAASITSDAIK Sp_PTPRD 209 DLPIGRNVLQLRDIYESANYTCVATSLLGTIDTSARVTVRTRPSVPNSPVVTGYTSSSLT Dr_PTPRD 162 DMPIGRNVLELTDVRQSANYTCVAMSTLGVIEAVAQITVKALPKPPGVPQVTERTATSIT Xl_XPTP-D 275 DMPIGRNVLELTDVRQSANYTCVAMSTLGVIEAIAQINVKALPKPPGTPMVTESTATSIT Mm_PTPRD 34 DMPIGRNVLELNDVRQSANYTCVAMSTLGVIEAIAQITVKALPKPPGTPVVTESTATSIT Am_PTPRD 288 ----------------------------------------------RPENDRGTGPISEV Nv_PTPRD 304 ITWHPRGAHVVTSYEVQYRLKG-KTEWQEITN-VRGMQSLVVSGLR----PFSSYEFRVF Sp_PTPRD 269 VEWSTLSSDTVTSHVLEYKRSRSGGSFTEMEIPSPQDTSFTIEGLL----PYTEYAVRLL Dr_PTPRD 222 LTWDSGNPEPVSYYIIQHKPKNSEDSFKEIDG--VATTRYSVGGLS----PYSDYQFRVV Xl_XPTP-D 335 LTWDSGNPEPVSYYIIQHKPKSSEEQYKEIDG--VATTRYSVAGLS----PYSEYEFRVV Mm_PTPRD 94 LTWDSGNPEPVSYYIIQHKPKNSEEPYKEIDG--IATTRYSVAGLS----PYSDYEFRVV Am_PTPRD 302 AV-YVRYA--PRITHPPGNKIVDENNPVGVRCEAEGYPPPLIKWVKLLGNKNVANGTNWV Nv_PTPRD 358 AVNSLGRSRPSLMAEYTTSETKPGSAPRNIEAMGVSDTSFKAGWLPPISANGRIRGYRLY Sp_PTPRD 325 AVNSIGRSNPSDEVTAMTGEDVPSQ-PEQFEGVAISASQIRLTWMMR-DTEPQIIRYELY Dr_PTPRD 276 AVNNIGRGPPSEDIEAKTAEQAPSTAPRQVRGRMLSATTAIIHWDEPEEANGQITGYRVY Xl_XPTP-D 389 AVNNIGRGPPSEPVMTRTSEQAPSSPPRNVQARMLSSTTILVQWEEPEEPNGQIQGYRVY Mm_PTPRD 148 AVNNIGRGPASEPVLTQTSEQAPSSAPRDVQARMLSSTTILVQWKEPEEPNGQIQGYRVY Am_PTPRD 359 LRSAQRTDQGRYRCIATNGFGRDAFAEFEINVYFAPVINRTASSQDVPA--WAGIPTNLS Nv_PTPRD 418 YSLDLLEDISQWRFMASS-TNSTTVTGLTRQTTHFFRILAYNIAGDGPLSEVVAVKTQKG Sp_PTPRD 383 YNVSTNDND---MHKTITPTTDYVLDNLRPNTLYHIRLAARSETGEGASSPVITVRTQQS Dr_PTPRD 336 YTTDPSQHVNQWEKQIVRTSNFLTIPGLTPNKTYYIKVLAFTSVGDGPLSSDLQIIAKTG Xl_XPTP-D 449 YTMDPTQHINSWTKHNVADSQITTIGNLEPQKTYSVKVLAFTSVGDGPLSNDIQVITQTG Mm_PTPRD 208 YTMDPTQHVNNWMKHNVADSQITTIGNLVPQKTYSVKVLAFTSIGDGPLSSDIQVITQTG Am_PTPRD 417 CV-ATANPAPRYE---------WTKASGVVATSEKSGWLQVTPQEG------------DG Nv_PTPRD 477 VP-GQPRSVQLSVLSSTAIRVTWSPP--RYPGDGIFGY-DVYYNKS-----KQDMDTVIG Sp_PTPRD 440 APGAPPQEVSGTVLSSTSIEVRWSPPPLEDQNGDITGY-KIIYRKMSLVSTNNPEMNVPV Dr_PTPRD 396 VP-SQPTDFKGEAKSETSILLSWNPPTQTGQDNQIIGY-ELLYKKG----DDKEEKRVSF Xl_XPTP-D 509 VP-SQPLNFKAEPESETSILLSWTPP----RSDTISSY-DLYYKDG----DHAEEV-ITI Mm_PTPRD 268 VP-GQPLNFKAEPESETSILLSWTPP----RSDTIASY-ELVYRDG----DQGEEQRITI

Page 166: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

147  

Am_PTPRD 455 FE--PYTCTVENNKGSDSMVIRLVKVGIPVVQLKVVRRQSDSLFLEWLLLSDGATNSYI- Nv_PTPRD 528 AFQMNTKEIMGLTPYTVYKVAVAAKSDKGVGPMSFVLTARTDEDRPSDAPQNIQGRSRDS Sp_PTPRD 499 EADVRSYILEALRKYTLYDIRVVACTAIGDGPPSDSLSIRTAEDAPEGPPRKVRVRVHNS Dr_PTPRD 450 EPTT-TYLLKELKPFTTYMFQLAARSKHGIGAYTNEISAETPQTQPSAPPQEVKCTSHSS Xl_XPTP-D 558 DPAT-SYRLQGLKPNSLYYFRLAARASVGLGASTTEISARTMQSKPSAPPQDIRCNSQSS Mm_PTPRD 318 EPGT-SYRLQGLKPNSLYYFRLSARSPQGLGASTAEISARTMQS---------------- Am_PTPRD 512 -----SHYTLQYHTDHSNGGIERTIRISSEKTN--------------------------- Nv_PTPRD 588 TTLEISWDPPRPEHRNGLITHFTIKYRAKGQRG---AKYLTVDATKTSVVLHNLDKFTNY Sp_PTPRD 559 TTIRVQWQAPDPDLQNGEIRGYRIDYQTVTEE---------------------------- Dr_PTPRD 509 TSILVSWKPPPVELQNGIMTKYTIQYAATEGDDTSMRQVSDIPPEKYHYLLENLEKWTEY Xl_XPTP-D 617 TSILVSWLPPPVEKQNGIIIGYSLKYAGVDADDIKPHEILGISSETRQYLLEQLEKWTQY Mm_PTPRD 361 ------------------------------------------------------------ Am_PTPRD 540 ----------------YQLHDLQPYTKYTIELFATN------------------------ Nv_PTPRD 645 FIWVQASTKQGDGPFSDKHTVSTAEDVPNGAPRDVRIRVHNSTTMTVKWN-PPTTKQDGK Sp_PTPRD 591 ------------------------------------------------------------ Dr_PTPRD 569 RVTVNAHTEAGEGPESLPQLIRTEEDVPSGPPRKVEVEAVNSTSVKVLWRSPVPSRQHGQ Xl_XPTP-D 677 RIIVIAYTDVGPGPESSPILIRTDEDVPSGPPRKVEVEAVNSTSVKVSWRSPVANKQHGQ Mm_PTPRD 361 ------------------------------------------------------------ Am_PTPRD 560 ------------------------------------------------------------ Nv_PTPRD 704 ILGYMVFYTRVDDQGNQLRPPAQPESKDSMSEE-----NHKVHLTGLAPETTYQIEVAAY Sp_PTPRD 591 -------------GDPVGSPQVLFINQPDLR---------VAVLSDLLPKTFYSIEIAAF Dr_PTPRD 629 IRGYQVHYVRMVNGEPVGHPVIKDILMDDAQWEYDDSAEHELVLSDLHAETTYSVTVAAY Xl_XPTP-D 737 IRGYQVLYVRMENGEPKGQPMLKDVMLADA---------QEMIISGLQPETAYSITVTAY Mm_PTPRD 361 ------------------------------------------------------------ Am_PTPRD 560 -------KHFSSETSKVEAMTTEAAPSPPRNVKVKIINGTAVNVKWEAPLRPNGPLLFYT Nv_PTPRD 759 TIKGDGARSVTRLAKTMAQSPDPPFVYLERASGDPISDVTLAWRTSATGVIEYKVRYAKS Sp_PTPRD 629 TVRGDGIRSTTEIQQTPGEVPTTPVAFRVENNLDDTYTATWSPPVETHGDLV-------- Dr_PTPRD 689 TTKGDGARSKPKLVTTTGAVPEKPRLM-VSPTNMGTALLQWHPPPNTFGPLQ-------- Xl_XPTP-D 788 NTKGDGARSKPKIVSTSAAVPGKPRLV-ISHTQMNTALIQWYPPVETFGPVI-------- Mm_PTPRD 361 ------------------------------------------------------------ Am_PTPRD 613 VSYDKKEYIP-NGGTKILSVLPNITEVVIGALTPFSNYSIKVKVRNSLTVNESKPVTIST Nv_PTPRD 819 VRRLRGRDQGNLKMKEIKFKSHTTKQKFQSLANGIWYLFNVSLRTKAGWSPETSRWIEIP Sp_PTPRD 681 TYRLSYGPESGRPLYLDLRPSEFQSYTFDDLRLGTRYEFKLTASNEEGNSNEAIFYYTTH Dr_PTPRD 740 GYRLRFGRKDVEPLTVIEFSERENHYTTKEIHKGASYTFRLSARNKVGFGEETVKEISTP Xl_XPTP-D 839 GYRLKFGRKDLDMLTTFEFFEKEEHFTATDIHKGALYIFKLSARNKVGYGEEIVKELSIP Mm_PTPRD 361 ------------------------------------------------------------ Am_PTPRD 672 KMAAPSEPLAFEANMTGAHSATLWWRKPRQLNGKILLFKIRMRWRYKNVKGTY---RFIT Nv_PTPRD 879 PGPPSGPPLNVRAVAVSSTSVEVTWSAPDIWNRGGPILGYSVMYNPANKRGDVTVKNVTS Sp_PTPRD 741 EGTPSGSPMNVTASPLSSSSISVSWDPPLEEERNGLILKYTIRYYS----SAMPTELTNR Dr_PTPRD 800 EDTPAGYPQGIVAESSTTTTIQVSWQPVALAERNGAVVKYALQYKDINS-PRSPSELFIT Xl_XPTP-D 899 EEPPSGFPQSIHCDSTSSTSVLITWQHPNLEERNGLLTKYTLMYRDINL-PHYPIEVPIV Mm_PTPRD 361 ------------------------------------------------------------ Am_PTPRD 729 KKIPAKVTPRERRRLRRYTMDYRVLRLEPLREIQLTRIQPFAFISVHVSEGTGITENEVF Nv_PTPRD 939 PNIFKVVLKRLKKFREYEVRVRAIGMLGMGPASEPFIDRT-KEDGKCHCRDVRPRTVGSD Sp_PTPRD 797 TTETDIVLTSLVPNTAYSVEVRAHTSVGPGPYSTKDIATTPREAPASAPLDLRCAAPHGT Dr_PTPRD 859 APESTVTLDGLKADTTYDIKMCAFTSKGPGPYSPSVQFRT-QPVNQVFAKNFHVRAAMKT Xl_XPTP-D 958 PADTTVTLTGLKPDTTYDVKLRAHTSKGPGPFSPSVQFRT-LPVDQVFAKNFHVKAVMKT Mm_PTPRD 361 ----------------------------------------------MFAKNFHVKAVMKT Am_PTPRD 789 WSP--WSNNYTLQTLEG----APSAPRNVELKQNKG--ASVKVTWLPPEYPNGIIQK--- Nv_PTPRD 998 WVILEWLPPRIDAGIDT----PLTHADEVRVDALT--------ADVQTFKVQGLVPH-MK Sp_PTPRD 857 QLEVKWSHPSNIQRSGPGYNYLVYSTNSADNTDVSTWGRPVSAGEFTKLELRGL-QEETT Dr_PTPRD 918 SVLLTWEIPENYNPAQP---FTILYDNG-QSVEVD--------GKLTQKLIVNL-QPETQ Xl_XPTP-D 1017 SVLLSWEIPENYNSALP---FKILYDDGKMAVEVD--------GRATQKLITNL-KPETS Mm_PTPRD 375 SVLLSWEIPENYNSAMP---FKILYDDGKMVEEVD--------GRATQKLIVNL-KPEKS Am_PTPRD 838 ----------------YRIIYSNNSIKNYTAEVTK--GLKNTSLFYILSGLHKDSTYQ-- Nv_PTPRD 1045 YTVRLSASNAMGEG--PRAELSISTKKGKPPALAKPTMLRDEMNNGLIPVEL-HRAS--- Sp_PTPRD 916 YYVAVKLDTPEGNSPLSQIITCLTGTSAPSEPRSFDAHIASDNTINLVWSEP-SDIPGRL Dr_PTPRD 965 YSFLL---TNRGNS-AGGLQHRVSTMTAPDILRTKPFLISKTNADGMVTVEL-PGVQ--- Xl_XPTP-D 1065 YSFVL---TNRGNS-AGGLQHRVAAKTAPDVLKTKPVFIGKTNSDGMITVEL-PEVL--- Mm_PTPRD 423 YSFVL---TNRGNS-AGGLQHRVTAKTAPDVLRTKPAFIGKTNLDGMITVQL-PDVP---

Page 167: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

148  

Am_PTPRD 878 -----------------------------INVQAFTSFPG-------EVSPTVRRDIKTP Nv_PTPRD 1099 --------EKNGPISYY----------LVVVVPLDKDG----------KYPQGSNPDEYF Sp_PTPRD 975 KDYVIKYHTSDDFRREYPDYYDGGGEIEILASEQRVSLSGQLFKPN-MEYEFNITARTEA Dr_PTPRD 1017 --------TAERVRAYY-----------IVVVPLKKQRPGKFIKLWENPDEMNLEELLRE Xl_XPTP-D 1117 --------VNDKIKGYY-----------IVIVPLKKSR-GKFIKPWESPDEMEFDELLKD Mm_PTPRD 475 --------ANENIKGYY-----------IIIVPLKKSR-GKFIKPWESPDEMELDELLKE Am_PTPRD 902 GDVLEQSKVD-------------------------------------------------- Nv_PTPRD 1131 KKVRRRS--AREAGQVKPYIAAKFLADQFPKKFLVGDEGFKNQYGYYNKRLVANSYYTVF Sp_PTPRD 1034 IRGPPASILVRTRIQALEHIPK----PTIQNSTMNGQS--IKIALPTITQNAALLDYLYV Dr_PTPRD 1058 INRTSVSLRFRRHLELKPYIAACF--HELPNEFTLGDA--KMYGEFQNKQLLNGQEYVFF Xl_XPTP-D 1157 ISRKRRSLRFRREAEQKPYIAAHF--DLLPTEFTLGDQ--KQYGGFENKQLQNGQEYVFF Mm_PTPRD 515 ISRKRRSIRYGREVELKPYIAAHF--DVLPTEFTLGDD--KHYGGFTNKQLQSGQEYVFF Am_PTPRD 912 --------------------------------------------TASLYGGVFAGIIAFV Nv_PTPRD 1189 SRAYVQTDDGDFVYTSSPFTDPVLITPPSAAG----LSGGGKGGLNLAYVIIPVVLLLVI Sp_PTPRD 1088 IVIGLRNKNG-EPVALTISPNDIKTEDLEVQSRGRRSAQHPRSRRAATGQDTEPYIAAKL Dr_PTPRD 1114 VLAVLEISDS-MLYAASPYSDPVVFADIDPQP---------IIDEEEGLIWVVGPVLAVI Xl_XPTP-D 1213 VLAVIEHSES-AMFATSPYSDPVVSMEIDPQP---------MTDEEEGLIWVVGPVLAVV Mm_PTPRD 571 VLAVMDHAES-KMYATSPYSDPVVSMDLDPQP---------ITDEEEGLIWVVGPVLAVV Am_PTPRD 928 FVIIIVALVIRNH-RKRRDGTDLSGKQYAVANSNDSGIGDKESLDRVPGVKCVQGV---- Nv_PTPRD 1245 VTVIVLAVLYVMRMRRRRR------------------SKKESKCKDEEKSEPSDPVEM-- Sp_PTPRD 1147 NGEEMPASFVI-------------------------GDGSEVNGYRNKPLKEGEYYTLFT Dr_PTPRD 1164 FIICIVIAILLY--KRKRAESEARK-------------GSLPSGKEMPSHHPTDPVEL-- Xl_XPTP-D 1263 FIICIVIAILLY--KRKRTESDSRK-------------SSLPNSKEIPSHNPTDPVEL-- Mm_PTPRD 621 FIICIVIAILLY--KRKRAESESRK-------------SSLPNSKEVPSHHPTDPVEL-- Am_PTPRD 983 RRGSEDVIGPGKFVTIKPIPIQRLPEYCAINHADRNKGFREEFLSIRVPGS--FTWENSQ Nv_PTPRD 1285 RRLNFQ--TPAMID--HP-PISVLDLPKHIAILKADNNSQFTQEYESIEPGQTFTADSSQ Sp_PTPRD 1182 RAVILSENGTAMMS--HP-PIPVSQFQEHIERLKGNDAMLFSQEYESIEPGQQFTWDHSN Dr_PTPRD 1207 RRLNFQ--TPGMAS--HP-PIPVMELADHIERLKANDNLKFSQEYESIDPGQQFTWEHSN Xl_XPTP-D 1306 RRLNFQ--TPGMAN--HP-PIPILELEDHIERLKANDNLKFSQEYESIDPGQQFTWEHSN Mm_PTPRD 664 RRLNFQ--TPGMAS--HP-PIPILELADHIERLKANDNLKFSQEYESIDPGQQFTWEHSN Am_PTPRD 1041 KPENKAKNRFNSIIPYDHTRVTLTELEGSPGSDYINANFIDGYDHPFKFIATQGPVANTF Nv_PTPRD 1340 MECNKGKNRYPNIHAYDHSRVRLSYINGIEGSDYINANFCDGYRKERAYIATQGPMQHTA Sp_PTPRD 1239 LETNKPKNRYANVIAYDHSRVILSPMEGLPGSDYTNANYCDGYRKQNAYIATQGPLLETM Dr_PTPRD 1262 LEVNKPKNRYANVIAYDHSRVLLSAIDGIPGSDYINSNYIDGYRKQNAYIATQGALPETF Xl_XPTP-D 1361 LEVNKPKNRYANVIAYDHSRVLLSAIDGIPGSDYINSNYIDGYRKQNAYIATQGPLPETF Mm_PTPRD 719 LEVNKPKNRYANVIAYDHSRVLLSAIEGIPGSDYVNANYIDGYRKQNAYIATQGSLPETF Am_PTPRD 1101 GDFWRTVWEQGVCVVIMVTNIVEGGRIKCLKYWPSASPEMYGLVLVSPQGEEELADYVVR Nv_PTPRD 1400 ADFWRMVWEQRTFTIVMLTREEERGRVKCDQYWPTDGTDVYEGIEVSLVDWVELANYTIS Sp_PTPRD 1299 ADFWRMVWEQRTNTIVMMTKLEERNRVKCDQYWPTRDQEKYGFIQVTLLDTTELATYTVR Dr_PTPRD 1322 GDFWRMIWEQRSANIVMMTRLEERSRVKCDQYWPNRGTETYGLIQVTLLDTVELATYCVR Xl_XPTP-D 1421 GDFWRMMWEQRSATVVMMTKMEERSRIKCDQYWPSRGTETYGLIQVTLLDTVELATYTVR Mm_PTPRD 779 GDFWRMIWEQRSATVVMMTKLEERSRVKCDQYWPSRGTETHGLVQVTLLDTVELATYCVR Am_PTPRD 1161 KFSIQMISKSAEHSAREVTQYHFTAWPDQGVPTHATSLLAFLRKVRTSVPEDSGPILIHC Nv_PTPRD 1460 TL---QICKEGASQPREVKHFQFTGWPDHGVPAHPTPFLAFLRRVKFYNPPDAGPIVVHC Sp_PTPRD 1359 SF---ALVKNRSMEKREVKQFQFTAWPDHGVPEHATSVLAFISRVKSCNPPDAGPIVVHC Dr_PTPRD 1382 TF---ALYKNGSSEKREVRQFQFTAWPDHGVPEHPTPFLAFLRRVKSCNPPDAGPMVVHC Xl_XPTP-D 1481 TF---ALYKNGSSEKREVRQFQFTAWPDHGVPEHPTPFLAFLRRVKTCNPPDAGPMVVHC Mm_PTPRD 839 TF---ALYKNGSSEKREVRQFQFTAWPDHGVPEHPTPFLAFLRRVKTCNPPDAGPMVVHC Am_PTPRD 1221 SAGVGRTGTYIVLDAMLDQIAAEGVVDIYGFISHIRQQRSFMVQTEGQYVFVHNALEEYV Nv_PTPRD 1517 SAGVGRTGCFIVIDSMLERLRHEETVDIYGHVTVLRTQRNYMVQTQEQYIFSHDAILEAV Sp_PTPRD 1416 SAGVGRTGAYIVIDSMLERIKHEKTVDIYGHVTCLRAQRNYMVQTEEQYIFIHEALYEAV Dr_PTPRD 1439 ------------------------------------------------------------ Xl_XPTP-D 1538 SAGVGRTGCFNVIDAMLERIRHEKTVDIYGHVTLMRAQRNYMVQTEDQYIFIHDALLEAV Mm_PTPRD 896 SAGVGRTGCFIVIDAMLERIKHEKTVDIYGHVTLMRAQRNYMVQTEDQYIFIHDALLEAV Am_PTPRD 1281 TCGSTEFPVSDLPERLRILNTVDPDSGDSLVVAEFKNLGLGASDGDSFIVASRQENKSKN Nv_PTPRD 1577 SCGNTEVHARNLLHHIKKLTELGKGE-VTGLEEEFKVVDPSQAKKHKYGAATLAINRPKN Sp_PTPRD 1476 ASGTTEVHARNLYGHIQKLTALEPGETITGMENEFKRLASQKAQPSRFVSANIPANKFKN Dr_PTPRD ------------------------------------------------------------ Xl_XPTP-D 1598 TCGNTEVPARNLYAYIQKLTQIEPGENVTGMELEFKRLASFKAHTSRFISANLPCNKFKN Mm_PTPRD 956 TCGNTEVPARNLYAYIQKLTQIETGENVTGMELEFKRLASSKAHTSRFISANLPCNKFKN

Page 168: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

149  

Am_PTPRD 1341 RYA-ILPFDRTRVTLWPYTGMVGSDYINASFVDSFQQREAFIATQAPLENTVVDFWRMTW Nv_PTPRD 1636 RLANILPYETTRVHISPVRGVEGSDYINASFIDGYRQRGLFIATQGPLQDTVDDFWRMLM Sp_PTPRD 1536 RLLNIQPYEGNRVCLQPIRGVEGSDYINASHIDGYRQRNAYIATQGPLAETTEDFWRMLW Dr_PTPRD ------------------------------------------------------------ Xl_XPTP-D 1658 RLVNIMPYESTRVCLQPIRGVEGSDYINASFIDGYRQQKAYIATQGPLAETTEDFWRMLW Mm_PTPRD 1016 RLVNIMPYESTRVCLQPIRGVEGSDYINASFLDGYRQQKAYIATQGPLAETTEDFWRMLW Am_PTPRD 1400 EYEAYSIVMLTTMNELQEGQCA-YYLPRREEFIVYGLLMVEVETEDQRNGFCRRRLRVTN Nv_PTPRD 1696 EQNSNIIVMLTQLHEGEWEKCYKYWPTDRSARHQYYIVDPIAEHEYPQFVIRDFKVKDA- Sp_PTPRD 1596 EQNSTIIVMLSKLREMGREKCHQYWPAERSARYQYFVVDPMSEYNMPQYILREFKVTDA- Dr_PTPRD ------------------------------------------------------------ Xl_XPTP-D 1718 EHNSTIVVMLTKLREMGREKCHQYWPAERSARYQYFVVDPMAEYNMPQYILREFKVTDA- Mm_PTPRD 1076 EHNSTIVVMLTKLREMGREKCHQYWPAERSARYQYFVVDPMAEYNMPQYILREFKVTDA- Am_PTPRD 1459 TKSGEIRSIYHFHFKEWAERSIPLNGMGLLDMMKCITRVQQQTGN-GPIVIHCSDGSGRT Nv_PTPRD 1755 -RSDTVRNIKQFHFLGWPETGVPKSGEGIIDLIGQVQRAYEQQEEEGPITVHCSDGVGRT Sp_PTPRD 1655 -RDGQSRTIRQFQFTDWPEQGVPKSGEGFIDFIGQVHKTKEQFGQEGPISVHCSAGVGRT Dr_PTPRD ------------------------------------------------------------ Xl_XPTP-D 1777 -RDGQSRTVRQFQFTDWPEQGVPKSGEGFIDFIGQVHKTKEQFGQDGPISVHCSAGVGRT Mm_PTPRD 1135 -RDGQSRTVRQFQFTDWPEQGVPKSGEGFIDFIGQVHKTKEQFGQDGPISVHCSAGVGRT Am_PTPRD 1518 GTFCAINVALERVKLDGTIDIFQTVRRLRTQRPLMVQTEEQYKLCYEITRLFVESFNDYS Nv_PTPRD 1814 GVFTALFIVLERMRSEGVVDLFQTVKLLRTQRPAMVQSQEQYLFCYKTALEYLGSFDHYA Sp_PTPRD 1714 GVFITLSVVLERMRYEGIVDMFQTVKMLRTQRPAMVQTEDQYQFCYHAALEYLGSFDHYT Dr_PTPRD ------------------------------------------------------------ Xl_XPTP-D 1836 GVFITLSIVLERMRYEGVVDIFQTVKMLRTQRPAVVQTEDQYQFCYRAGLEYLGSFDHYA Mm_PTPRD 1194 GVFITLSIVLERMRYEGVVDIFQTVKMLRTQRPAMVQTEDQYQFCYRAALEYLGSFDHYA Am_PTPRD 1578 DLK Nv_PTPRD 1874 I-- Sp_PTPRD 1774 --- Dr_PTPRD --- Xl_XPTP-D 1896 T-- Mm_PTPRD 1254 T--  

   Supplementary   Figure   4.6   Boxshade   alignment   of   full   length   Am_PTPRD   protein   with   representative  metazoan   PTPRD   orthologues   demonstrates   a   high   degree   of   sequence   conservation   C-­‐terminal   to   the  transmembrane  region.  Shading  demonstrates    >50%  consensus  to  Am_PTPRD  (Black  –conservation,  Grey  –  conservative  substitution).  The  degree  of  conservation  in  the  C-­‐terminal  region  supports  the  assignment  of  Acropora  protein  model  Contig12034  as  the  Acropora  orthologue  of  PTPRD,  which  was  initially  established  by  JCUSMART  analysis.    

Genbank   Accesions:   Dr_PTPRD   XP_002663075.2;   Sp_PTPRD   XP_001184195.1;   Mm_PTPRD  NP_001014310.1;  Xl_XPTP-­D  NP_001083850.1  

 

Page 169: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

150  

Chapter 5 Supplementary Figure 5.1

Supplementary   Figure   5.1   Aligned   Nucleic   Acid   and   Protein   sequence   of   Am_ACadherin   (Type-­‐III  Cadherin)  supercontig  (Contig6389  +  Contig5439  in  the  2010  Acropora  millepora  transcriptome  assembly).  

Forward Frame 3: 1 D C G T T S K C E A G L L K F S V E G T 3 GACTGTGGTACAACTAGCAAATGCGAGGCTGGTTTGTTAAAGTTCTCAGTTGAAGGAACA 21 S L F K I D P R T G V V S V G S T P L D 63 TCCCTGTTTAAAATTGATCCGCGCACTGGTGTTGTAAGTGTTGGCTCCACTCCTCTCGAT 41 Y E K Q R E H V F T V V V E D F G E K I 123 TATGAAAAGCAGAGAGAGCATGTGTTTACTGTCGTTGTGGAAGATTTTGGCGAGAAGATA 61 Y K S R G F V T I D V R N T D D E K P Q 183 TACAAATCCAGGGGATTTGTTACGATTGACGTGCGAAATACGGATGACGAGAAGCCACAG 81 F L E S D Y T I S I A E D A E T G R P L 243 TTCCTAGAGAGTGATTACACGATCAGTATTGCTGAAGACGCCGAGACGGGGAGGCCTCTA 101 A A I L A R D A D G D P V K Y S I T S G 303 GCAGCTATACTTGCCAGAGATGCAGATGGGGATCCTGTTAAGTACTCTATAACTAGCGGT 121 D S G G I F Q I N P T T G V L S L K S S 363 GATAGTGGTGGCATTTTCCAGATTAACCCAACAACTGGAGTTCTTTCTTTGAAATCAAGC 141 I K G N P R T Q Y T L Q V K A S N S A Q 423 ATCAAAGGAAATCCTCGGACACAGTACACGCTTCAAGTGAAGGCGTCGAATTCTGCGCAG 161 D S R F D E V R V V V N I E D S N D N R 483 GATTCTCGTTTCGATGAAGTGCGTGTTGTGGTCAACATCGAGGACAGCAATGATAATAGG 181 P V F T D C P P E V P V E E N K P R G H 543 CCAGTGTTCACTGATTGCCCGCCTGAGGTCCCAGTAGAGGAGAACAAGCCAAGAGGACAC 201 R V Y Q V V A Q D T K D R G R N K E I E 603 AGGGTCTATCAGGTCGTCGCTCAGGATACTAAGGACAGGGGAAGAAACAAAGAGATTGAA 221 Y F L V T G G E R L F E I D N T T G V I 663 TATTTTCTCGTTACCGGTGGAGAAAGGTTGTTTGAGATTGATAACACTACCGGAGTTATA 241 K T L T S L D R E T K D Q H T L I I M A 723 AAAACCTTAACCAGCTTGGACAGGGAAACCAAAGATCAGCATACATTAATTATAATGGCT 261 E D G G H G R N S A E R L L S Y C I L D 783 GAGGATGGAGGGCATGGAAGAAATTCGGCGGAGAGACTTCTTTCATATTGTATTCTTGAC 281 V K V V D Q N D N F P F F L T R T Y Y A 843 GTCAAAGTTGTAGACCAGAACGACAATTTCCCCTTCTTCTTGACCAGAACTTACTATGCC 301 S V W Q G A P V N T E V L T V R A A D M 903 AGCGTCTGGCAAGGAGCGCCTGTGAATACAGAGGTTTTAACCGTAAGGGCAGCGGACATG 321 D T R V N A N I D N S E V Q Y Q L V N A 963 GACACGAGAGTGAATGCCAATATTGACAATAGCGAAGTGCAGTATCAGTTGGTCAATGCT 341 D D K F Q V E L A T G V I K T K A T L V 1023 GATGACAAATTTCAAGTTGAACTGGCAACTGGAGTGATTAAAACCAAAGCCACGTTGGTC 361 S F V G K V Q L Q I R A I N K Q P M A I

Page 170: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

151  

1083 AGCTTTGTGGGAAAAGTACAGTTGCAGATAAGAGCCATTAACAAACAACCCATGGCTATA 381 S E E R P R T S T T T V E I N V E K D K 1143 AGTGAGGAAAGACCACGCACGTCAACGACTACTGTGGAAATCAACGTCGAAAAAGATAAA 401 P P A F A P S A V Y K S A I N E D V K I 1203 CCACCCGCGTTTGCACCGTCGGCGGTTTATAAAAGTGCAATAAACGAAGACGTCAAAATA 421 G K E V Q Q I L A I S Q V D R K N K I V 1263 GGAAAGGAGGTTCAACAGATCTTAGCGATCAGCCAGGTAGACAGGAAAAACAAAATAGTG 441 Y S F V K S N P E G E Q K F Q I D P A T 1323 TACAGTTTTGTGAAGTCCAATCCAGAGGGAGAACAAAAATTTCAAATTGACCCGGCGACT 461 G N I T T A S T L D Y E Q V K E Y R L Q 1383 GGCAACATCACAACTGCTAGCACGCTGGATTATGAACAAGTGAAGGAGTACAGGCTTCAG 481 F R A T D I A T N L Y A T C V V I I S L 1443 TTCCGAGCTACTGATATTGCGACGAACCTTTACGCGACTTGCGTGGTCATCATTTCGCTG 501 I D V N D D T P T F K L E E Y T A R V P 1503 ATCGATGTCAACGACGACACGCCAACGTTCAAGCTAGAAGAATACACTGCTAGAGTTCCG 521 E N A A V D F N V I T I E A D D R D T A 1563 GAAAATGCAGCAGTAGATTTTAATGTGATCACTATAGAAGCCGACGACAGGGATACAGCT 541 L S G Q V G Y T L E V S D S S E G Q F F 1623 TTGTCTGGTCAAGTTGGTTACACCCTAGAAGTGTCCGACAGTTCCGAAGGACAATTCTTC 561 A I N G Q T G V M I T K N S F D R E D P 1683 GCCATCAATGGTCAAACCGGAGTGATGATTACGAAAAATTCGTTTGATCGAGAGGATCCG 581 K H I P K Y N V F A V A T D K G V P P L 1743 AAACACATTCCGAAGTACAATGTGTTTGCCGTGGCAACAGACAAGGGCGTTCCTCCTCTC 601 A G K L D F E T K K T Y N I S I T A T D 1803 GCTGGAAAACTTGACTTTGAAACGAAGAAGACGTACAACATCTCCATCACCGCAACAGAT 621 R K D S A T V P V V V N V L D T N D N I 1863 AGAAAAGACAGTGCTACAGTTCCAGTGGTGGTCAATGTTCTGGACACCAACGATAACATT 641 P Q F R N L I Y E A I I P E N S P P G Q 1923 CCTCAATTTCGCAATCTAATTTACGAGGCCATTATTCCAGAAAACAGCCCTCCTGGCCAA 661 R V A T V F A T D L D S P K I Q N D L R 1983 AGGGTGGCGACAGTCTTTGCCACTGACTTGGACAGTCCGAAAATCCAAAACGATCTCCGA 681 Y S L D A D G Q K N F A V D A V S G L I 2043 TATTCCCTCGACGCAGACGGACAGAAGAACTTTGCAGTTGATGCTGTGAGTGGTCTGATC 701 T T A N Q R L D R E V N P V V T F T A F 2103 ACCACTGCCAATCAAAGGCTGGATCGAGAGGTGAATCCAGTGGTTACCTTCACTGCTTTT 721 A F D G K H R G E A L I R V T L R D V N 2163 GCTTTTGATGGCAAACACAGAGGGGAAGCTTTGATTCGAGTCACGCTCCGAGATGTCAAC 741 D N S P Y F P N P P Y V G Y V E E N L D 2223 GACAACAGTCCATACTTTCCCAACCCTCCCTATGTCGGCTATGTAGAGGAAAACCTAGAT 761 P G A S V M V I Q A F D L D S G I D G E 2283 CCGGGGGCAAGTGTCATGGTTATTCAAGCGTTCGATCTGGATTCCGGCATTGACGGAGAA 781 I V Y S L D D S S N N K F K I D R N S G 2343 ATCGTTTACTCTTTAGATGACAGCTCCAACAACAAGTTTAAGATCGATCGTAATTCCGGC

Page 171: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

152  

801 L V T T V E T M E K E T A V N S F T I V 2403 CTTGTAACAACTGTGGAAACTATGGAAAAAGAGACTGCTGTGAATTCGTTCACAATCGTT 821 V K A T D K G S P A L S G T V T A T I R 2463 GTGAAAGCAACCGACAAAGGAAGTCCAGCTCTGAGTGGAACTGTAACGGCTACCATCCGA 841 V S D G N D Q A P V F N P R E Y R Q K V 2523 GTATCTGATGGAAACGATCAAGCGCCAGTATTCAACCCCAGGGAATACAGGCAAAAAGTG 861 P E D S P P G F L V T Q V K A T D Q D E 2583 CCGGAGGATTCTCCCCCAGGATTCCTCGTCACGCAAGTGAAAGCTACCGACCAGGACGAG 881 G Y N A E L E F T I T A G N D P Y Q F Y 2643 GGATATAACGCAGAGCTCGAGTTCACCATTACGGCGGGCAATGACCCTTACCAGTTCTAC 901 I D P K T G E I L V S G M L D F D H G K 2703 ATCGACCCGAAAACAGGCGAAATACTTGTATCGGGTATGCTGGATTTTGACCATGGAAAG 921 K S Y N L T V M V S D R G V P P K Q A A 2763 AAGTCCTATAACCTGACAGTTATGGTTAGTGATCGCGGTGTACCACCTAAACAAGCTGCG 941 K P A F V Y I T I V D S N D N P P V F V 2823 AAACCAGCTTTTGTTTACATAACTATCGTGGATTCCAATGATAATCCGCCGGTCTTTGTG 961 P A E Y S I K V T E G T K P G D T V Q L 2883 CCTGCTGAATACAGCATTAAAGTCACCGAGGGTACAAAACCTGGAGACACTGTGCAACTG 981 V T A V D Q D T G T N A L F T F G I A D 2943 GTAACAGCGGTTGATCAGGACACGGGTACTAATGCTCTTTTTACGTTTGGCATCGCTGAC 1001 G D D A D M F G I R P D P K N S S I G F 3003 GGTGATGATGCTGATATGTTTGGTATAAGACCCGATCCCAAGAACAGCAGTATTGGGTTC 1021 I Y T V L Q L D R E T V P Q Y N L T V T 3063 ATTTACACGGTGCTGCAGTTGGATCGCGAAACCGTTCCTCAGTACAATCTCACCGTCACC 1041 A T D T G G L Q G V A V V R I T V L D T 3123 GCGACCGATACTGGCGGGCTCCAAGGCGTTGCTGTGGTGCGTATTACTGTCTTAGACACC 1061 N D N G P W F Q P R Y Y E G S I T V T S 3183 AACGATAACGGCCCGTGGTTCCAACCTCGCTACTATGAAGGTTCAATTACGGTGACTAGT 1081 D S N S Q Q E I T T V K V F D P D E P S 3243 GATTCGAACTCACAACAAGAAATTACCACAGTGAAAGTCTTTGACCCAGATGAGCCAAGC 1101 N G P P F S F S I E S T K P A T D A T R 3303 AATGGACCTCCGTTCAGCTTTTCGATTGAAAGTACAAAGCCTGCCACTGATGCAACTCGC 1121 F G L R K D P K E P Q T A N E V Y S I G 3363 TTTGGGTTGCGAAAAGATCCCAAAGAACCCCAAACCGCAAACGAGGTGTACTCAATCGGA 1141 A F T R Q V P E W E L T I K A I D S G K 3423 GCTTTCACGCGTCAAGTTCCTGAATGGGAACTGACAATCAAGGCTATTGATAGTGGAAAG 1161 P V A M F N S T L V F V W V V D D K N L 3483 CCGGTGGCCATGTTCAACTCGACGCTTGTGTTCGTTTGGGTTGTTGATGACAAGAACTTG 1181 N E P F D G A L T I I V N A Y D D K F A 3543 AACGAACCATTTGACGGAGCATTGACCATCATAGTAAACGCCTACGATGACAAATTTGCC 1201 G G I I G K A Y Y Q D V D Y M G D E N T 3603 GGCGGTATCATCGGAAAGGCCTACTACCAAGACGTGGACTACATGGGAGACGAGAACACA 1221 Y S M S E Q E Y F T L G E L T G D I S A 3663 TACTCTATGAGTGAGCAAGAGTATTTCACCTTGGGCGAACTTACTGGTGACATAAGTGCT

Page 172: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

153  

1241 A A N I P V G L Y K F E I E V L E Q R L 3723 GCGGCAAACATTCCTGTGGGACTATACAAGTTCGAGATAGAGGTGCTTGAGCAACGGCTT 1261 R P N T N T F K T V T S S V S V I V Q S 3783 CGGCCAAACACCAACACTTTTAAAACCGTAACGTCTTCAGTATCGGTCATCGTGCAAAGT 1281 V P R A A I L Q S V A V Q I L A Y R R P 3843 GTGCCCAGGGCTGCGATTCTGCAAAGCGTGGCTGTGCAGATTCTCGCGTATCGCAGGCCG 1301 A L F V A D I Y T N F R Q K L A G I F G 3903 GCCCTCTTTGTGGCTGACATTTATACCAACTTCCGACAAAAGTTAGCTGGAATCTTCGGC 1321 V Q E A D I L I F S V Q R A P S K R V P 3963 GTTCAGGAAGCTGACATTTTGATCTTTAGCGTTCAAAGGGCTCCAAGCAAGCGTGTTCCT 1341 L A D V F G V E I Q L A V R S S G S S F 4023 CTCGCGGACGTGTTTGGAGTCGAGATTCAACTGGCTGTTCGTTCGTCGGGAAGTTCTTTC 1361 M D K M D V V R G I V E G K A E L E A L 4083 ATGGATAAGATGGATGTTGTCAGGGGAATAGTAGAAGGAAAGGCAGAACTAGAGGCATTG 1381 S L K I G D I G I D V C A A E R Q D V G 4143 AGCTTGAAGATCGGAGATATTGGTATTGATGTGTGTGCTGCGGAGCGACAAGATGTTGGC 1401 V C N N K V E A S S A F T V V S G D I G 4203 GTTTGCAACAATAAAGTGGAGGCTTCGTCAGCGTTCACTGTAGTCAGCGGTGACATTGGC 1421 Q I E P S K S S L T V V S I D I T L K A 4263 CAAATAGAACCGAGCAAGTCTAGTTTAACAGTAGTATCCATTGACATCACACTGAAAGCC 1441 V Y T S I L P P D I N C T T G T P C L H 4323 GTCTACACATCAATCCTTCCACCAGATATAAACTGCACAACAGGCACTCCCTGTCTACAT 1461 G G T C H N A V P K G I I C E C G R D Y 4383 GGGGGCACGTGTCACAACGCAGTTCCCAAGGGGATCATTTGCGAATGTGGACGAGATTAC 1481 L G P E C Q S T T R T F R G N S Y L W L 4443 CTTGGACCAGAGTGTCAGAGCACTACGAGAACGTTCAGAGGAAATTCATACTTGTGGCTT 1501 D K L A S Y E R S S I S L Q F M T G S A 4503 GATAAGCTCGCATCCTATGAACGGAGCTCGATTTCGCTACAGTTTATGACTGGCTCTGCC 1521 N G L L L Y Q G P L Y N G A N N G L P D 4563 AATGGCTTGTTGCTTTACCAAGGACCTCTGTACAATGGGGCCAACAATGGTCTTCCAGAT 1541 S I A L Y L V D G F A K L V I A L G P H 4623 TCGATTGCATTGTATTTGGTGGACGGATTTGCCAAACTGGTGATCGCCCTTGGGCCACAC 1561 P M T P L E L Y M N K G D R L D D R T W 4683 CCTATGACACCATTAGAGCTGTACATGAACAAGGGAGATCGTTTGGATGACAGGACGTGG 1581 H T V E V I R E R K K V V L R I D K C S 4743 CACACGGTTGAGGTCATTCGAGAACGCAAGAAAGTTGTGCTGAGGATCGACAAGTGTTCC 1601 Y S K I V E D Y G Q I V E D R S S C E I 4803 TATTCGAAAATTGTAGAGGATTATGGTCAAATTGTCGAGGACAGGTCCTCATGCGAAATC 1621 K G E I W G S A I Y L N G F G P L Q I G 4863 AAGGGAGAAATCTGGGGCTCCGCGATCTACTTGAATGGTTTTGGTCCTCTTCAAATTGGT 1641 G V E N S I S D M K I N F T G F S G C I 4923 GGCGTGGAAAACTCGATCAGCGATATGAAGATAAACTTCACTGGTTTCTCCGGCTGCATT 1661 R N I Y N N G R M Y D L F N P L K E V N

Page 173: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

154  

4983 CGAAATATTTACAACAATGGCAGGATGTACGATTTGTTTAATCCATTGAAAGAAGTCAAC 1681 T E L G C R L N N Q C P N C N G R G Y C 5043 ACGGAGTTGGGATGCCGGCTCAATAACCAGTGTCCAAACTGCAATGGGCGTGGCTACTGC 1701 E P F W N Y A I C V C D L G F G G A N C 5103 GAACCCTTCTGGAATTATGCTATCTGTGTGTGTGATCTTGGTTTCGGTGGAGCTAATTGT 1721 D S R T Q A N W Y R A N S F T Q Y R V K 5163 GACTCAAGGACACAAGCCAACTGGTATCGTGCAAATAGCTTTACCCAGTACCGCGTAAAA 1741 Q V K R K R R E L V P A P V S M A N E F 5223 CAAGTTAAGAGAAAGCGTCGTGAACTTGTTCCAGCGCCGGTGTCGATGGCAAATGAATTC 1761 Y T N I A L Q V R V S P N S S N V V I F 5283 TACACAAACATTGCCTTGCAAGTCAGGGTGTCTCCGAATTCATCTAATGTTGTCATTTTC 1781 L A S N S L G T E F N R I D V K N H V L 5343 TTAGCGTCCAACAGTTTGGGAACTGAATTTAACAGGATTGATGTCAAGAATCATGTGTTG 1801 R Y A F R L G D R M K I L K I P Q L N V 5403 CGTTACGCGTTCCGATTGGGTGACCGTATGAAGATCCTCAAGATCCCTCAACTGAACGTG 1821 T D D K Y H T V I V K R E G N R A S L Q 5463 ACGGACGATAAGTATCACACTGTGATCGTGAAGAGGGAGGGTAACCGCGCCAGCCTTCAG 1841 I D Y R G K V E G T T G G L H K L L N M 5523 ATCGATTATAGGGGCAAAGTGGAAGGAACAACAGGAGGACTTCACAAGCTGCTAAACATG 1861 G G G S F F T G G L P N I T E V R V V E 5583 GGTGGAGGAAGTTTCTTTACTGGGGGCTTGCCTAATATTACTGAGGTTAGGGTAGTGGAA 1881 A F V N S G G N A V L R T A E G N I I S 5643 GCGTTTGTTAATAGCGGAGGCAACGCTGTCCTGCGCACAGCTGAGGGCAACATCATCTCA 1901 S G M G S A Y T G I G S Y M S N V I T V 5703 AGCGGGATGGGATCCGCATACACTGGCATCGGTAGTTACATGAGCAATGTAATTACTGTC 1921 N N F G G V D V S Y G V S G A P H V Q R 5763 AATAACTTTGGAGGCGTTGATGTATCGTACGGAGTTAGCGGTGCGCCACACGTTCAGCGG 1941 T I K T K S S I F T G S S G V I T R I S 5823 ACCATCAAAACAAAAAGCAGCATCTTTACAGGAAGCAGCGGTGTGATAACCAGAATCAGT 1961 V S R G H S V E F M N S R F F T R K T K 5883 GTCAGTAGGGGTCATAGTGTGGAATTCATGAACAGTCGTTTCTTTACACGCAAGACCAAG 1981 Q K Q K V I I S S S G G S V S G G S G G 5943 CAGAAGCAAAAGGTAATCATCAGTTCATCTGGAGGTTCAGTGTCCGGCGGAAGTGGAGGT 2001 A S G G S G G A S G S G G S V G V S G G 6003 GCCTCGGGAGGAAGTGGTGGTGCTTCAGGCTCGGGCGGAAGTGTTGGTGTATCTGGAGGA 2021 G G A S V G G S I L G S S A S M D T K G 6063 GGTGGAGCTTCCGTCGGAGGCAGTATATTGGGAAGTAGCGCATCCATGGATACAAAAGGC 2041 N L R S Y G S G F G T W T I A G A G P N 6123 AACCTTAGATCCTATGGCAGTGGTTTCGGGACTTGGACCATCGCGGGCGCAGGCCCTAAT 2061 E A G D V Q V I G D F G G C T A S N S Y 6183 GAAGCTGGAGATGTTCAAGTTATAGGTGATTTTGGAGGGTGCACTGCATCAAACAGTTAC 2081 N G L D L D S H P T I E A R R Q N V E F 6243 AATGGTCTGGATTTGGACAGCCATCCCACTATAGAAGCGCGCCGTCAGAATGTTGAGTTC

Page 174: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

155  

2101 P C P C G S N F C R H G G T C V S A D P 6303 CCCTGTCCGTGTGGCTCAAACTTCTGTCGTCACGGAGGCACTTGTGTAAGCGCCGACCCG 2121 P Y C L C P V G W S G P V C E S I V K D 6363 CCTTATTGTTTGTGCCCAGTGGGCTGGAGCGGTCCAGTATGCGAGAGTATCGTCAAAGAT 2141 P R P G Q R P S S R W A N P A V I A C I 6423 CCAAGGCCAGGCCAACGGCCGTCAAGCAGATGGGCAAATCCCGCAGTCATCGCTTGCATT 2161 L V I L L A I L V I I G A V L L K R R P 6483 CTCGTCATTCTCCTGGCAATTCTCGTCATAATTGGCGCCGTACTTCTAAAGCGCCGTCCC 2181 Q P A V V A V V E D G H V H D N V R P Y 6543 CAGCCAGCCGTTGTAGCCGTCGTCGAAGACGGACATGTACACGACAACGTGCGTCCTTAC 2201 H D E G A G E E D N F G Y D I S T L M K 6603 CACGACGAAGGCGCAGGCGAGGAGGACAACTTTGGCTACGACATTTCAACGCTTATGAAG 2221 Y T Y V E N G V A G T G G V G H G K F K 6663 TACACTTACGTGGAAAACGGTGTGGCAGGCACGGGCGGTGTGGGCCATGGAAAATTCAAG 2241 N G G S S G E E E F T A T E T K P L L Q 6723 AACGGTGGTAGTAGCGGTGAAGAAGAGTTTACTGCGACCGAGACTAAGCCGTTGTTACAA 2261 G A M P D D D L H F K T T T I T K R K V 6783 GGTGCAATGCCCGACGATGACTTGCATTTCAAGACGACGACCATCACTAAGCGAAAGGTG 2281 V H P D S I D V K Q F I D T R V S E A D 6843 GTACATCCCGATAGCATCGACGTTAAGCAGTTTATTGATACACGTGTTTCTGAGGCGGAT 2301 G E Y I L S I D E L H I Y R Y E G D D S 6903 GGCGAGTACATCCTGTCCATCGACGAACTACATATTTATCGTTATGAGGGAGATGATTCG 2321 D V D D L S E L G D S D E E P D E E E E 6963 GATGTGGATGATTTGAGTGAATTGGGAGACAGCGACGAAGAACCCGACGAGGAAGAAGAG 2341 Q E F A F L Q D W G K K F D N L N R I F 7023 CAAGAATTTGCTTTCTTGCAAGATTGGGGCAAGAAATTCGATAACCTCAATCGCATTTTC 2361 N E D E - F M F S D E L C F V H N V C A 7083 AACGAGGACGAGTAGTTCATGTTCAGCGATGAACTATGTTTTGTACATAATGTTTGTGCT 2381 F - N H F - P Q I S T P G A N T A F A Y 7143 TTCTAGAATCATTTCTAGCCACAGATTAGTACACCGGGTGCAAATACGGCCTTCGCATAC 2401 K K N F F - V N S S R K W T - N N R C K 7203 AAGAAGAACTTTTTCTAGGTAAATTCTTCTCGTAAGTGGACTTAGAATAACCGTTGTAAA 2421 F F L K R K A T L V L C G L H H L V - M 7263 TTTTTTTTAAAACGGAAGGCTACACTTGTCTTGTGCGGCTTACACCACCTCGTGTAAATG 2441 P R I S Y L T S F G T V D V I G - T - A 7323 CCTAGAATTTCATATTTGACATCATTTGGAACGGTGGACGTGATTGGTTAAACTTAAGCC 2461 K H F V - H K A F A K R L S G T L W - H 7383 AAACATTTCGTTTAGCATAAAGCATTTGCAAAAAGATTAAGTGGAACACTCTGGTAACAT 2481 E I K N F Y F V C G A F D N T L K E N - 7443 GAAATTAAGAACTTTTATTTTGTGTGTGGAGCATTTGATAACACTCTCAAAGAGAACTAG 2501 L S S Y Y T G L V L F I A M Y M Q S L V 7503 CTGTCTAGTTATTACACAGGGTTGGTTCTTTTTATCGCAATGTACATGCAGTCTTTGGTT 2521 F R V D N V I S L E I F Q W Q F I L A - 7563 TTTCGTGTTGATAACGTAATTTCCCTAGAAATATTCCAATGGCAGTTTATTCTTGCATAA

Page 175: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

156  

2541 W K C I L L - M R F S H C C R I Y F V W 7623 TGGAAATGCATTCTGCTATAAATGCGATTTTCTCACTGTTGTAGAATATATTTTGTATGG 2561 T L L I A F - Y R Y F Y S G E L Y F A S 7683 ACATTGTTAATAGCCTTTTAGTACCGTTATTTCTATTCTGGTGAGTTGTATTTCGCCAGC 2581 F K C - A V V N - M H I A C D P L P S W 7743 TTCAAATGTTAAGCCGTAGTTAACTGAATGCATATTGCATGTGATCCCTTGCCATCATGG 2601 R T - S T Q - A E H C A R S Q S F F G V 7803 CGGACCTAAAGTACTCAATAGGCAGAACACTGCGCTCGTTCACAGTCCTTTTTCGGCGTC 2621 I V S K K R - S R A - E S D V F E A Q T 7863 ATCGTCTCCAAGAAGAGATAATCGAGAGCTTAAGAAAGTGACGTTTTTGAGGCACAGACG 2641 E T R I E H F G H Q D S G P S Q I F K P 7923 GAGACCAGAATTGAACATTTCGGACACCAGGACAGTGGTCCCTCCCAGATTTTCAAACCA 2661 V V P R I F Y N I N V V V K R Q L K E E 7983 GTTGTCCCTAGGATATTTTACAATATAAATGTGGTCGTTAAAAGACAACTTAAAGAGGAA 2681 N S S L P L S V R G S K T S - A Q A R - 8043 AACAGCTCACTTCCGCTTTCCGTTCGTGGCTCAAAAACGTCGTGAGCTCAAGCTCGCTAA 2701 L Y Q C V A N I K P E I K C F H - F - S 8103 TTATACCAGTGCGTCGCAAACATCAAACCTGAAATTAAATGTTTTCATTGATTTTAAAGC 2721 Q E Y L L I L I K I S R - D L S R - P S 8163 CAAGAATATTTACTTATCCTAATTAAAATTTCGCGTTAAGATCTTTCTCGATAGCCGTCT 2741 N K - - T S - D S I N F S N F - R T R A 8223 AACAAGTGATGAACGAGTTAAGATTCAATTAATTTCAGTAATTTTTGACGAACGAGAGCT 2761 K I - F V V F S V S - Y P F L I V F H - 8283 AAGATTTGATTCGTCGTTTTCTCCGTATCTTGATATCCTTTTTTAATAGTTTTCCACTGA 2781 C R I Y T V F W K F K S A V - R E K P A 8343 TGTAGAATTTATACTGTTTTCTGGAAATTCAAATCTGCAGTTTGAAGGGAAAAACCGGCA 2801 L G R Q D A F Y T Q Y A F H C S T A C - 8403 CTCGGAAGGCAAGATGCATTTTATACCCAGTATGCATTCCATTGTTCTACAGCTTGTTGA 2821 A S E I V I A C L D G N V H - L G L I C 8463 GCAAGTGAAATAGTTATTGCATGTTTAGATGGAAATGTACACTAGTTGGGGCTAATATGC 2841 R H L H S L T Y C C S V V R Y F S M F L 8523 CGCCACCTTCATTCGTTGACGTATTGTTGCTCGGTCGTTAGATATTTTTCTATGTTCCTT 2861 L L C V I I - K Y M K P R L L V K I L C 8583 CTTTTATGTGTAATAATTTAAAAGTACATGAAACCTAGATTGCTAGTCAAGATACTTTGC 2881 - A F - N N Y E K G F - I 8643 TGAGCTTTTTAGAATAACTATGAAAAAGGCTTTTGAATA

Page 176: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

157  

Supplementary Figure 5.2

Supplementary   Figure   5.2   Boxshade   Alignment   of   Representative   Dachsous   C-­‐terminal   domains.  Conservation   of   the   Catenin   Binding   Domain   (CBD;   Blue)   but   not   the   Juxta-­‐Membrane   Domain   (JMD)  distinguishes   the   Dachsous   cytoplasmic   region   from   that   of   TypeI-­‐IV   /   “classical”   cadherins.   The  Extracellular  region  in  each  of  the  proteins  included  in  the  above  alignment  contains  only  Cadherin  repeat  (EC)  domains  consistent  with  the  canonical  structure  of  Dachsous.  Shading  demonstrates    >50%  consensus  to  AmDachsous  (Black  –conservation,  Grey  –  conservative  substitution).    

Genbank  Accesions:  Dm_Ds  NP_523446.2;  Mm_Ds1  NP_001156415.1;  Dr_Ds  XP_001921284.2  

Page 177: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

158  

Supplementary Figure 5.3

Supplementary   Figure   5.3   Multiple   sequence   alignment   of   cadherin   cytoplasmic   domains   used   for  maximum   likelihood   analysis   presented   in   Figure   5.4.   Analysis   is   based   on   the   highly   conserved   Juxta-­‐Membrane  Domain  (JMD)  and  Catenin  Binding  Domain  (CBD).  Shading  corresponds  to  consensus  of  30%  or  more.  Analysis  is  based  on  148  positions  of  29  sequences.    

Page 178: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

159  

(Hs)  Homo   sapiens;   (Mm)  Mus   Musculus;   (Bm)   Bombyx   mori;   (Gb)   Gryllus   bimaculatus;   (Dm)   Drosophila  melanogaster;  (Af)  Artemia  franciscana;  (Lv)  Lytechinus  variegates;  (Sp)  Strongylocentrotus  pupuratus;  (Ap)  Asterina   pectinifera;   (Se)   Sexostrea   echinata;   (BS)  Botryllus   schlosseri;   (Ci)  Ciona   intestinalis;   (Cj)  Cardina  japonica;  (Le)  Ligia  exotica;  (At)  Achaearanea  tepidariorum  

Genbank   accession   numbers:   Hs_CDH1   AAI46663.1;   Mm_Cdh1   AAH98501.1;   Hs_CDH9   AAI09385.1;  Mm_Cdh9   NP_033999.1;   Bm1-­‐Cadherin   BAD91049.1;   Gb1-­‐Cadherin   BAD91050.1;   Dm_shg   NP_476722.1   ;  Af1-­‐Cadherin   BAD91054.1;   Fc1-­‐Cadherin   BAD91052.1;   Bm2-­‐Cadherin   BAD91048.1;   Gb2-­‐Cadherin  BAD91051.1  ;  Dm_CadN  AAZ66476.1;  Af2-­‐Cadherin  BAD91055.1;  LvG-­Cadherin  AAC06341.1;  SpG-­‐Cadherin  XP_001175592.1;   Ap-­‐Cadherin   BAC06834.1;   SE-­Cadherin   BAC06836.1;   Bs-­‐Cadherin   AAB88396.1;  1_Ci0100151854   NP_001121583.1;   Cj-­‐Cadherin   BAD91056.1;   LE-­Cadherin   BAD91057.1;   At-­‐Cadherin  BAD91058.1;  Dm_cadN2  ABI31322.2  

Page 179: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

160  

Supplementary Figure 5.4

Page 180: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

161  

 

Page 181: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

162  

 

Page 182: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

163  

       

Page 183: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

164  

 

Page 184: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

165  

       

 Supplementary  Figure  5.4  Boxshade  alignment  of  AmFlamingo    protein  with  representative  metazoan  Flamingo  (CELSR)  orthologues  demonstrates  the  degree  of  conservation.  Highly  conserved  regions  correlate  with  functional  domains   (coloured   boxes).   Although   the   current   model   of   AmFlamingo   is   truncated   at   the   N-­‐terminus,   all  diagnostic  C-­‐terminal  domains  are  present  supporting  the  designation  of  this  model  as  the  Acropora  orthologue  of  Flamingo,   which  was   initially   established   by   JCUSMART   annotation.   Shading   demonstrates     >50%   consensus   to  AmFlamingo   (Black  –conservation,  Grey  –   conservative   substitution).   Signal   sequences  have  been   removed   from  the  N-­‐terminus  of  each  protein.    

Genbank   Accesions:   Mm_CELSR2   NP_001004177.2;   Dr_CELSR1a   XP_002661517.2;   Dm_Flamingo   NP_724962;  Nv_Flamingo  JGI  proteinID  84228  

       

Page 185: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

166  

Supplementary Figure 5.5 AmVangl 1 -----MPSHRSDRGHRDRDHDH------------------------NDKRERQRLADDTG Nv_Vangl 1 ------------------------------------------------------------ Hm_Vangl 1 ------------------------------------------------------------ Ch_Vangl 1 ------------------------------------------------------------ Dm_Vang 1 MENESVKSEHSGRSRRSRNHNNNGGGGGGGGGGGGGSVNNGYHRERDRSRHSHRSTHSSK Mm_Vangl1 1 ---MDTESTYSGYSYYSSHSKKSHRQGER-TRERHKSPRNKDGRGSEKSVTIQAPAGEPL Dr_Vangl1 1 ---MDTDSIHSGYSHHSNRSRGSNKQSERSSRDRHKPHSRDSSSRSDKNVTISATSVQPQ Xl_Vangl1 1 ---MDTESNHSGYSHHS--------------RGRQQRERRHDGQKS-----VNVTVGQPL AmVangl 32 SQEILDEG---------------------IIQVQVIPQDDNWGETATSITETATSIVT-L Nv_Vangl 1 -------------------------------------QDDNWGETATTITETATSIVT-L Hm_Vangl 1 ------------------------------------------------------------ Ch_Vangl 1 -MDDFDDG---------------------VIEVQVIPQDDNWGETATTITETATSVYSDL Dm_Vang 61 SAKGFQRGDMAPYQTSVNMTGDGSHDGQEVIEVQILPQDENWGENTTAVTGNTSEQSISM Mm_Vangl1 57 LANDSAR------------------------TGAEEVQDDNWGETTTAITGTSEHSIS-Q Dr_Vangl1 58 QPDQSS--------------------------APTDAQDDNWGETTTAVTGTSDHSLS-Q Xl_Vangl1 39 LGEDSGRG-----------------------EEDEEGQDDRWGETTTAVT--SERSAS-F AmVangl 70 SETSLSEVGKDKRSFSCSFLR-HIKLVPAAILSICAVVSPILFVVFPLV----------- Nv_Vangl 23 SEGDLSEIGDEKKGLAFGVCR-HFKLIPAAIISLIALASPILFLVIPVV----------- Hm_Vangl 1 ------------------------------------------------------------ Ch_Vangl 39 DDTDPFGEEIEKHRFQCPNSKQALNILLSVILALMAVVSPIAFVIIPNV----------- Dm_Vang 121 EDINNMWHRESDKGFSFACRR-YVESSFYFLLGCGAFFSPVAMVVMPYVGFFPSAFDHPE Mm_Vangl1 92 EDIARISKD-MEDSVG-LDCKRYLGLTVASFLGLLVFLTPIAFILLPQILWR-------- Dr_Vangl1 91 EDLAGFGKD-TEGPVEKLNCIRFLPLALTLLLGLLVLVTPLSFLILPQLMWP-------- Xl_Vangl1 73 EDLAPVGTS-RIPDTVKPNTWIMIGFYLSCALGLFAILTPPAFIVLPQVFWG-------- AmVangl 118 -TWKP----EPCGYDCDGVFISFAVKELLLVIAIWALYFRRSRATMPRIFVLRVGMMLLG Nv_Vangl 71 -LWKP----PMCGIECDGLFLSLAVKELILVVGIWALYFRKSRVTMPRVFVLRVGVLVLA Hm_Vangl 1 ------------------------------------------------------------ Ch_Vangl 88 -SSSLKVTGEECGSVCEGLYITIAIKEIVLIFGLWALYIRPNKVDLPRLNVFKVGMMVLV Dm_Vang 180 ITQTVRTQLLACSEQCKGQLVSLAARLLLLAIGLWAVFMRRTSATMPRIFLYRALVLLLV Mm_Vangl1 142 ------EELKPCGAICEGLLISVSFKLLILLIGTWALFFRKQRADVPRVFVFRALLLVLI Dr_Vangl1 142 ------ERLQTCGTACEGLFLSLAFKLLILLLAGWALFMRPTRASLPGIAVFRALLGLLT Xl_Vangl1 124 ------SQLEPCGVVCEGLYISLAFKLLLLFLASWAVFLRPPRCDLPRLVEFHALLIVLL AmVangl 173 FVVIVCFWLFYGLRIIA---------KQTSQFSDILRFAVNFTDTMLFLHYASLVVLWVR Nv_Vangl 126 FLVLVCYWLFYGLRIIA---------KRGQDFGEILKFAVTLVDSLLFLHYLSVIVLWLR Hm_Vangl 1 ------------------------------------------------------------ Ch_Vangl 147 YVSIICFWLFYSIRMIG---------NGTNQY-LTVSFASSFLDAMLFLHYMALVLMWIR Dm_Vang 240 TICTFAYWLFYIVQVTNGAKIVVETGGDAVDYKSLVGYATNFVDTLLFIHYVAVVLLELR Mm_Vangl1 196 FLFVVSYWLFYGVRILD---------SRDQNYKDIVQYAVSLVDALLFIHYLAIVLLELR Dr_Vangl1 196 LLLLLSYWLFFGVRILD---------SQDDNYQGIVQFAVSLVDALLFIHYLAVVLLEIR Xl_Vangl1 178 FFFLSSYWLFYGVRVLG---------PQEKNLLGVVEYAVSLVDALIFIHYLALILLELR AmVangl 224 QTDPLFTLKVIRSTDGESKFYNIGPLSIQRTAAFVLEQYYKDFPEYNPFLMQT---PART Nv_Vangl 177 QSEPMFTLKVIRSTDGVNKFYNVGLLSIQRAAIYVLEQYYKDFPEYNPYMMSV---PARS Hm_Vangl 1 -HENIYNVSVIRNVDGSRKHYMIGQCSIQKAAVNVLEKYYIDFNEYNPYLPRP---TSRS Ch_Vangl 197 PMEKVYTVSIIRNVDGMRRYYNIGQSSIQKAAVFCLERYYIDFTEYNPYMPRP---QSRT Dm_Vang 300 HQQPCYYIKIIRSPDGVSRSYMLGQLSIQRAAVWVLQHYYVDFPIFNPYLERIPISVSKS Mm_Vangl1 247 QLQPMFTLQVVRSTDGESRFYSLGHLSIQRAALVVLENYYKDFTIYNP-NLLT---ASKF Dr_Vangl1 247 HLQPCFSLCVVRSTDGETHHYNMGQLSIQRAALVTLEHYYKDFTVHNP-ALLT---AAKS Xl_Vangl1 229 QLQPFFYLKVMRSSDGEMRFYSLGTLSIQRAAMFVLENYYKDFPVFRP-DPPV---VRKR AmVangl 281 SHKQFS-SLTFYDIDGK---QND--KVNPRARAILTAASTRRRDPARNDRFYEEAEFERK Nv_Vangl 234 SAKQFS-TLKFYDIDGK---LQDNSKVNPRTRAIITASSQGRRNPGRNDRFYEEAEFERK Hm_Vangl 57 KINKFS-NIKFYDLDNKMDMGNGKNFSQQASKAVIAAAALGRRKEGRNDRFYEELEIDRR Ch_Vangl 254 KINKLA-GLKIYDLDGK---GDG-TLTQQASKAFIAAAAAGRRKEGRNDRFYEEQELDRR Dm_Vang 360 QRNKISNSFKYYEVDGV-----SNSQQQSQSRAVLAANAR-RRDSSHNERFYEEHEYERR Mm_Vangl1 303 RAAKHMAGLKVYNVDGP-------SNNATGQSRAMIAAAARRRDSSHNELYYEEAEHERR Dr_Vangl1 303 RAAKHLAGLKVYNVDGAG------SDAATAQSRAKMAAAARQRDTSHNELYYEEAEHDRR

Page 186: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

167  

Xl_Vangl1 285 --TRHNNHPQVYSVDGP-------NSSTVSQSQTLISTSTN-----YKERYYEEAEHARK AmVangl 335 IKRRKARLFNACEEAFGHIKRVQLE---RGPCVPMDPEETAQSLFPSFARPLQKYLRTVR Nv_Vangl 290 LKRRKARLVATCEEAFGHIKRVQLE---RGPSVPMDPEETAQSLFPSFARPLQKYLRTVK Hm_Vangl 116 VRKRKARLVAAAEEAFGHIARLNAFDTSKKANGSMNPDEAAQAIFPTLARPLQKYLRTTR Ch_Vangl 309 IRKRKARLVAAAEEAFGHVARLNAFDSSKKADGSMDPEEAAQAVFPTLARPLQKYLRTTR Dm_Vang 414 VKKRRARLITAAEEAFTHIKRIHNEP---APALPLDPQEAASAVFPSMARALQKYLRVTR Mm_Vangl1 356 VKKRRARLVVAVEEAFIHIQRLQAEEQQKSPGEVMDPREAAQAIFPSMARALQKYLRTTR Dr_Vangl1 357 VRKRKARLVVAVEEAFTHVRRLQDEEKKKPPGDEMDPREAAQAIFPSMARALQKYLRTTR Xl_Vangl1 331 VRRRKARLVMSVHDAFSQLKRLVQQDEEWKLPNTLHPREAAQSIFPLIAQSLQRYLRSTQ AmVangl 392 LHHRYTMDGIIKHLAHCLTFDMTPKAFLERYLKDQPCGEFT-TKRRCQSWSLVCEEQVTK Nv_Vangl 347 QHHRHNMDAILKHLAHCLTFDMSPKAFLERYLNDQPCIEYTGASVGPQSWSLVCEEQVTS Hm_Vangl 176 QQLHYPLESIMKHLAHCIMFDMSAR----------------------------------- Ch_Vangl 369 QQLYYPLESILKHLAHCISYELSSKAFIERYTCDQPCISYV-GYDGRQEWTLVTDSSPTR Dm_Vang 471 QQPRHTFESILKHLAHCLKHDLSPRAFLEPYLTESPVMQSEKERRWVQSWSLICDEIVSR Mm_Vangl1 416 QQHYHSMESILQHLAFCITNSMTPKAFLERYLSAGPTLQYDKDRWLSTQWRLISEEAVTN Dr_Vangl1 417 QQHCHSMDSIQAHLAFCITNNMTPKAFLESYLTAGPTLQYGRESSQTRHWTLVSEASVTS Xl_Vangl1 391 QAHLHSMEGIIQHLTLCLTHRMSPQAFLEQYLHPGPPVQYPSNPYG--VWTLVSEESVTS AmVangl 451 TLSSSTVFQLKGDDLSLVVTVRRLPYLDISEDEFDFESNKFVLRLNSETSV Nv_Vangl 407 GLSNSTVFQLKTEVLSLVVTVNNIPHFVVDEDEFDFENNKFVLKLNSETSV Hm_Vangl --------------------------------------------------- Ch_Vangl 428 QLNEGTVFQLKHEDISLVIAVSKLPVFAMSELPFNGDSNRFVFRLNSETSV Dm_Vang 531 PIGNECTFQLIQNDVSLMVTVHKLPHFNLAEEVVDPKSNKFVLKLNSETSV Mm_Vangl1 476 GLRDGIVFVLKCLDFSLVVNVKKIPFIVLSEEFIDPKSHKFVLRLQSETSV Dr_Vangl1 477 PLRNGSEFQLKSSDFSLVVTSKTIPHLKLSEEYVHPKSHKFVLQLQSETSV Xl_Vangl1 449 PLRSDLTFCLQCSDTQLLVTVCGIPFLKLSETFISPNSHRLIVSSKPETNL  

Supplementary   Figure   5.5   Boxshade   alignment   of   full   length   Am_Van   Gogh   Like   (AmVangl)   protein   with  representative   metazoan   Van   Gogh   orthologues   demonstrates   a   reasonable   degree   of   sequence   conservation.  Shading  demonstrates    >50%  consensus  to  AmVangl  (Black  –conservation,  Grey  –  conservative  substitution).  The  degree   of   conservation   supports   the   assignment   of   Acropora   protein   model   Contig17842   as   the   Acropora  orthologue  of  Van  Gogh,  which  was  initially  established  by  BLASTp  analysis  (E-­‐value  =  1E-­‐100).    

Genbank   Accesions:   Mm_Vangl1   NP_808213.2;   Dr_Vangl1   NP_991313.1;   Xl_Vangl1   NP_001089844.1;   Dm_Vang  NP_477177.1  

 

Page 187: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

168  

Supplementary Figure 5.6 Am_Dsh 1 -------MEETKVIYHIDDEDTPYLVKLPKSPTDVTLSDFKNVL-NRPS--YKFFFKSMD Nv_Dsh 1 -------MDETKVIYHIDDEDTPYLVKLGKTPDIVTLGDFKNVL-NRPN--YKFFFKSMD Xt_Dsh1 1 -------MAETRIIYHIDEEETPYLVKLPVPPEKVTLADFKNVLSNRPVHHYKFFFKSMD Mm_Dsh1 1 -------MAETKIIYHMDEEETPYLVKLPVAPERVTLADFKNVLSNRPVHAYKFFFKSMD Dr_Dsh1 1 -------MAETKIIYHIDEEETPYLVKLSVAPEKVTLADFKNVLSNRPVNSYKFFFKSMD Dm_Dsh 1 MDADRGGGQETKVIYHIDDETTPYLVKIPIPSAQVTLRDFKLVL-NKQNNNYKYFFKSMD Ch_Dsh 1 -----MAEKETKIIYHVDDEETPYLVKIPKPPDQVTLGDFKSVI-NRPN--FKFFFKSMD Hv_Dsh 1 ----MSVPDETKIIYHVDDEETPYLVKIPKSPSLVTLGDFKNVI-NRPN--YRFFFKSMD Hm_Dsh 1 ------------------------------------------------------------ Am_Dsh 51 DDFGVVKEEISDEEMNLPCFNGRVVAWLVTSDTSSVSDTG--RDDQQSVISG-TSDLHPP Nv_Dsh 51 DDFGVVKEEISDDETHLPCFNGRVVAWLVTSDTSSVSGGGDLASDQQSIISASPSDLHVP Xt_Dsh1 54 QDFGVVKEEISDDNAKLPCFNGRVVSWLVLAE-SSHSDGG-------SQSTESRTDLPLP Mm_Dsh1 54 QDFGVVKEEIFDDNAKLPCFNGRVVSWLVLAE-GAHSDAG-------SQGTDSHTDLPPP Dr_Dsh1 54 QDFGVVKEEVSDDNAKLPCFNGRVVSWLVLAE-SSHTDGM-------SVCTDSHTEHPPP Dm_Dsh 60 ADFGVVKEEIADDSTILPCFNGRVVSWLVSADGTNQSDNC-------SELPTSECELGMG Ch_Dsh 53 DDFGVVKEEIIDDDAPLPCFNGRVVSWVVPPE-DGSCDGQ-------SQHSGDGIFVPVQ Hv_Dsh 54 DDFGVVKEEIIDDDTILPCFNGRVVSWVVPPEEGSNDCNS-------------------T Hm_Dsh 1 ------------------------------------------------------------ Am_Dsh 108 MPRTVGIGDSRPPSFHHGGQSTAGDFDSEAESTVSSRRG--SRRREKHSIN-RNEVIHG- Nv_Dsh 111 VQRTGGIGDSRPPSFHHGGHSTAGDFDSEVDSTISSRRGGSSRRKERHSSRGIGHRSHR- Xt_Dsh1 106 IERTGGIGDSRPPSFHPNASSSRDGLDNETGTDSVVSHRRDRHRRKNRETHDDVPRINGH Mm_Dsh1 106 LERTGGIGDSRPPSFHPNVASSRDGMDNETGTESMVSHRRERARRRNR---DEAARTNGH Dr_Dsh1 106 LERTGGIGDSRPPSFHANAVNSRDGLDTETGSEPVLRHRRERERERTRRRRDDSERV--- Dm_Dsh 113 LTNRKLQQQQQQHQQQQQQQQQQHQQQQQQQQQQVQPVQLAQQQQQQVLHHQKMMGNP-- Ch_Dsh 105 SSNSNISRSSTMRSKERVQDSDAESIVSRRSSRSRSSRKYESDADRRSRRSHREHRN--- Hv_Dsh 95 NSGESALKQGRSNVSKKDRFPDNESVCSHKSVRSNRSRRLDTENENRSKVRNHRDHRSD- Hm_Dsh 1 ------------------------------------------------------------ Am_Dsh 164 ----RRRHESDRYESAS-VMSSDIETTSYQDSSDDQSSVSRFSSTTEGSQ--LLRGRHRR Nv_Dsh 170 ----SGVRQGERFDTTS-TMSSDIETTSYMDSSDDQ---SRFSSTTEGSH--LLSGRHRR Xt_Dsh1 166 PKLDRIRDPGG-YDSASTVMSSELESSSFVD-SDEDENTSRLSSSTEQSTSSRLIRKHKR Mm_Dsh1 163 PRGDRRRDLGLPPDSASTVLSSELESSSFID-SDEEDNTSRLSSSTEQSTSSRLVRKHKC Dr_Dsh1 163 -----VRDSAMGCDSGS-IMSSELESSSFID-SEDEEDASRLSSSTEQSSSFQLMKRHKR Dm_Dsh 171 ----LLQPPPLTYQSAS-VLSSDLDSTSLFG-TESELTLDRDMTDYSSVQ--RLQVRKKP Ch_Dsh 162 ---------YDQYDSAS-MMSSDLETTSFVD-SEEESQMS---SATESSR--YVGGNKRR Hv_Dsh 154 ------------FDSSS-IMSSDLETTSFVD-SDEESRISSTTENSKYGG-----ARQKR Hm_Dsh 1 ------------------------------------------------------------ Am_Dsh 217 RRRRPRMPRVQRCSSFSTITESTMSLNIITVTLNMEKVNFLGISIVGQSNKRGDGGIYVG Nv_Dsh 220 RRRRPRMPRVQRCSSFSTITESTMSLNIITITLNMDKVNFLGISIVGQSNKKGDGGIYVG Xt_Dsh1 224 RRRKQKMRQIDRSSSFSSITDSTMSLNIITVTLNMEKYNFLGISIVGQSNDRGDGGIYIG Mm_Dsh1 222 RRRKQRLRQTDRASSFSSITDSTMSLNIITVTLNMERHHFLGISIVGQSNDRGDGGIYIG Dr_Dsh1 216 RRRRHKVAKIDRSSSFSSITDSTMSLNIITVTLNMEKYNFLGISIVGQSNDRGDGGIYIG Dm_Dsh 223 QRRKKRAPSMSRTSSYSSITDSTMSLNIITVSINMEAVNFLGISIVGQSNRGGDGGIYVG Ch_Dsh 206 RRRRQRMPRVERCSS--------------------------------------------- Hv_Dsh 195 RRRKQRMPRVERCSSFSTITESTMSLNIITVVLNMDKINFLGISIVGQANKKGDGGIYVG Hm_Dsh 1 ------------------IYE----------------------------KKK-------- Am_Dsh 277 SIMKGGAVDLDGRIEPGDMLLQVNDVNFENMSNDDAVRVLREMVHKPGPITLTVAKCWDP Nv_Dsh 280 SVMKGGAVDLDGRVEPGDMLLQVNDVNFENMSNDDAVRVLREMVHKPGPITLTVAKCWDP Xt_Dsh1 284 SIMKGGAVAADGRIEPGDMLLQVNDVNFENMSNDDAVRVLREIVSKPGPISLTVAKCWDP Mm_Dsh1 282 SIMKGGAVAADGRIEPGDMLLQVNDVNFENMSNDDAVRVLREIVSQTGPISLTVAKCWDP Dr_Dsh1 276 SIMKGGAVAADGRIEPGDMLLQVNDVNFENMSNDDAVRILREIVSKNGPISLTVAKCWDP Dm_Dsh 283 SIMKGGAVALDGRIEPGDMILQVNDVNFENMTNDEAVRVLREVVQKPGPIKLVVAKCWDP Ch_Dsh ------------------------------------------------------------ Hv_Dsh 255 SVMKGGAVDADGRIEPGDMILAVGDVNFENMSNDDAVRVLRECVHKPGPIMLTVAKCWDP Hm_Dsh 7 SVLQS-------------TIPGVGDVNFENMSNDDAVRXPQRVRTQTWSHHADGAKCWDP Am_Dsh 337 TPKGYFTLPPSEPVRPIDTSAWVQHTTAMNQFGN---PVVQYGKQPNSQSITTMTSTSSS Nv_Dsh 340 TPKGYFTLPHSDPVRPIDTSAWVQHTTAMNQFAAQQGQFVPPAKPGNSQSLSTMTSTSSS Xt_Dsh1 344 TPRSYFTIPRAEPVRPIDPAAWITHTSALTGAYPRY------------------------ Mm_Dsh1 342 TPRSYFTIPRADPVRPIDPAAWLSHTAALTGALPRYGTSPCS-------------SAITR Dr_Dsh1 336 SPRSYFTIPRAEPVRPIDPAAWISHTTALTGSYPQN------------------------ Dm_Dsh 343 NPKGYFTIPRTEPVRPIDPGAWVAHTQALTSHDSIIAD---------------------- Ch_Dsh ------------------------------------------------------------ Hv_Dsh 315 NPKGYFTVPRNDVTRPIDPAAWMQHSEAVRASGGLLGGRTGS---------PSMSTMTST Hm_Dsh 54 NPKGYFTVPRNDVTRPIDPQLGCNIPEAVRASGGLLGGRTGS---------PSMSTMTST

Page 188: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

169  

Am_Dsh 394 MTSSLPESDIPGYTDIPDGEGLSLSTDMTTVVKAMAAPDSGLDVRDRMWLKITIPNAFIG Nv_Dsh 400 MTSSLPESDR--YTEIPEGEALTINTDMSTVVKAMAAPDSGLDIRDRMWLKITIPNAFIG Xt_Dsh1 380 --------------EQEDSPLSV-KSDMATIVKVMQLPDSGLEIRDRMWLKITISNAVIG Mm_Dsh1 389 TSSSSLTSSVPGAPQLEEAPLTV-KSDMSAIVRVMQLPDSGLEIRDRMWLKITIANAVIG Dr_Dsh1 372 --------------EFDELPLTMGKTDMATIVKVMQLPDSGLEIRDRMWLKITIANAVIG Dm_Dsh 381 --------------IAEPIKERLDQNNLEEIVKAMTKPDSGLEIRDRMWLKITIPNAFIG Ch_Dsh ------------------------------------------------------------ Hv_Dsh 366 SDSLTSSIPESDRYIDHSDLGLSIKTDMNTVIKVMASPDSGLVVRDRMWLKITIPNAFIG Hm_Dsh 105 SDSLTSSIPESDRYIDHSDLGLSIKTDMNTVIKVMASPDSGLVVRDRMWLKITIPNAFIG Am_Dsh 454 SDVVDWLYSRVDGFQDRREARKYACNLLKSGFIRHTVNKITFSEQCYYVFGDLCGNMAAL Nv_Dsh 458 SDVVDWLYTHVEGFMDRREARKYACNLLKAGYIRHTVNKITFSEQCYYVFGDLCGNLAAL Xt_Dsh1 425 ADVVDWLYTHVEGFKERREARKYASSMLKHGYLRHTVNKITFSEQCYYVFGDLCGNVAAL Mm_Dsh1 448 ADVVDWLYTHVEGFKERREARKYASSMLKHGFLRHTVNKITFSEQCYYVFGDLCSNLASL Dr_Dsh1 418 GDVVDWLYSRVEGFKDRRDARKYASSLLKHGYLRHTVNKITFSEQCYYTFGDLCQNMATL Dm_Dsh 427 ADAVNWVLENVEDVQDRREARRIVSAMLRSNYIKHTVNKLTFSEQCYYVV-NEERNPNLL Ch_Dsh ------------------------------------------------------------ Hv_Dsh 426 SDLVDWLFAHVDGFQDRRDARKYASKLLKAELIKHTVKKVTFSEQCYYVFGDLNSSMKGL Hm_Dsh 165 SDLVDWLFAHVDGFQDRRDARKYA------------------------------------ Am_Dsh 514 SIAEHEGDG--DTDTLGPLPVHPHGTPWMAG-PPSYGYVQMPPYPTAPPPVMVDGQTPGY Nv_Dsh 518 SLNENEGD----QDTLGPLPPQQQAIPWMTGGPPAYGYHQMPSYPPSMAP--SDAKTPGY Xt_Dsh1 485 NLNEGSSGT-SDQDTLAPLPHPAA-PWPLG-QGYSYQYPLAPPCFPPTYQEPGFSYGSGS Mm_Dsh1 508 NLNSGSSGA-SDQDTLAPLPHPSV-PWPLG-QGYPYQYPGPPPCFPPAYQDPGFSCGSGS Dr_Dsh1 478 NLNEGSSGAGSEQDTLAPLPPPSTNPWPMGGQPFPYPPFTAPPAFPPGYSDPCHSFHSGS Dm_Dsh 486 GRGHLHPHQLPHGHGGHALSHADTESITSDIGPLPNPPIYMPYSATYNPSHGYQPIQYGI Ch_Dsh ------------------------------------------------------------ Hv_Dsh 486 ILDDFESNELPLPHSSHCGSWVGNNQSSQYVMQMGGMPLIHPGMIVRGSPSITSSSEMGV Hm_Dsh ------------------------------------------------------------ Am_Dsh 571 GQSLY------------------------------------------------------- Nv_Dsh 572 AQSFYSGTSQHSGSQSPQSASG-------------------------------------- Xt_Dsh1 542 AGSQHSEGK----STYSGVFLP-------------------------------------- Mm_Dsh1 565 AGSQQSEGSKSSGSTRSSHRTP------------GREERRATG--------AGG-----S Dr_Dsh1 538 AGSHHSEGSRSSSSNPSIGRIQRAVQ--------REKERKSTGSESDSGKRAGGRRVERS Dm_Dsh 546 AERHISSGSSSSDVLTSKDISA-------------------------------------- Ch_Dsh ------------------------------------------------------------ Hv_Dsh 546 APSASNYSNVPPNYMDMYSQIYQPTFNPYFAHNSGSQGSQHTGSNSGSGGSFRGHQLNQQ Hm_Dsh ------------------------------------------------------------ Am_Dsh ------------------------------------------------------------ Nv_Dsh 594 SSRKGSERDRGAGDDHKSSGGSSSERSGS------------------------------- Xt_Dsh1 ------------------------------------------------------------ Mm_Dsh1 600 GSESDHTVPSGSGSTGWWERPVSQLSRGSSPRSQA-------------------SAVAPG Dr_Dsh1 590 ASQLSHRSHALSSRSHTHSRVPSQHSRTSFSYSHAPFTKYGHTSCALSERSHASSYGPPG Dm_Dsh 568 -SQSDITSVIHQANQLTIAAHGSNKSSGS------------------------------- Ch_Dsh ------------------------------------------------------------ Hv_Dsh 606 QQLVMQQQHYDYDQATIRSSSSSDKSRGSKSSLESKRVLLATTDHLASDKIISPDTVSLN Hm_Dsh ------------------------------------------------------------ Am_Dsh ----------------------------------------------------------- Nv_Dsh ----------------------------------------------------------- Xt_Dsh1 ----------------------------------------------------------- Mm_Dsh1 641 LPP---LHPLTKAYAVVGGPPGGPPVRELAAVPPELTGSRQSFQKAMGNPCEFFVDIM- Dr_Dsh1 650 LPPPYSLARLTPKGAVCSGPPGAPPVREMGAIPPELTASRQSFQHAMGNPCEFFVDIM- Dm_Dsh 596 ----------SNRGGGGGGGGGGNNTNDQDVSVFNYVL--------------------- Ch_Dsh ----------------------------------------------------------- Hv_Dsh 666 GIRESNISNNNYEKGENARNNTSREFGRLDTIPREISASKQSFRMAMGNSSNEFFVDVM Hm_Dsh -----------------------------------------------------------  

Supplementary   Figure   5.6   Boxshade   alignment   of   full   length   Am_Dishevelled   (Am_Dsh)   protein   with  representative  metazoan  Dishevelled  orthologues  demonstrates  a  high  degree  of   sequence  conservation.  Shading  demonstrates     >50%   consensus   to  Am_Dishevelled   (Black   –conservation,   Grey   –   conservative   substitution).   The  degree   of   conservation   supports   the   assignment   of   Acropora   protein   model   Contig1475   as   the   Acropora  orthologue  of  Dishevelled,  which  was  initially  established  by  BLASTp  analysis  (E-­‐value  =  1E-­‐136).    This  Acropora  sequence  has  since  been  verified  by  sequencing  of  cloned  DNA  (S.Ukolova,  unpublished).    

Genbank  Accesions:    Hm_Dsh  XP_002162745;  Hv_Dsh  AAG13667.1;  Dm_Dsh  NP_511118.2;  Mm_Dsh1  NP_034221.3;  Dr_Dsh1  XP_698367.5;  Xt_Dsh1  NP_001116886.1  

Page 189: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

170  

Chapter 6 Supplementary Figure 6.1

Page 190: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

171  

 

   

       

 

 

 

 

 

 

 

 

Page 191: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

172  

Supplementary   Figure   6.1   Multiple   sequence   alignment   of   α-­‐Integrin   proteins   used   for   maximum   likelihood  analysis   presented   in   Figure   6.1.   Analysis   is   based   on   extensively   edited   alignment   of   843   positions.   Shading  corresponds  to  consensus  of  30%  or  more  between  all  sequences  included  in  the  alignment.  

integrin  sequences  α7,  α6,  α3,  α5,  αV,  α8  and  αIIb  -­‐Homo  sapiens;  integrin  αPS1-­‐3  -­‐Drosophila  melanogaster;  (Sp)  Strongylocentrotus   pupuratus;   integrin-­‐α   Pat2   and   integrin-­‐α   Ina1   -­‐Caenorhabditis   elegans;   (Am)   Acropora  millepora;  (Nv)  Nematostella  vectensis;  (Pc)  Podocoryne  carnea;  (Gc)  Geodium  cydonium;  (Lv)  Lytechinus  verigatus  

Genbank  accession  numbers:  LvSU2  AAC23572;  SpαP  AAD55724;  DmPS2  P12080;   Itgα5  P08648;   ItgαV  P06756;  Itgα8  P53708;  Itgαllb  P08514;  Itgα6  P23229;  Itgα7  Q13683;  Itgα3  P26006;  ItgαPS3  O44386;  AmItgα1  EU239371;  Itgα4   P13612;   Itgα9   Q13797;   NvItgα1   XP_001641435;   ItgαPat2   P34446;   ItgαPS1;   Q24247;   PcItgα   AAG25993;  ItgαIna1  Q03600;  GcItgα  CAA65943  

     

Page 192: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

173  

Supplementary Figure 6.2

 

Page 193: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

174  

 

   

Page 194: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

175  

 

Page 195: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  A     Supplementary  Material  

176  

 

Supplementary   Figure   6.2  Multiple   sequence   alignment   of   β-­‐Integrin   proteins   used   for   maximum   likelihood  analysis   presented   in   Figure   6.2.   Analysis   is   based   on   extensively   edited   alignment   of   991   positions.   Shading  corresponds  to  consensus  of  30%  or  more  between  all  sequences  included  in  the  alignment  

(Hs)  Homo  sapiens;  (Dm)  Drosophila  melanogaster;  (Ce)  Caenorhabditis  elegans;  (Sp)  Strongylocentrotus  pupuratus;  (Am;  ItgbCn1)  Acropora  millepora;  (Nv)  Nematostella  vectensis;  (Sd)  Suberites  domuncula;  (Gc)  Geodium  cydonium;  (ItgβPo1)  Ophlitaspongia  tenuis;  

Genbank   accession   numbers:   HsItgβ3   P05106;   HsItgβ5   P18084;   HsItgβ6   P18564   ;   HsItgβ2   P05107   ;   HsItgβ7    P26010   ;  HsItgβ1     P05556   ;   SpItgβG     AAB39739   ;   SpItgβL     AAC28382   ;   SpItgβC     AAB39740   ;   DmβPS   P11584   ;  CePat3    Q27874  ;  AmItgβ2    EU239372  ;  NvItgβ1    XP_001641468  ;  NvItgβ2    XP_001627336  ;  PcIntB    AAG25994  ;  ItgbCN1  AAB66910  ;  NvItgβ3    XP_001637894  ;  NvItgβ4    XP_001621822  ;  OtItgβ1    AAB66911  ;  SdItgβ    CAB38100  ;  GcItgβ    CAA77071  ;  HsItgβ4    P16144  ;  Dmβ-­‐nu    Q27591  ;  HsItgβ8    P26012  

 

Page 196: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

177  

Sub-Family Organism Sequence Id BLAST e_value HMMPFAM

Signal Peptide TM Conclusion Notes

Flamingo Nvec jgi|Nemve1|84228|e_gw.9.5.1 CELSR 0CA (8x), EGF (2-3), LamG, EGF, LamG, EGF (3x), HormR_1, GPS, 7tm_2 No 1 Flamingo start and stop codons present

Flamingo Acropora Contig3665cadherin EGF LAG seven-pass G-type receptor 1 [... 2.00E-98 HormR, GPS, 7tm_2 No 7 flamingo c-term best hit to Nvec flamingo; overlaps Contig8737

Flamingo Acropora Contig8737cadherin, EGF LAG seven-pass G-type receptor 2 (f... 1.00E-171 CA, EGF (2x), LamG, EGF,LamG, EGF(2x) No No flamingo middle best hit to Nvec flamingo; overlaps Contig3665

FAT Nvec jgi|Nemve1|197466|fgenesh1_pg.scaffold_5000272 FAT3 SP, CA (29x), EGF, LamG, EGF, LamG, EGF Yes No FAT 4 like start and stop codons presentFAT Nvec jgi|Nemve1|20161|gw.67.8.1 FAT1 CA (34x), LamG, EGF (3x), TM No 1 FAT 1 No start and no stop codonFAT Nvec jgi|Nemve1|20073|gw.193.26.1 FAT4 0 CA (11x), EGF (3x), LamG, EGF, LamG, EGF No No FAT 4, partial FAT4 has CA (25x) but the rest is identicial in structure. No start no stopCalsynetenin Nvec jgi|Nemve1|167342|estExt_gwp.C_860192 Calsyntenin 2 1.00E-84 CA (2x), CA (wobbly) LamG (wobbly) Yes 1 Calsyntenin 2 start and stop codons presentCalsynetenin Acropora Amil_rep_c147915 calsyntenin 1 [Danio rerio] 8.00E-79 CA (2x), LamG, TM No 1 CalsynteninCalsynetenin Acropora Contig31873 calsyntenin 1 [Danio rerio] 8.00E-76 CA, LamG Yes No Calsyntenin partialCatenin Binding Acropora Contig 6389 + Contig5394

Cj-cadherin [Caridina japonica] 1.00E-129

CA (6x) + CA (7x), EGF, LamG, EGF, LamG, EGF, TM, Cadherin_C No 1 Type III cadherin these two contigs overlap on the basis of DNA assembly

Catenin Binding Nvec jgi|Nemve1|239897|estExt_fgenesh1_pg.C_210083 FAT3 0 SP, CA (24x), EGF, LamG, LamG, EGF, TM, Cadherin_C Yes 1 Type III cadherin start and stop codons presentCatenin Binding Nvec jgi|Nemve1|244010|estExt_fgenesh1_pg.C_1040031 FAT3 0 SP, CA (30x), EGF, LamG, EGF, LamG,EGF, TM, Cadherin_C Yes 1

Type III cadherin Uli Technau's Endothelial Cadherin start and stop codons present

Catenin Binding Nvec jgi|Nemve1|239899|estExt_fgenesh1_pg.C_210088 No good hits EGF, TM, Cadherin_C (wobbly) No 1 Type III cadherin start and stop codons present combines with 239898 Extracellular region!Catenin Binding Nvec jgi|Nemve1|223294|fgenesh1_pg.scaffold_2546000001 Cadherin_C No No

Unknown - Classical Cadherin (partial) No start codon, stop codon present

Catenin Binding Hydra CL3352Contig1 No good hits Cadherin_C No No

Unknown - Classical Cadherin (partial) has a M but not likely to be the real start

Cad23/Dachsous Monosiga jgi|Monbr1|27065|fgenesh2_pg.scaffold_17000053 No good hits CA (2x) No No start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|206603|fgenesh1_pg.scaffold_71000072 No good hits CA (4x) Yes 1 Cadherin start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|129879|e_gw.270.98.1 CELSR 3 1.00E-78 CA (4x) No No Cadherin start and stop codons presentCad23/Dachsous Acropora Contig12092

FAT tumor suppressor homolog 3 [Gallus gallus] 2.00E-49 CA (6x),TM Yes 1

Cad23/Dachsous Nvec jgi|Nemve1|243040|estExt_fgenesh1_pg.C_770089 FAT1 1.00E-59 CA (7x) Yes 1 Cadherin 17 start and stop codons presentCad23/Dachsous Acropora Contig8381 CA (7x), TM Yes 1Cad23/Dachsous Nvec jgi|Nemve1|129882|e_gw.270.7.1 CELSR 1.00E-30 CA (8x) No No Cadherin start and stop codons presentCad23/Dachsous Monosiga jgi|Monbr1|27265|fgenesh2_pg.scaffold_18000084 cadherin23 1.00E-35 CA (8x) Yes no Cadherin start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|214866|fgenesh1_pg.scaffold_212000008 FAT4 1.00E-80 CA (9x) Yes No Cadherin start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|221587|fgenesh1_pg.scaffold_851000001 dachsous 1.00E-99 CA (9x) No No Cadherin start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|207189|fgenesh1_pg.scaffold_77000086 Hedgling 1.00E-178 CA (14x) Yes No Cadherin start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|248422|estExt_fgenesh1_pg.C_5570001 Hedgling 0 CA (17x) No No Cadherin start and stop codons presentCad23/Dachsous Monosiga jgi|Monbr1|29591|fgenesh2_pg.scaffold_36000032 fat 1.00E-51 Ca (20x) Yes No Cadherin start and stop codons presentCad23/Dachsous Monosiga jgi|Monbr1|27264|fgenesh2_pg.scaffold_18000083 FAT4 1.00E-57 CA (24x) No 2 Cadherin start and stop codons presentCad23/Dachsous Monosiga jgi|Monbr1|31013|estExt_fgenesh2_pg.C_20691 FAT4/cadherin23 1.00E-173 CA (24x) Yes No Cadherin start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|239898|estExt_fgenesh1_pg.C_210085 FAT1 0 CA (30x) Yes No Cadherin

start and stop codons present probably should be combined with 239899 to make one model duplicate of technau's

Cad23/Dachsous Monosiga jgi|Monbr1|37884|estExt_fgenesh1_pg.C_170117 FAT4 1.00E-160 CA (30x) Yes 2 Cadherin 16 like start and stop codons presentCad23/Dachsous Nvec jgi|Nemve1|207195|fgenesh1_pg.scaffold_77000092 dachsous 1.00E-153 CA (36x) Yes 1 dachsous start and stop codons present

Cad23/Dachsous Acropora Contig10872

dachsous 1 [Rattus norvegicus] >gi|149068442... 0 CA (19x), TM cadherin_C No 1 Dachsous Matches Unigene D041-C8. C-terminal region alignment places with Dachsous.

MBCDH1 Monosiga jgi|Monbr1|14707|e_gw1.3.170.1gb|AAP78679.1| MBCDH1 [Monosiga brevicollis] 0 EGF, CA (2x) No No

gb|AAP78679.1| MBCDH1 [Monosiga brevicollis] start, no stop

unidentified Hydra gb|DT613897.1 No good hits CA No No Unknown - Cadherin (partial) No start no stopunidentified Hydra gb|DT617585.1 No good hits CA No No Unknown - Cadherin (partial) No start no stopunidentified Clytia IL0ABA14YL05RM1 protocadherin gamma A2 1.00E-12 CA No No No start No stopunidentified Nvec jgi|Nemve1|110347|e_gw.100.165.1 No good hits CA No No No start, no stopunidentified Nvec jgi|Nemve1|127187|e_gw.236.58.1 Hydra Homolgue only CA No No No start, no stop ref|XP_002122245.1| PREDICTED: similar to Sushi, von Willebrand ... 4.00E-91unidentified Nvec jgi|Nemve1|127202|e_gw.236.61.1 No good hits CA No No Start codon, no stop codonunidentified Nvec jgi|Nemve1|18675|gw.236.62.1 No good hits CA No No No start, no stopunidentified Nvec jgi|Nemve1|219496|fgenesh1_pg.scaffold_416000004 No good hits CA No No start and stopunidentified Nvec jgi|Nemve1|223469|fgenesh1_pg.scaffold_2837000001 No good hits CA No No No start, no stopunidentified Nvec jgi|Nemve1|225510|fgenesh1_pg.scaffold_9093000001 No good hits CA No No Start codon, no stop codonunidentified Nvec jgi|Nemve1|225923|fgenesh1_pg.scaffold_14475000001 No good hits CA No No No start, stop presentunidentified Nvec jgi|Nemve1|225928|fgenesh1_pg.scaffold_14604000001 No good hits CA No No No start, no stopunidentified Nvec jgi|Nemve1|238641|estExt_fgenesh1_pg.C_70089 No good hits CA No No start and stopunidentified Nvec jgi|Nemve1|4597|gw.4224.3.1 starry night 1.00E-31 CA No No No start, no stopunidentified Nvec jgi|Nemve1|67148|gw.100.168.1 No good hits CA No No No start, no stopunidentified Nvec jgi|Nemve1|219501|fgenesh1_pg.scaffold_416000009 No good hits CA (wobbly), F5_F8_type_C No No start and stop

Appendix B: JCUSMART Survey of the Cnidarian Adhesome

Cadherins                                                          

Page 197: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

178  

 

Sub-Family Organism Sequence Id BLAST e_value HMMPFAM

Signal Peptide TM Conclusion Notes

unidentified Nvec jgi|Nemve1|244693|estExt_fgenesh1_pg.C_1310026 No good hits CA Yes No start and stopunidentified Hydra CL1102Contig1 No good hits CA (2x) No No Unknown - Cadherin (partial) No start no stopunidentified Hydra gb|CO538479.1 No good hits CA (2x) No No Unknown - Cadherin (partial) No start no stopunidentified Hydra gb|DN603165.2 No good hits CA (2x) No No Unknown - Cadherin (partial) No start no stopunidentified Hydra gb|DN811522.2 No good hits CA (2x) No No Unknown - Cadherin (partial) No start no stopunidentified Hydra gb|DN812369.2 No good hits CA (2x) No No Unknown - Cadherin (partial) No start no stopunidentified Hydra gb|DN815486.2 No good hits CA (2x) No No Unknown - Cadherin (partial) No start no stopunidentified Hydra gb|DT619671.1 No good hits CA (2x) No No Unknown - Cadherin (partial) No start no stopunidentified Nvec jgi|Nemve1|148827|e_gw.2646.1.1 No good hits CA (2x) No No Start codon, no stop codonunidentified Nvec jgi|Nemve1|52838|gw.77.119.1 starry night 1.00E-30 CA (2x) No No No start, no stopunidentified Clytia SA0AAB45YD15CTG FAT tumor suppressor 1.00E-16 CA (2x) Yes No Start codon, no stop codonunidentified Hydra CL5439Contig1 No good hits CA (3x) No 1 Unknown - Cadherin (partial) No start no stopunidentified Hydra CL5681Contig1 No good hits CA (3x) No 2 Unknown - Cadherin (partial) No start no stopunidentified Nvec jgi|Nemve1|219493|fgenesh1_pg.scaffold_416000001 No good hits EGF, CA (3x) No No start and stopunidentified Nvec jgi|Nemve1|219500|fgenesh1_pg.scaffold_416000008 protocadherin 1.00E-24 CA (3x) No No start and stopunidentified Nvec jgi|Nemve1|220674|fgenesh1_pg.scaffold_557000003 CELSR 1.00E-39 CA (3x) No No No start, stop presentunidentified Nvec jgi|Nemve1|40605|gw.212.44.1 starry night 1.00E-59 CA (3x) No No No start, no stopunidentified Nvec jgi|Nemve1|98014|e_gw.48.27.1 No good hits CA (3x) No No No start, stop presentunidentified Nvec jgi|Nemve1|153449|e_gw.6181.1.1 CELSR 1.00E-47 CA (3x) No No No start, stop presentunidentified Nvec jgi|Nemve1|48709|gw.12488.2.1 fat (dros) 1.00E-60 CA (4x) No No No start, no stopunidentified Nvec jgi|Nemve1|70250|gw.100.177.1 CELSR 1.00E-47 CA (4x) No No No start, no stop

unidentified Nvec jgi|Nemve1|91648|e_gw.27.37.1gb|AAI01037.1| PCDHGC4 protein [Homo sapiens] 1.00E-70 CA (5x) Yes No

cadherin partial ( or PCDH-Gamma-C4) No stop codon

unidentified Nvec jgi|Nemve1|124570|e_gw.212.50.1gb|ABX84114.1| hedgling [Nematostella vectensis] 1.00E-67 CA (5x) No No No start no stop

unidentified Nvec jgi|Nemve1|41182|gw.270.64.1 CELSR 1.00E-59 CA (5x) No No No start no stop

unidentified Nvec jgi|Nemve1|118913|e_gw.157.87.1

ref|NP_059088.2| cadherin EGF LAG seven-pass G-type receptor 2 i… 4.00E-77 CA (5x) No No No start no stop

unidentified Clytia IL0ABA4YB04RM1cadherin EGF LAG seven-pass G-type receptor 3 [Ra... 1.00E-27 CA (6x) No 1 No start No stop

unidentified Nvec jgi|Nemve1|10520|gw.100.7.1 FAT 4 or Cadherin 23 1.00E-98 CA (7x) No No No start no stopunidentified Nvec jgi|Nemve1|40082|gw.212.41.1 CELSR 1.00E-120 CA (8x) No No No start no stopunidentified Monosiga jgi|Monbr1|13666|e_gw1.2.131.1 FAT4 1.00E-154 CA(12x) No No No start, no stopunidentified Nvec jgi|Nemve1|122785|e_gw.193.27.1 FAT 4 0.00E+00 CA (16x) No No start codon, No stop codonunidentified Nvec jgi|Nemve1|89517|e_gw.21.14.1 FAT1 0 CA (17x) No No No start no stopunidentified Nvec jgi|Nemve1|30053|gw.23.10.1 FAT 4 0 CA (18x) No No No start no stopunidentified Nvec jgi|Nemve1|107177|e_gw.85.10.1 dachsous/FAT4 0.00E+00 CA (24x) No No No M and no stopNovel Architecture Nvec jgi|Nemve1|216996|fgenesh1_pg.scaffold_280000006 No good hits CUB, EGF (3x), CA (2x) No No start and stop codons present. Scaffold 280. Ab inito model with no EST support.Novel Architecture Nvec jgi|Nemve1|247587|estExt_fgenesh1_pg.C_3180027 No good hits TSP1, CA (7x), EGF Yes No start and stop codons present. Scaffold 318. Ab inito with partial EST support.Novel Architecture Monosiga jgi|Monbr1|11672|fgenesh1_pg.scaffold_31000029 gb|ABX84114.1| hedgling 1.00E-40

EGF (3x), CCP, EGF, CCP (wobbly), EGF, CA (15x), EGF (2x), CCP (wobbly), EGF (2x) Yes 5 start and stop codons present

Novel Architecture Monosiga jgi|Monbr1|30335|fgenesh2_pg.scaffold_48000016 gb|ABX84114.1| hedgling 1.00E-180

Lam_NT (wobbly), LamEGF (4x), furin_3, LamG (wobbly), CA (46x), FN3 (wobbly), Y_Phosphatase Yes Yes start and stop codons present

Novel Architecture Monosiga jgi|Monbr1|11339|fgenesh1_pg.scaffold_28000057 No good hits

VWD, EGF, iptmega(wobbly), CA (6x wobbly), PKD (wobbly) SH) Yes 2 start and stop codons present

Novel Architecture Monosiga jgi|Monbr1|12200|fgenesh1_pg.scaffold_36000025 FAT4 0.00E+00 CA (58x) No 1 Cadherin novel or error start and stop codons present

Page 198: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

179  

Integrins

 

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes Integrin Beta Hydra gb|DT609127.1 integrin beta chain [Podocoryne carnea] 1.00E-43 INB (wobbly) No Integrin beta - AmItgb2 homologue second best hit was AmItgb2 1E-43

Integrin Beta Nvec jgi|Nemve1|80868|e_gw.3.432.1 integrin beta 2 [Acropora millepora] 0INB, EGF (4x wobbly), Integrin_B_tail, Integrin_b_cyt 1 Integrin beta - AmItgb2 homologue

Integrin Beta Nvec jgi|Nemve1|123281|e_gw.198.1.1 integrin beta 2 [Acropora millepora] 0INB,EGF (4xwobbly), Integrin_B_tail,Integrin_b_cyt 1 Integrin beta - AmItgb2 homologue

Integrin Beta Clytia SA0AAB34YK24RM1 integrin subunit betaCn1 [Acropora millepora] 1.00E-33EGF (4x wobbly), Integrin_B_tail (wobbly) 1 Integrin beta - ItgbCN1 homologue

Integrin Beta Hydra CL4502Contig1 integrin subunit betaCn1 [Acropora millepora] 6.00E-86 INB No Integrin beta - ItgbCN1 homologue

Integrin Beta Nvec jgi|Nemve1|91193|e_gw.26.1.1 integrin subunit betaCn1 [Acropora millepora] 0INB, EGF (4x wobbly), Integrin_B_tail, Integrin_b_cyt 1 Integrin beta - ItgbCN1 homologue

Integrin Beta Nvec jgi|Nemve1|90281|e_gw.23.1.1 integrin subunit betaCn1 [Acropora millepora] 1.00E-168INB,EGF (4x wobbly), Integrin_B_tail Integrin beta - ItgbCN1 homologue This one is thought to be a splice varient

Integrin Beta Nvec jgi|Nemve1|143492|e_gw.826.1.1 integrin subunit betaCn1 [Acropora millepora] 1.00E-177INB,EGF (4xwobbly), Integrin_B_tail,Integrin_b_cyt 1 Integrin beta - ItgbCN1 homologue

Integrin Beta Acropora Contig12118 integrin subunit betaCn1 [Acropora millepora] 0 No AmItgB1Integrin Beta Acropora Contig17193 integrin beta chain [Podocoryne carnea] 1.00E-174 1 AmItgB2Integrin Alpha Clytia SA0AAB95YG15RM1 integrin alpha chain [Podocoryne carnea] 2.00E-74 int_alpha_rpt (4x) No Integrin alpha - partial

Integrin Alpha Nvecjgi|Nemve1|238305|estExt_fgenesh1_pg.C_50011

integrin, alpha 4 (antigen CD49D, alpha 4 subun... 2.00E-54

int_alpha_rpt (3x), Integrin_alpha2 1 Integrin alpha

Integrin Alpha Nvecjgi|Nemve1|196726|fgenesh1_pg.scaffold_3000047 integrin alpha 1 [Acropora millepora] 1.00E-149

int_alpha_rpt (4x), Integrin_alpha2,Integrin_alpha 2 Integrin alpha - AmItga1 homologue TMH 1 is in N-term therefore only 1 real TMH.

Integrin Alpha Hydra CL3123Contig1integrin, alpha 8 [Gallus gallus] >gi|124950|sp… 2.00E-35

int_alpha_rpt (2x), Integrin_alpha2 No Integrin alpha - partial

Integrin Alpha Acropora assembled Contigs integrin alpha 1 [Acropora millepora] 0 AmItga1Integrin Alpha Acropora assembled Contigs integrin alpha 1 [Acropora millepora] 0 AmItga2 -NEWIntegrin Alpha Acropora assembled Contigs integrin alpha 1 [Acropora millepora] 0.00E+00 AmItga3 -NEW

Integrin Alpha Repeat Containing Clytia SA0AAB7YH09RM1 AmItga1 1.00E-05Integrin_alpha2 (wobbly), Integrin_alpha (wobbly) integrin alpha related

Integrin Alpha Repeat Containing Hydra gb|DN813198.2 integrin alpha 1 [Acropora millepora] 6.00E-12 int_alpha_rpt integrin alpha relatedIntegrin Alpha Repeat Containing Hydra gb|CA302076.1 integrin alpha 2 [Pseudoplusia includens] 1.00E-10 No domains integrin alpha relatedIntegrin Alpha Repeat Containing Clytia IL0ABA2YN22RM1 Integrin alpha 4 [Mus musculus] 2.00E-14 int_alpha_rpt (2x wobbly) integrin alpha related

Integrin Alpha Repeat Containing Hydra CL6512Contig1integrin alpha 4 [Rattus norvegicus] >gi|149... 3.00E-14 int_alpha_rpt (wobbly) integrin alpha related

Integrin Alpha Repeat Containing Clytia SA0AAB95YG15NM1 integrin alpha chain [Podocoryne carnea] 2.00E-29 No Domains integrin alpha relatedIntegrin Alpha Repeat Containing Hydra CL6142Contig1 integrin alpha chain [Podocoryne carnea] 2.00E-20 int_alpha_rpt integrin alpha relatedIntegrin Alpha Repeat Containing Hydra gb|CV181210.1 integrin alpha chain [Podocoryne carnea] 3.00E-12 No domains integrin alpha related

Integrin Alpha Repeat Containing Hydra gb|DN244145.2integrin alpha-PS2 [Culex quinquefasciatus] ... 5.00E-15 int_alpha_rpt integrin alpha related

FG-GAP repeats occur in other proteins but int_alpha repeats are more restricted.

Integrin Alpha Repeat Containing Hydra gb|DT620726.1Integrin, alpha 2b (platelet glycoprotein IIb of ... 2.00E-08 No domains integrin alpha related

Integrin Alpha Repeat Containing Hydra CL10025Contig1 ITGA7 variant protein [Homo sapiens] 9.00E-13 int_alpha_rpt (wobbly) integrin alpha relatedIntegrin Alpha Repeat Containing Hydra CL10282Contig1 No good hits int_alpha_rpt (wobbly) integrin alpha related

Integrin Alpha Repeat Containing Mbrevjgi|Monbr1|13072|fgenesh1_pg.scaffold_55000008 No good hits int_alpha_rpt (2x wobbly) integrin alpha related

Integrin Alpha Repeat Containing Mbrevjgi|Monbr1|9496|fgenesh1_pg.scaffold_15000186 No good hits int_alpha_rpt (2x wobbly) integrin alpha related

Integrin Alpha Repeat Containing Mbrevjgi|Monbr1|10253|fgenesh1_pg.scaffold_20000037 quinoprotein (ISS) [Ostreococcus tauri] 1.00E-29 int_alpha_rpt (2-4x) integrin alpha related

Integrin Alpha Repeat Containing Mbrevjgi|Monbr1|25795|fgenesh2_pg.scaffold_11000195 quinoprotein (ISS) [Ostreococcus tauri] 9.00E-15 int_alpha_rpt (2-4x) integrin alpha related

Integrin Alpha Repeat Containing Mbrevjgi|Monbr1|25557|fgenesh2_pg.scaffold_10000207 quinoprotein (ISS) [Ostreococcus tauri] 8.00E-07 int_alpha_rpt (2x wobbly) integrin alpha related

Integrin Alpha Repeat Containing Mbrevjgi|Monbr1|25858|fgenesh2_pg.scaffold_12000007 quinoprotein (ISS) [Ostreococcus tauri] 3.00E-05 int_alpha_rpt (2x wobbly) integrin alpha related

Integrin Alpha Repeat Containing Nvec jgi|Nemve1|115107|e_gw.130.30.1glycosylphosphatidylinositol phospholipase D [Mus... 1.00E-160 int_alpha_rpt (6x) No Integrin alpha related BLAST hit has only 2 int_alpha_rpts. Start and stop codons present.

Integrin Alpha Repeat Containing Nvecjgi|Nemve1|224736|fgenesh1_pg.scaffold_5705000001

ref|NP_777241.1| glycosylphosphatidylinositol specific phospholi... 2.00E-45 1.00E-45 int_alpha_rpt (4x) No Integrin alpha - partial BLAST hit has only 2 int_alpha_rpts. No start and No stop codons.

Integrin Alpha Repeat Containing Acropora Contig19889 integrin alpha 1 [Acropora millepora] 1.00E-150 int_alpha_rpt (2) NoIntegrin Alpha Repeat Containing Acropora Contig33553 integrin alpha 1 [Acropora millepora] 1.00E-141 int_alpha_rpt (2) NoIntegrin Alpha Repeat Containing Acropora Contig7700 integrin alpha 1 [Acropora millepora] 4.00E-61 int_alpha_rpt (4) No

Talin Clytia SA0AAA26YF22RM1talin-1 [Culex quinquefasciatus] >gi|1678730... 2.00E-20

Talin_middle(wobbly), MA_2 (wobbly), ILWEQ Talin - middle

Talin Clytia IL0ABA5YH08RM1 talin [Podocoryne carnea] 1.00E-134 B41_5, PTBI_2 (wobbly) Talin - N-termTalin Hydra CL1Contig29 talin [Podocoryne carnea] 1.00E-118 B41/FERM_N Talin - N-term This may be the N-terminus of one of the other partial talins.

Talin Mbrevjgi|Monbr1|23461|fgenesh2_pg.scaffold_4000204 talin 2 [Mus musculus] 1.00E-127

B41, PTBI (wobbly), Talin_middle (wobbly), ILWEQ (wobbly) Talin 2 - N-term

Talin Clytia IL0ABA4YJ15RM1talin 1 [Danio rerio] >gi|55139380|gb|AAV413... 1.00E-155

MA (wobbly), VBS, ILWEQ (wobbly) Talin 1 - C-term

Talin Mbrevjgi|Monbr1|6317|fgenesh1_pg.scaffold_4000199 talin 1, isoform CRA_b [Homo sapiens] 1.00E-180 VBS, MA (wobbly), ILWEQ Talin 1 - C-term

Talin Hydra CL5745Contig1 talin 1, isoform CRA_b [Homo sapiens] 9.00E-72 ILWEQ Talin 1 - C-term

INB_2, EGF_2 (4), INB_2, EGF_2 (4),

Page 199: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

180  

 

 

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

Talin Nvecjgi|Nemve1|159935|estExt_gwp.C_110123 Tln2 protein [Mus musculus] 0

B41, PTBI (wobbly), Talin_middle, 5bar (wobbly), MA (wobbly), VBS, ILWEQ Talin 2

Talin Hydra CL9211Contig1 talin 2 [Mus musculus] 3.00E-79 MA (wobbly), ILWEQ (wobbly) Talin 2 - C-term

Talin Clytia SA0AAB5YM11RM1 talin 2, isoform CRA_a [Homo sapiens] 1.00E-149VBS, MA (wobbly), ILWEQ (wobbly) Talin 2 - C-term

Talin Acropora Contig10699 talin 1, isoform CRA_b [Homo sapiens] 0 VBS, MA (wobbly), ILWEQ Talin1 - C-termTalin Acropora Amil_rep_c147660 talin 1, isoform CRA_b [Homo sapiens] 1.00E-65 ILWEQ Talin1 - C-termTalin-related Hydra gb|DT615285.1 Tln2 protein [Mus musculus] 2.00E-54 MA (wobbly) Talin 2 - partial

Talin-related Acropora Contig943talin 1 [Danio rerio] >gi|55139380|gb|AAV413 1.00E-111 MA (wobbly), ILWEQ (wobbly)

Talin-related Nvec jgi|Nemve1|123513|e_gw.200.72.1huntingtin interacting protein 1 [Homo sapiens] >... 6.00E-70 ILWEQ Talin related

Talin-related Mbrevjgi|Monbr1|36287|estExt_fgenesh1_pg.C_40453

huntingtin interacting protein 1 related, isoform... 9.00E-17 SH3, ILWEQ Talin related

Talin-related Mbrev jgi|Monbr1|14137|e_gw1.2.850.1 huntingtin-interacting protein 1 [Homo ... 2.00E-24 ILWEQ Talin related

Talin-related Hydra gb|CV659942.1talin 1 [Danio rerio] >gi|55139380|gb|AAV413... 9.00E-49 ILWEQ (wobbly) Talin related

Talin-related Clytia IL0ABA22YH03RM1talin 1 [Gallus gallus] >gi|81175199|sp|P54939.... 4.00E-58 ILWEQ (wobbly) Talin related

Talin-related Clytia SA0AAB72YJ22RM1 Talin 1 [Homo sapiens] 4.00E-30 ILWEQ Talin relatedTalin-related Hydra gb|DR435962.1 talin 2 [Homo sapiens] 1.00E-31 No domains Talin related

Talin-related Hydra CL1594Contig1 talin 2 [Xenopus (Silurana) tropicalis] >gi|... 1.00E-29 ILWEQ Talin related

I/LWEQ domains bind to actin. It has been shown that the I/LWEQ domains from mouse talin and yeast Sla2p interact with F-actin PUBMED:9159132. The domain has four conserved blocks, the name of the domain is derived from the initial conserved amino acid of each of the four blocks PUBMED:9159132. I/LWEQ domains can be placed into four major groups based on sequence similarity:1. Metazoan talin.2. Dictyostelium discoideum (Slime mould) TalA/TalB and SLA110.3. Metazoan Hip1p .4. Saccharomyces cerevisiae Sla2p .

Talin-related Clytia SA0AAB23YM10RM1 talin 2 [Xenopus (Silurana) tropicalis] >gi|... 4.00E-17 ILWEQ Talin relatedTalin-related Clytia IL0ABA6YH10RM1 Tln2 protein [Mus musculus] 4.00E-65 No Domains Talin relatedTalin-related Hydra CL3431Contig1 vinculin [Drosophila melanogaster] 1.00E-29 ILWEQ (wobbly) Talin related vinculin has its own domain called "vinculin". Integrin Linked Kinase Hydra CL2782Contig1 Integrin-linked protein kinase [Salmo salar]... 1.00E-124 Ank (3x), tyrkin Integrin-linked kinase

Integrin Linked Kinase Clytia SA0AAA16YD20RM1integrin-linked kinase [Gallus gallus] >gi|1050... 1.00E-145 Ank (3x), tyrkin Integrin-linked kinase

Integrin Linked Kinase Nvec jgi|Nemve1|31638|gw.2.85.1integrin-linked kinase [Danio rerio] >gi|339918... 1.00E-135 Ank (3x), trykin Integrin-linked kinase

Integrin Linked Kinase Acropora Contig5477integrin-linked kinase [Gallus gallus] >gi|1050... 1.00E-148 Ank (3x), trykin Integrin-linked kinase

FAK Acropora Contig1043 FAK 0FAK Nvec jgi|Nemve1|60034|gw.13.293.1 FAK 0FAK Clytia CL7784Contig1 FAK 1.00E-51Parvin Hydra CL698Contig1 Alpha-parvin [Osmerus mordax] 1.00E-85Parvin Acropora Contig28157 Alpha-parvin [Osmerus mordax] 1.00E-77

Parvin Nvecjgi|Nemve1|207272|fgenesh1_pg.scaffold_78000074 Alpha-parvin [Osmerus mordax] 1.00E-55

Paxillin Hydra CL1132Contig1dbj|BAA18998.1|,paxillin gamma [Homo sapiens] 1.00E-120

Paxillin Acropora Contig8199ref|NP_963882.1|,paxillin [Danio rerio] >gi|41350255|gb|AAS00452 1.00E-125

Paxillin Mbrevjgi|Monbr1|19246|estExt_Genewise1.C_20560

ref|NP_002850.2|,paxillin isoform 2 [Homo sapiens] 1.00E-42

Paxillin Nvec jgi|Nemve1|104924|e_gw.75.150.1 paxillin [Culex quinquefasciatus] 1.00E-122Paxillin Clytia SA0AAB113YJ11CTG paxillin, isoform B [Drosophila melanogaster] 1.00E-129

c-Src Acropora Contig2876dbj|BAG70102.1|,c-src tyrosine kinase [Homo sapiens] 1.00E-140

c-Src Clytia SA0AAB19YJ19RM1dbj|BAG70102.1|,c-src tyrosine kinase [Homo sapiens] 1.00E-78

PINCH Acropora Contig17667 gb|ABS17667.1|,PINCH-1 [Xenopus laevis], 1.00E-117PINCH Hydra CL5059Contig1 PINCH 1.00E-81

PINCH Nvecjgi|Nemve1|160257|estExt_gwp.C_120473

gb|EDL42131.1|,"LIM and senescent cell antigen-like domains 1 1.00E-122

ILKAK Hydra CL1236Contig1integrin-linked kinase-associated protein phosp... 7.00E-75 PP2C

Integrin-linked kinase associated Phosphatase

ILKAK Nvec jgi|Nemve1|110119|e_gw.98.154.1ref|NP_075832.1| integrin-linked kinase-associated serine/threon… 2.00E-88 PP2C

integrin-linked kinase-associated serine/threonin...

ILKAK Mbrevjgi|Monbr1|36991|estExt_fgenesh1_pg.C_90170

Integrin-linked kinase-associated serine/threonin... 6.00E-53 PP2C

Integrin-linked kinase-associated serine/threonin...

Disintegrin Containing Hydra gb|DN813922.2 No good hits DISIN Disintegrin containingDisintegrin Containing Hydra gb|DN811041.2 hemicentin1 DISIN, TSP1 Disintegrin containing

Page 200: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

181  

 

 

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

Disintegrin Containing Nvec jgi|Nemve1|5599|gw.3050.2.1kinesin [Leishmania infantum JPCM5] >gi|1340... 2.00E-16 DISIN (wobbly) DISIN containing

ADAM Nvec jgi|Nemve1|20904|gw.66.19.1a disintegrin and metalloprotease domain 10b [D... 1.00E-167 Reprolysin, DISIN ADAM

ADAM Nvecjgi|Nemve1|175837|estExt_gwp.C_4720015

a disintegrin and metalloprotease domain 10b [D... 1.00E-124

pep_M12B_propep, Reprolysin, DISIN ADAM

ADAM Nvec jgi|Nemve1|5671|gw.3057.2.1a disintegrin and metalloprotease domain 10b [D... 2.00E-56 No domains ADAM

ADAM Clytia SA0AAA13YF04RM1A disintegrin and metalloprotease domain 13 [Xeno... 7.00E-65 reprolysin, DISIN, acr ADAM

ADAM Mbrevjgi|Monbr1|22131|fgenesh2_pg.scaffold_2000338

a disintegrin and metalloprotease domain 17 pre... 8.00E-46 Reprolysin, DISIN ADAM

ADAM Hydra gb|CN552903.1a disintegrin and metalloprotease domain 17 pre... 2.00E-37 reprolysin ADAM

reprolysin: The members of this family are enzymes that cleave peptides. These proteases require zinc for catalysis. Members of this family are also known as adamalysins. Most members of this family are snake venom endopeptidases, but there are also some mammalian proteins such as P78325 and fertilin Q28472. Fertilin and closely related proteins appear to not have some active site residues and may not be active enzymes.

ADAM Mbrevjgi|Monbr1|37642|estExt_fgenesh1_pg.C_150079

a disintegrin and metalloproteinase domain 17a ... 2.00E-08 DISIN (wobbly), GRAN_2 (wobbly) ADAM

ADAM Hydra CL6661Contig1a disintegrin and metalloproteinase domain 24 (... 6.00E-14 reprolysin, DISIN ADAM

ADAM Clytia SA0AAB61YH16CTGadam (a disintegrin and metalloprotease [Aed... 1.00E-64 reprolysin, DISIN, acr ADAM

ADAM Hydra CL970Contig1ADAM metallopeptidase domain 10 [Gallus gallus]... 3.00E-77 reprolysin, DISIN ADAM

ADAM Mbrevjgi|Monbr1|29860|fgenesh2_pg.scaffold_39000061

ADAM metallopeptidase domain 10 [Pongo abeli... 6.00E-50

pep_M12B_propep, Reprolysin, DISIN ADAM

ADAM Mbrevjgi|Monbr1|31368|estExt_fgenesh2_pg.C_30574

ADAM metallopeptidase domain 10 [Pongo abeli... 2.00E-46

pep_M12B_propep, Reprolysin, DISIN ADAM

ADAM Nvec jgi|Nemve1|91360|e_gw.27.264.1ADAM metallopeptidase domain 10, isoform CRA_a [H... 4.00E-45 Reprolysin, DISIN, acr ADAM

ADAM Hydra gb|DN814600.2ADAM metallopeptidase domain 12 [Bos taurus]... 4.00E-36 DISIN, acr ADAM acr = ADAM_CR = ADAM cystein rich region

ADAM Clytia SA0AAA4YP11CTGADAM metallopeptidase domain 12 [Xenopus (Si... 3.00E-56 DISIN, acr ADAM

ADAM Nvecjgi|Nemve1|212032|fgenesh1_pg.scaffold_148000031

ADAM metallopeptidase domain 8 precursor [Homo ... 4.00E-45 DISIN, acr ADAM

ADAM Clytia SA0AAB70YK05CTGADAM metallopeptidase domain 9 [Rattus norve... 6.00E-37 reprolysin, DISIN ADAM

ADAM Nvec jgi|Nemve1|126434|e_gw.232.25.1ADAM metallopeptidase with thrombospondin type 1 ... 4.00E-39 Reprolysin ADAM

ADAM Hydra gb|CV659930.1ADAM metallopeptidase with thrombospondin type 1 ... 2.00E-29 reprolysin, acr (wobbly) ADAM

ADAM Nvec jgi|Nemve1|16735|gw.148.22.1ADAM33 [Mus musculus] >gi|123229989|emb|CAM18043.... 9.00E-38 DISIN, acr ADAM

ADAM Nvecjgi|Nemve1|200723|fgenesh1_pg.scaffold_23000088 ADAM33 protein [Homo sapiens] 3.00E-15 Reprolysin, DISIN, acr ADAM

ADAM Mbrevjgi|Monbr1|23347|fgenesh2_pg.scaffold_4000090 No good hits Reprolysin, DISIN, SH3 ADAM Novel SH3 domain?

ADAM Mbrevjgi|Monbr1|22277|fgenesh2_pg.scaffold_2000484

tace, isoform A [Drosophila melanogaster] >gi|4... 2.00E-54

pep_M12B_propep, Reprolysin, DISIN ADAM

ADAM Mbrevjgi|Monbr1|24567|fgenesh2_pg.scaffold_7000115

tumor necrosis factor alpha converting enzyme [Ga... 1.00E-34

Ribosomal_L9_N, Reprolysin, DISIN ADAM Tace/ADAM17

ADAM Mbrevjgi|Monbr1|36614|estExt_fgenesh1_pg.C_60325

tumor necrosis factor-alpha-converting enzyme [Su... 1.00E-16

DISIN (wobbly), DEFSN_4 (wobbly) ADAM Tace/ADAM17

ADAM Mbrevjgi|Monbr1|9808|fgenesh1_pg.scaffold_17000081

tumor necrosis factor-alpha-converting enzyme mut... 7.00E-18 No domains ADAM Tace/ADAM17

ADAM Hydra gb|DN240294.2a disintegrin and metallopeptidase domain 34 [M... 4.00E-19 DISIN ADAM - putative

ADAM Hydra CL2583Contig1ADAM metallopeptidase domain 10 [Sus scrofa]... 8.00E-27 DISIN (wobbly) ADAM - putative

ADAM Hydra gb|CV985877.1ADAM metallopeptidase domain 33 isoform beta pr... 2.00E-11 DISIN ADAM - putative

ADAM Hydra gb|CN631642.1disintegrin and metalloprotease domain 33 [Mus mu... 1.00E-09 DISIN, TSP1 ADAM - putative

ADAM Hydra CL8785Contig1MIND-MELD [Drosophila melanogaster] or ADAM 7.00E-12 DISIN ADAM - putative mind meld is an ADAM

ADAM Nvec jgi|Nemve1|40207|gw.95.86.1tace, isoform A [Drosophila melanogaster] >gi|4... 2.33E-156 Reprolysin, DISIN ADAM17 homologue tace is ADAM17

ADAM Nvec jgi|Nemve1|6627|gw.3466.2.1a disintegrin and metalloprotease domain 10b [D... 7.00E-22 Pep_M12B_propep (wobbly) M12B peptidase family

Page 201: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

182  

 

   

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

ADAM Nvecjgi|Nemve1|198740|fgenesh1_pg.scaffold_11000152

a disintegrin and metalloproteinase domain 9... 6.00E-15 Pep_M12B_propep M12B peptidase family

ADAM_TS Nvec jgi|Nemve1|127746|e_gw.242.21.1metalloprotease disintegrin 16 with thrombospond... 7.00E-34 acr (wobbly), TSP1 (wobbly) ADAM_TS

ADAM_TS Nvecjgi|Nemve1|212944|fgenesh1_pg.scaffold_166000015

ref|NP_001074489.1| a disintegrin-like and metalloprotease (repr… 2.00E-80

acr, TSP1, ADAM_spacer(wobbly), TSP1 (4x wobbly), SLG (wobbly) ADAM_TS

ADAM_TS Hydra gb|CX054604.1 ADAMTS20 A short isoform [Mus musculus] 1.00E-42 ADAM_spacer ADAM_TSADAM_TS Nvec jgi|Nemve1|139926|e_gw.497.1.1 ADAMTS6 variant 2 [Homo sapiens] 2.00E-66 ADAM_spacer, TSP1 (4x), PLAC ADAM_TSADAM_TS Nvec jgi|Nemve1|99266|e_gw.52.22.1 ADAMTS6 variant 2 [Homo sapiens] 1.00E-102 ADAM_spacer, TSP1 (4x), PLAC ADAM_TS

ADAM_TS Nvecjgi|Nemve1|240559|estExt_fgenesh1_pg.C_310043

ADAM metallopeptidase with thrombospondin type ... 8.00E-51

Pep_M12B_propep, ADAM_spacer, TSP1 (3x) ADAM_TS

ADAM_TS Nvecjgi|Nemve1|246793|estExt_fgenesh1_pg.C_2420026

ADAM metallopeptidase with thrombospondin type ... 1.00E-63

pep_M12B_propep, Reprolysin, acr (wobbly), TSP1 (3x), FN3 ADAM_TS FN3 domain is 1E-05… interesting

ADAM_TS Nvec jgi|Nemve1|87270|e_gw.15.9.1ADAM metallopeptidase with thrombospondin type ... 1.00E-157

pep_M12B_propep, Reprolysin, acr (wobbly), TSP1 (4x) ADAM_TS

ADAM_TS Nvecjgi|Nemve1|212947|fgenesh1_pg.scaffold_166000018

gb|EAW95600.1| ADAM metallopeptidase with thrombospondin type 1 ... 1.00E-75

pep_M12B_propep, Reprolysin, acr (wobbly), TSP1, ADAM_spacer (wobbly), TSP1 (3x) ADAM_TS

ADAM_TS Nvecjgi|Nemve1|246133|estExt_fgenesh1_pg.C_1990008

ref|NP_001074489.1| a disintegrin-like and metalloprotease (repr… 4.00E-82

pep_M12B_propep, Reprolysin, acr (wobbly), TSP1, ADAM_spacer (wobbly), TSP1 (4x), SLG (wobbly) ADAM_TS

ADAM_TS Nvecjgi|Nemve1|246132|estExt_fgenesh1_pg.C_1990007

ref|NP_922932.2| ADAM metallopeptidase with thrombospondin type … 1.00E-104

pep_M12B_propep, Reprolysin, TSP1, acr (wobbly), ADAM_spacer (wobbly), TSP1 (3x) ADAM_TS

ADAM_TS Nvecjgi|Nemve1|222694|fgenesh1_pg.scaffold_1855000001

gb|EAW68907.1| ADAM metallopeptidase with thrombospondin type 1 … 1.00E-51 Reprolysin, acr, TSP1 ADAM_TS

ADAM_TS Nvecjgi|Nemve1|215897|fgenesh1_pg.scaffold_242000019

gb|EAW99151.1| ADAM metallopeptidase with thrombospondin type 1 … 9.00E-58 Reprolysin, acr, TSP1 ADAM_TS

ADAM_TS Nvec jgi|Nemve1|101427|e_gw.60.18.1ref|NP_112217.2| ADAM metallopeptidase with thrombospondin type … 1.00E-125 Reprolysin, acr, TSP1 ADAM_TS

ADAM_TS Nvecjgi|Nemve1|212948|fgenesh1_pg.scaffold_166000019

gb|EDL11544.1| a disintegrin-like and metallopeptidase (reprolys… 1.00E-54 Reprolysin, acr, TSP1 (2x) ADAM_TS

ADAM_TS Nvec jgi|Nemve1|30434|gw.314.48.1gb|AAQ94616.1| COMPase precursor [Homo sapiens] 0 Reprolysin, acr, TSP1 (4x) ADAM_TS

ADAM_TS Nvecjgi|Nemve1|201879|fgenesh1_pg.scaffold_31000039

ref|NP_001074870.1| a disintegrin-like and metalloprotease (repr… 8.00E-81

Reprolysin, acr, TSP1, ADAM_spacer, TSP1 (2x) ADAM_TS

ADAM_TS Clytia IL0ABA21YG19RM1A disintegrin-like and metallopeptidase (reprolys... 4.00E-42 Reprolysin, TSP1 (wobbly), MAM ADAM_TS

ADAM_TS Nvecjgi|Nemve1|215900|fgenesh1_pg.scaffold_242000022

ref|NP_922932.2| ADAM metallopeptidase with thrombospondin type … 3.00E-76 Reprolysin, TSP1, ADAM_spacer ADAM_TS

ADAM_TS Nvec jgi|Nemve1|101342|e_gw.60.83.1ref|NP_001029049.2| ADAM metallopeptidase with thrombospondin ty… 6.00E-21 TSP (3x) ADAM_TS - putative

ADAM_TS Nvec jgi|Nemve1|115857|e_gw.134.16.1 ADAMTS3 protein [Homo sapiens] 1.00E-20 TSP1 ADAM_TS - putative

ADAM_TS Clytia SA0AAB75YP11RM1ADAM metallopeptidase with thrombospondin type 1 ... 1.00E-15 TSP1 (2x), TSP1 (wobbly) ADAM_TS - putative

ADAM_TS Clytia SA0AAB108YD12CTG ADAMTS-like 3 [Homo sapiens] 1.00E-19 TSP1 (3x) ADAM_TS - putativeADAM_TS SA0AAB75YH20RM1 ADAMTS9 1.00E-15 TSP1 (3x) ADAM_TS - putative

ADAM_TS Nvec jgi|Nemve1|5633|gw.2032.1.1ref|NP_001074489.1| a disintegrin-like and metalloprotease (repr… 1.00E-16 TSP1 (wobbly) ADAM_TS - putative

ADAM_TS Hydra CL1752Contig1ADAM metallopeptidase with thrombospondin type ... 4.00E-10 TSP1, MAM ADAM_TS - putative

ADAM_TS Nvecjgi|Nemve1|224190|fgenesh1_pg.scaffold_4120000002

ref|NP_780523.2| a disintegrin-like and metalloprotease (reproly… 3.00E-27 GON ADAM_TS GON

ADAM_TS Nvec jgi|Nemve1|95408|e_gw.39.117.1ref|NP_891550.1| ADAM metallopeptidase with thrombospondin type … 0

Reprolysin, acr, TSP1, ADAM_spacer, TSP1 (13x), GON ADAM_TS GON

ADAM_TS Hydra gb|CN632985.1 ADAMTS9 protein [Homo sapiens] 7.00E-23 TSP1, GON ADAM_TS GON ref|XP_002166940.1| PREDICTED: similar to abnormal GONad develop... 1.00E-81

FG-GAP containing Nvec jgi|Nemve1|103100|e_gw.67.19.1 Bardet-Biedl syndrome 7 [Mus musculus] 0 FG-GAP (wobbly), BB1(wobbly)Bardet-Biedl syndrome 7 [Mus musculus]

FG-GAP containing Hydra CL337Contig1 embryonic-1 [Hydra vulgaris] 1.00E-126 FG-GAP (3x wobbly) Embryonic-1

Embryonic-1 = SP, one wobbly FG-GAP repeat in its C-terminal. BLAST is hitting an almost perfect match along the full length of the contig (267aa). Embryonic is 340aa.

FG-GAP containing Hydra CL1Contig798 embryonic-1 [Hydra vulgaris] 1.00E-133 FG-GAP (4x wobbly) Embryonic-1

FG-GAP containing Hydra CL8462Contig1ASPIC/UnbV domain-containing protein [Opitut... 2.00E-16 FG-GAP (3x wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|235159|estExt_fgenesh1_pm.C_1000002

Bardet-Biedl syndrome 2 [Mus musculus] >gi|2045... 0 FG-GAP (3x wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|161101|estExt_gwp.C_180226

DEX1 (DEFECTIVE IN EXINE FORMATION 1) [Arabidop... 2.00E-46 FG-GAP (5x wobbly) FG-GAP containing

FG-GAP containing Clytia SA0AAA22YK19RM1FG-GAP repeat protein [bacterium Ellin514] >g... 4.00E-11 FG-GAP (5x wobbly) FG-GAP containing

Page 202: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

183  

 

 

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

FG-GAP containing Nvecjgi|Nemve1|245375|estExt_fgenesh1_pg.C_1570033

FG-GAP repeat-containing protein [Arabidopsis t... 9.00E-44 FG-GAP (2x wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|200317|fgenesh1_pg.scaffold_21000002

integrin alpha FG-GAP repeat containing 1 [P... 1.00E-103 FG-GAP (5x wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|191884|estExt_GenewiseH_1.C_2190096

integrin alpha FG-GAP repeat containing 2 [D... 2.00E-82 FG-GAP (3x wobbly) FG-GAP containing

FG-GAP containing Hydra CL4337Contig1integrin alpha FG-GAP repeat containing 2 [D... 2.00E-27 No domains FG-GAP containing

FG-GAP containing Clytia IL0ABA24YM21RM1integrin alpha FG-GAP repeat containing 2 [Homo... 3.00E-60 FG-GAP (2x wobbly) FG-GAP containing

FG-GAP containing Hydra CL6840Contig1integrin alpha FG-GAP repeat containing 2 [R... 2.00E-17 FG-GAP (wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|242072|estExt_fgenesh1_pg.C_560046 ITFG3 [Salmo salar] 2.00E-08 FG-GAP (2x wobbly) FG-GAP containing

FG-GAP containing Hydra CL7613Contig1 No good hits FG-GAP (2x wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|203954|fgenesh1_pg.scaffold_47000013 No good hits FG-GAP (2x wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|225852|fgenesh1_pg.scaffold_13181000001 predicted proteins only FG-GAP (2x wobbly) FG-GAP containing

FG-GAP containing Nvec jgi|Nemve1|52083|gw.92.151.1 predicted proteins only FG-GAP (3x wobbly) FG-GAP containing

FG-GAP containing Nvecjgi|Nemve1|225927|fgenesh1_pg.scaffold_14603000001

Rhs family protein [Vibrio vulnificus CMCP6] >g... 5.00E-22 FG-GAP (2x wobbly) FG-GAP containing

FG-GAP containing Clytia SA0AAB75YF22CTGFG-GAP repeat domain protein [Verrucomicrobi... 5.00E-47 FG-GAP (7x wobbly) Integrin alpha/FG-GAP containing

FG-GAP containing Clytia SA0AAB109YA16RM1integrin alpha FG-GAP repeat containing 1 [P... 2.00E-68 FG-GAP (5x wobbly) Integrin alpha/FG-GAP containing Often there are missing or weak FG-GAPs in alpha subunits

FG-GAP containing Mbrevjgi|Monbr1|30147|fgenesh2_pg.scaffold_44000012

FG-GAP repeat-containing protein [Nostoc pun... 1.00E-25 FG-GAP (14x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|12516|fgenesh1_pg.scaffold_40000040 Fibronectin type III domain protein [Chloroh... 2.00E-69 FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|34687|estExt_fgenesh2_pg.C_460013 Fibronectin type III domain protein [Chloroh... 2.00E-65 FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|24745|fgenesh2_pg.scaffold_7000293

Integrins alpha chain [Anabaena variabilis ATCC... 1.00E-19 FG-GAP (13x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|12733|fgenesh1_pg.scaffold_44000011

integrins alpha chain [Stigmatella aurantiaca... 7.00E-15 FG-GAP (19x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|25716|fgenesh2_pg.scaffold_11000116 No good hits FG-GAP

FG-GAP containing Mbrevjgi|Monbr1|30879|estExt_fgenesh2_pg.C_20417 No good hits FG-GAP (2x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|6487|fgenesh1_pg.scaffold_4000369 No good hits FG-GAP (2x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|11330|fgenesh1_pg.scaffold_28000048 No good hits FG-GAP (3x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|12825|fgenesh1_pg.scaffold_46000035 predicted peptides only FG-GAP (13x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|7129|fgenesh1_pg.scaffold_6000201 predicted peptides only FG-GAP (13x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|39187|estExt_fgenesh1_pg.C_410059 predicted peptides only FG-GAP (13x wobbly), trykin

FG-GAP containing Mbrevjgi|Monbr1|11861|fgenesh1_pg.scaffold_32000092 predicted peptides only

FG-GAP (13x wobbly), tyrkin, tSNARE/MA (wobbly), CCP (wobbly), EGF

FG-GAP containing Mbrevjgi|Monbr1|12802|fgenesh1_pg.scaffold_46000012 predicted peptides only FG-GAP (14x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|28592|fgenesh2_pg.scaffold_27000068 predicted peptides only FG-GAP (14x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|11774|fgenesh1_pg.scaffold_32000005 predicted peptides only FG-GAP (14x wobbly), Tyrkin

FG-GAP containing Mbrevjgi|Monbr1|9157|fgenesh1_pg.scaffold_14000063 predicted peptides only FG-GAP (14x wobbly), Tyrkin

FG-GAP containing Mbrevjgi|Monbr1|9932|fgenesh1_pg.scaffold_18000039 predicted peptides only FG-GAP (14x wobbly), Tyrkin

FG-GAP containing Mbrevjgi|Monbr1|12189|fgenesh1_pg.scaffold_36000014 predicted peptides only FG-GAP (19x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|31515|estExt_fgenesh2_pg.C_40272 predicted peptides only FG-GAP (20x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|11601|fgenesh1_pg.scaffold_30000062 predicted peptides only FG-GAP (21x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|11908|fgenesh1_pg.scaffold_33000031 predicted peptides only FG-GAP (21x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|8458|fgenesh1_pg.scaffold_11000082 predicted peptides only FG-GAP (21x wobbly)

Page 203: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

184  

 

   

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

FG-GAP containing Mbrevjgi|Monbr1|12961|fgenesh1_pg.scaffold_50000007 predicted peptides only FG-GAP (4x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|30203|fgenesh2_pg.scaffold_45000043 predicted peptides only FG-GAP (4x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|30259|fgenesh2_pg.scaffold_46000046 predicted peptides only FG-GAP (4x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|5660|fgenesh1_pg.scaffold_3000158 predicted peptides only FG-GAP (4x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|12719|fgenesh1_pg.scaffold_43000063 predicted peptides only FG-GAP (5x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|27189|fgenesh2_pg.scaffold_18000008 predicted peptides only FG-GAP (6x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|27321|fgenesh2_pg.scaffold_18000140 predicted peptides only FG-GAP (6x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|28819|fgenesh2_pg.scaffold_29000031 predicted peptides only FG-GAP (6x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|38366|estExt_fgenesh1_pg.C_240008 predicted peptides only FG-GAP (6x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|9601|fgenesh1_pg.scaffold_16000070 predicted peptides only FG-GAP (6x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|10026|fgenesh1_pg.scaffold_18000133 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|12404|fgenesh1_pg.scaffold_39000003 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|12405|fgenesh1_pg.scaffold_39000004 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|12958|fgenesh1_pg.scaffold_50000004 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|13153|fgenesh1_pg.scaffold_108000003 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|27322|fgenesh2_pg.scaffold_18000141 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|28036|fgenesh2_pg.scaffold_23000065 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|29924|fgenesh2_pg.scaffold_40000049 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|29926|fgenesh2_pg.scaffold_40000051 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|30223|fgenesh2_pg.scaffold_46000010 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|30227|fgenesh2_pg.scaffold_46000014 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|30400|fgenesh2_pg.scaffold_50000005 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|30521|fgenesh2_pg.scaffold_55000006 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|30881|estExt_fgenesh2_pg.C_20421 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|31371|estExt_fgenesh2_pg.C_30580 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|33623|estExt_fgenesh2_pg.C_220027 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|33753|estExt_fgenesh2_pg.C_240012 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|37143|estExt_fgenesh1_pg.C_100227 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|37680|estExt_fgenesh1_pg.C_150162 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|37972|estExt_fgenesh1_pg.C_180127 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|39176|estExt_fgenesh1_pg.C_410033 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|5094|fgenesh1_pg.scaffold_2000410 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|8280|fgenesh1_pg.scaffold_10000141 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|8371|fgenesh1_pg.scaffold_10000232 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|9466|fgenesh1_pg.scaffold_15000156 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|9474|fgenesh1_pg.scaffold_15000164 predicted peptides only FG-GAP (7x wobbly)

Page 204: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

185  

 

   

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

FG-GAP containing Mbrevjgi|Monbr1|9476|fgenesh1_pg.scaffold_15000166 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|9520|fgenesh1_pg.scaffold_15000210 predicted peptides only FG-GAP (7x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|27324|fgenesh2_pg.scaffold_18000143 predicted peptides only FG-GAP (9x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|10795|fgenesh1_pg.scaffold_24000009 predicted peptides only FG-GAP, FG-GAP (6x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|11321|fgenesh1_pg.scaffold_28000039 predicted peptides only FG-GAP, FG-GAP (6x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|39388|estExt_fgenesh1_pg.C_1080001 predicted peptides only FG-GAP(11x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|37922|estExt_fgenesh1_pg.C_180022 quinoprotein (ISS) [Ostreococcus tauri] 9.00E-16 FG-GAP (5x wobbly)

FG-GAP containing Mbrevjgi|Monbr1|26194|fgenesh2_pg.scaffold_13000102

vcbs [Stigmatella aurantiaca DW4/3-1] >gi|115... 6.00E-17 FG-GAP (7x wobbly)

Page 205: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

186  

Lectins

 

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes C-type Secreted Clytia SA0AAA6YN21RM1

gb|ACN91267.1| mannose receptor C1-like protein [Danio rerio] e-06 CLECT (2x) Yes No C-lectin - Secreted

C-type Secreted Clytia SA0AAB8YD20RM1 hydra homolgue only CLECT (2x) Yes No C-lectin - Secreted

ref|XP_002155423.1| PREDICTED: similar to type II transmembrane ... 263 2.00E-68ref|XP_002153863.1| PREDICTED: type II transmembrane C-type lect... 253 1.00E-65ref|XP_002159076.1| PREDICTED: similar to type II transmembrane ... 252 4.00E-65

C-type Secreted Clytia IL0ABA28YD22RM1 three hydra homolgues only e-66 CLECT (2x) Yes No C-lectin - Secreted

ref|XP_002153863.1| PREDICTED: type II transmembrane C-type lect... 254 6.00E-66ref|XP_002155423.1| PREDICTED: similar to type II transmembrane ... 254 8.00E-66ref|XP_002159076.1| PREDICTED: similar to type II transmembrane ... 246 2.00E-63

C-type Secreted Clytia SA0AAA21YL24RM1 No good hits EGF, CLECT Yes No C-lectin - SecretedC-type Secreted Clytia SA0AAB66YG22RM1 mannose receptor, C type 1 e-43 TSP1, CLECT (4x) Yes No C-lectin - Secreted

blast hits all have multiple c-lectin domains but no TSP1 domain. The TSP1 domain hits at e-11 -pfam and e-17 SMART.

C-type Secreted Hydra CL5624Contig1 No good hits CLECT Yes No C-lectin - SecretedC-type Secreted Hydra gb|CO370876.1 tyrosine kinase receptor [Hydra vulgaris] 3.00E-35 CLECT Yes No C-lectin - SecretedC-type Secreted Hydra gb|DN813687.2 tyrosine kinase receptor [Hydra vulgaris] 3.00E-23 CLECT Yes No C-lectin - SecretedC-type Secreted Mbrev

jgi|Monbr1|10838|fgenesh1_pg.scaffold_24000052 No good hits Candida_ALS, CLECT (2x) Yes No C-lectin - Secreted

C-type Secreted Mbrev

jgi|Monbr1|26977|fgenesh2_pg.scaffold_16000165 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Mbrev

jgi|Monbr1|27090|fgenesh2_pg.scaffold_17000078 No good hits CLECT (2x) Yes No C-lectin - Secreted

C-type Secreted Mbrev

jgi|Monbr1|33819|estExt_fgenesh2_pg.C_250040 No good hits CLECT (3x) Yes No C-lectin - Secreted

C-type Secreted Mbrev

jgi|Monbr1|7558|fgenesh1_pg.scaffold_7000290 No good hits CLECT (4x), LamG (2x) Yes No C-lectin - Secreted

C-type Secreted Mbrev

jgi|Monbr1|30149|fgenesh2_pg.scaffold_44000014 No good hits

CLECT, int_alpha_rpt(2x very wobbly) Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|196946|fgenesh1_pg.scaffold_4000026 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|200110|fgenesh1_pg.scaffold_19000102 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|210420|fgenesh1_pg.scaffold_121000039 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|211778|fgenesh1_pg.scaffold_143000055 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|211783|fgenesh1_pg.scaffold_143000060 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|220577|fgenesh1_pg.scaffold_542000003 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|223756|fgenesh1_pg.scaffold_3283000001 No good hits CLECT Yes No C-lectin - Secreted

C-type Secreted Nvec jgi|Nemve1|83039|e_gw.7.243.1 No good hits CLECT Yes No C-lectin - SecretedC-type Secreted Nvec

jgi|Nemve1|212709|fgenesh1_pg.scaffold_161000025 matrilin 2 [Xenopus (Silurana) tropicalis] >gi|... 2.00E-22 CLECT (2x), VWA Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|196785|fgenesh1_pg.scaffold_3000106

gb|AAR24388.1| mannose receptor C1 [Sus scrofa] 1.00E-82

CLECT (3x), F5_F8_type_C, CLECT, LamG (wobbly), CLECT, Gal_lectin, CLECT (5x), disc_4, F5_F8_type_C, disc_4, F5_F8_type_C, SEA Yes No C-lectin - Secreted Unique Archtecture with SEA F5_F8_type_C and CLECT

C-type Secreted Nvec

jgi|Nemve1|199450|fgenesh1_pg.scaffold_15000042

CUB and Sushi multiple domains 3 isoform 2 [Hom... 1.00E-79

F5_F8_type_C, CCP (12x), CLECT Yes No C-lectin - Secreted CUB and Sushi has lots of (CUB,CCP) repeated

C-type Secreted Nvec

jgi|Nemve1|208381|fgenesh1_pg.scaffold_91000082 No good hits ntp (wobbly, CLECT (wobbly) Yes No C-lectin - Secreted

C-type Secreted Nvec

jgi|Nemve1|196789|fgenesh1_pg.scaffold_3000110

brevican [Danio rerio] >gi|134054440|emb|CAM... 6.00E-10

ntp (wobbly), EGF (wobbly), LINK_2, CLECT Yes No C-lectin - Secreted

C-type Soluble Clytia IL0ABA9YE18RM1 chondroitin sulfate proteoglycan 2 [Xenopus ... e-22 CLECT No No C-lectin - Soluble chondroitin sulfate proteoglycan 2 is big with multiple domainsC-type Soluble Clytia SA0AAB101YI01CTG hydra homolgue only e-21 CLECT No No C-lectin - Soluble ref|XP_002168680.1| PREDICTED: similar to predicted protein, par…C-type Soluble Clytia SA0AAB12YJ20RM1

DC-SIGN protein isoform B [Canis lupus familiaris] e-12 CLECT, egf No No C-lectin - Soluble ref|XP_002168680.1| PREDICTED: similar to predicted protein, par... 253 4.00E-65 hydra homologue

C-type Soluble Clytia SA0AAB3YK03CTG CLEC16A protein [Homo sapiens] e-92 No domains No No CLEC16A family - Soluble ref|XP_393990.2| PREDICTED: similar to CG12753-PA, isoform A [Ap... 369 1.00E-100C-type Soluble Hydra CL123Contig2 Cnidarian only CLECT No No C-lectin - Soluble ref|XP_001639701.1| predicted protein [Nematostella vectensis] >... 8.00E-50C-type Soluble Hydra CL9574Contig1 collectin-43 [Bos taurus] 3.00E-08 CLECT No No C-lectin - SolubleC-type Soluble Hydra CL8505Contig1

gb|AAA29218.2| tyrosine kinase receptor [Hydra vulgaris] 1.00E-20 CLECT No No C-lectin - Soluble

C-type Soluble Hydra gb|CV659831.1 tyrosine kinase receptor [Hydra vulgaris] 6.00E-48 CLECT No No C-lectin - SolubleC-type Soluble Hydra gb|CV985524.1 tyrosine kinase receptor [Hydra vulgaris] 1.00E-18 CLECT No No C-lectin - SolubleC-type Soluble Hydra gb|DN816073.2 tyrosine kinase receptor [Hydra vulgaris] 1.00E-23 CLECT No No C-lectin - Soluble

Page 206: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

187  

   

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

C-type Soluble Hydra gb|DT611934.1 tyrosine kinase receptor [Hydra vulgaris] 1.00E-71 CLECT No No C-lectin - SolubleC-type Soluble Hydra gb|DT616206.1 tyrosine kinase receptor [Hydra vulgaris] 2.00E-56 CLECT No No C-lectin - SolubleC-type Soluble Hydra CL5450Contig1 No good hits CLECT (2x) No No C-lectin - SolubleC-type Soluble Hydra CL648Contig1 No good hits CLECT (2x) No No C-lectin - SolubleC-type Soluble Hydra gb|DN812128.2 No good hits CLECT, F5_F8_type_C No No C-lectin - SolubleC-type Soluble Hydra CL5387Contig1

C-type lectin domain family 16, member A [Mus m... 1.00E-41 No Domains No No CLEC16A family - Soluble

C-type Soluble Mbrev

jgi|Monbr1|35486|estExt_fgenesh1_pg.C_20250 No good hits CLECT No No C-lectin - Soluble

C-type Soluble Mbrev

jgi|Monbr1|24761|fgenesh2_pg.scaffold_7000309 No good hits

CLECT (wobbly), Recep_L_domain (wobbly) No No C-lectin - Soluble

C-type Soluble Mbrev

jgi|Monbr1|17036|estExt_gwp_gw1.C_20126 gb|AAP78681.1| MBCTL2 [Monosiga brevicollis] 0 CCP (3x very wobbly), CLECT No No

gb|AAP78681.1| MBCTL2 [Monosiga brevicollis] same domain structure also

C-type Soluble Nvec jgi|Nemve1|17962|gw.655.3.1 ACAN protein [Homo sapiens] 2.00E-20 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|45368|gw.367.41.1 ACAN protein [Homo sapiens] 2.00E-20 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|149561|e_gw.3035.1.1 aggrecan isoform 1 precursor [Homo sapiens] 9.00E-17 CLECT No No C-lectin - SolubleC-type Soluble Nvec

jgi|Nemve1|239025|estExt_fgenesh1_pg.C_110046 aggrecan isoform 2 precursor [Homo sapiens] 5.00E-15 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|7634|gw.4914.1.1

Brevican [Homo sapiens] >gi|20380804|gb|AAH27971.... 3.00E-15 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|154303|e_gw.7191.2.1 brevican core protein 8.00E-22 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|108202|e_gw.89.172.1 brevican isoform 1 [Rattus norvegicus] >gi|1... 3.00E-19 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|83478|e_gw.7.7.1

Brevican soluble core protein precursor [Xenopus ... 5.00E-12 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|88150|e_gw.17.229.1 C-type lectin [Pocillopora damicornis] 9.00E-24 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|87968|e_gw.17.235.1 C-type lectin [Pocillopora damicornis] 1.00E-22 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|6023|gw.37.6.1 C-type lectin 1 [Anguilla japonica] 3.00E-13 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|103399|e_gw.68.85.1

chondroitin sulfate proteoglycan 2 [Xenopus laevis] 5.00E-15 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|138199|e_gw.425.7.1

dbj|BAA95671.1| C-type lectin [Cyprinus carpio] 1.00E-12 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|85784|e_gw.12.21.1 endocytic receptor Endo180 [Homo sapiens] 8.00E-10 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|129425|e_gw.266.73.1 gb|AAA87847.1| brevican core protein 1.00E-21 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|137796|e_gw.413.1.1 gb|AAA87847.1| brevican core protein 1.00E-21 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|118816|e_gw.156.96.1 gb|ABD16187.1| c-type lectin [Danio rerio] 1.00E-10 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|102786|e_gw.66.179.1

gb|ACJ64661.1| hypothetical protein A043-D8 [Acropora millepora] 1.00E-18 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|154334|e_gw.7241.1.1

gb|ACN53515.1| C-type lectin [Pocillopora damicornis] 1.00E-09 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|113743|e_gw.120.98.1

mannose receptor C type 1 precursor [Homo sapie... 6.00E-13 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|66344|gw.3.677.1 mannose receptor C1-like protein [Danio rerio] 3.00E-15 CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|149329|e_gw.2934.3.1

mannose receptor, C type 2, isoform CRA_a [Mus mu... 2.00E-09 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|88266|e_gw.18.164.1

neurocan [Mus musculus] >gi|40675766|gb|AAH6511... 8.00E-19 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|118814|e_gw.156.101.1

neurocan [Rattus norvegicus] >gi|1709256|sp|P55... 7.00E-16 CLECT No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|207088|fgenesh1_pg.scaffold_76000072 No good hits CLECT No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|211781|fgenesh1_pg.scaffold_143000058 No good hits CLECT No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|212201|fgenesh1_pg.scaffold_151000025 No good hits CLECT No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|218066|fgenesh1_pg.scaffold_327000008 No good hits CLECT No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|229557|fgenesh1_pm.scaffold_85000002 No good hits CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|29214|gw.76.113.1 No good hits CLECT No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|64326|gw.15.244.1 No good hits CLECT No No C-lectin - Soluble

Page 207: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

188  

     

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

C-type Soluble Nvec

jgi|Nemve1|221388|fgenesh1_pg.scaffold_748000003

ref|NP_001075276.1| Fc fragment of IgE, low affinity II, recepto… 1.00E-12 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|138198|e_gw.425.36.1

ref|NP_001138689.1| Fc fragment of IgE, low affinity II, recepto… 1.00E-13 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|119405|e_gw.161.1.1

regenerating islet-derived 2 [Mus musculus] >gi... 5.00E-11 CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|145810|e_gw.1517.2.1 No good hits CLECT (wobbly) No No C-lectin - SolubleC-type Soluble Nvec jgi|Nemve1|78993|e_gw.1.634.1 No good hits CLECT (wobbly) No No C-lectin - SolubleC-type Soluble Nvec

jgi|Nemve1|203353|fgenesh1_pg.scaffold_42000068 No good hits CLECT, I-set, ntp No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|203358|fgenesh1_pg.scaffold_42000073 No good hits CLECT, ntp No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|210423|fgenesh1_pg.scaffold_121000042 No good hits EGF, CLECT No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|210418|fgenesh1_pg.scaffold_121000037 No good hits EGF, LINK, CLECT No No C-lectin - Soluble

C-type Soluble Nvec

jgi|Nemve1|210422|fgenesh1_pg.scaffold_121000041

chondroitin sulfate proteoglycan 2 variant V3 [Xe... 3.00E-13 LINK, CLECT No No C-lectin - Soluble

C-type Soluble Nvec jgi|Nemve1|84933|e_gw.10.237.1 protein CLEC16A, putative [Ixodes scapularis] 0 No domains No No CLEC16A family - SolubleCollectin Clytia SA0AAA11YD17CTG No good hits Collagen, CLECT No No Collectin - putative

Collectin Nvecjgi|Nemve1|199302|fgenesh1_pg.scaffold_14000067

hypothetical protein A044-C2 [Acropora millepora] 5.00E-36 Collagen, CLECT Yes No Collectin - putative Collectins have a collagen and CLECT domain. Start and stop codons present

Collectin-Like Hydra CL1Contig283hypothetical protein A044-C2 [Acropora millepora] 1.00E-69 Collagen, Gal_lectin No No Collectin like gb|ACJ64658.1| hypothetical protein A044-C2 [Acropora millepora]

Collectin-Like Hydra CL5890Contig1hypothetical protein A044-C2 [Acropora millepora] 1.00E-33 Collagen, Gal_lectin No No Collectin like gb|ACJ64658.1| hypothetical protein A044-C2 [Acropora millepora]

Collectin-Like Hydra CL684Contig1hypothetical protein A044-C2 [Acropora millepora] 8.00E-51 Collagen, Gal_lectin No No Collectin like collagen, Gal_lectin is not found in other organisms

Collectin-Like Nvecjgi|Nemve1|232015|fgsh_est.C_scaffold_14000009

hypothetical protein A044-C2 [Acropora millepora] 7.00E-81 Collagen, Gal_lectin Yes No Collectin like start and stop codons present

Collectin-Like Clytia IL0ABA6YM11RM1hypothetical protein A044-C2 [Acropora millepora] 3.00E-40 Collagen, Gal_lectin Yes No Collectin like

IL0ABA6YM11RM1 gb|ACJ64658.1| hypothetical protein A044-C2 [Acropora millepora] 169 3.00E-40IL0ABA6YM11RM1 ref|XP_002160660.1| PREDICTED: similar to predicted protein isof... 167 9.00E-40IL0ABA6YM11RM1 ref|XP_001639343.1| predicted protein [Nematostella vectensis] >... 160 1.00E-37. Starts with an M.

Collectin-Like Clytia IL0ABA19YN17RM1Hypothetical protein A044-C2 [Acropora millepora] 3.00E-28 Collagen, Gal_lectin Yes No Collectin like

A044-C2 is part of contig C_mge-A048-G3-post22-T which has no good blast hits and domains: SP, Collagen, Gal_lectin and 1 predicted TM in the N-terminal overlapping the SP - this is not likely to be a true TM.

Collectin-Like Nvecjgi|Nemve1|220309|fgenesh1_pg.scaffold_499000008

hypothetical protein A044-C2 [Acropora millepora] 4.00E-11

Collagen (2x), Gal_lectin (wobbly) No No Collectin like - putative start and stop present

Collectin-Like Nvecjgi|Nemve1|232014|fgsh_est.C_scaffold_14000008

hypothetical protein A032-H1 [Acropora millepora] 5.00E-62 Collagen, Gal_lectin Yes 1 Collectin like

start and stop present predicted TM in the N-terminal overlapping the SP - this is not likely to be a true TM

Collectin-Like Clytia SA0AAB24YI18RM1hypothetical protein A032-H1 [Acropora millepora] 9.00E-64 Collagen, Gal_lectin Yes 1 Collectin like

ref|XP_002157988.1| PREDICTED: similar to predicted protein isof... 262 3.00E-68ref|XP_002158019.1| PREDICTED: similar to predicted protein isof... 262 3.00E-68gb|ACJ64659.1| hypothetical protein A032-H1 [Acropora millepora] 247 9.00E-64ref|XP_001639420.1| predicted protein [Nematostella vectensis] >... 242 2.00E-62 predicted TM in the N-terminal overlapping the SP - this is not likely to be a true TM

Collectin-Like Acropora Contig31112hypothetical protein A044-C2 [Acropora millepora] 2.00E-93 Collagen, Gal_lectin Yes No Collectin like

Collectin-Like Acropora Contig12324hypothetical protein A032-H1 [Acropora millepora] 3.00E-93 Collagen, Gal_lectin Yes No Collectin like

Collectin-Like Acropora Contig8056hypothetical protein A044-C2 [Acropora millepora] 5.00E-37 Collagen, Gal_lectin No No Collectin like

Collectin-Like Acropora Contig4833hypothetical protein A044-C2 [Acropora millepora] 5.00E-11 Collagen, Gal_lectin Yes No Collectin like

Collectin-Like Acropora Contig4828hypothetical protein A043-H7 [Acropora millepora] 1.00E-86 Collagen, Gal_lectin No No Collectin like

C-type Transmembrane Clytia SA0AAA8YD10CTG

ref|NP_055545.1| malectin [Homo sapiens] >gi|2495712|sp|Q14165.1… e-64 No domains Yes 1 Malectin

SA0AAA8YD10CTG ref|XP_002168415.1| PREDICTED: similar to predicted protein [Hyd... 301 4.00E-80SA0AAA8YD10CTG ref|XP_001639476.1| predicted protein [Nematostella vectensis] >... 268 4.00E-70. No domains is consistent with the blast hit. Malectin is a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation

C-type Transmembrane Clytia SA0AAB55YA06CTG hydra homolgue only Ig, CLECT (2x) Yes 1 C-type Lectin - lectin/Ig

ref|XP_002160934.1| PREDICTED: similar to predicted protein [Hyd... 315 5.00E-84 this hit contains 2 CLEC, TM.

C-type Transmembrane Hydra gb|CN774438.1 No good hits CLECT No 1 C-type Lectin - TM Can not be confirmed that these are Type II or Type III C-type Transmembrane Hydra gb|DN812863.2 tyrosine kinase receptor [Hydra vulgaris] 5.00E-27 CLECT No 1 C-type Lectin - TM Can not be confirmed that these are Type II or Type III C-type Transmembrane Hydra CL8965Contig1 No good hits CLECT No 3 C-type Lectin - TM Can not be confirmed that these are Type II or Type III C-type Transmembrane Hydra CL1143Contig1

malectin [Homo sapiens] >gi|2495712|sp|Q14165.1... 2.00E-57 No Domains No No Malectin

Malectin is a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation

Page 208: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

189  

   

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

C-type Transmembrane Mbrev

jgi|Monbr1|33817|estExt_fgenesh2_pg.C_250037 MBCTL1 [Monosiga brevicollis] 3.00E-14 CLECT No 1 C-type Lectin - TM Can not be confirmed that these are Type II or Type III. Start and stop codons present

C-type Transmembrane Mbrev

jgi|Monbr1|34706|estExt_fgenesh2_pg.C_460051 MBCTL1 [Monosiga brevicollis] 1.00E-177 CLECT (2x) Yes 1 AAP78680 MBCTL1 MBCTL1 has 3 lectin domains however this may have been an edited model

C-type Transmembrane Nvec

jgi|Nemve1|210164|fgenesh1_pg.scaffold_117000056 aggrecan isoform 1 precursor [Homo sapiens] 2.00E-16 ntp (wobbly, CLECT (wobbly) No 1 C-type Lectin - TM Can not be confirmed that these are Type II or Type III. Start and stop codons present

C-type Transmembrane Nvec

jgi|Nemve1|211915|fgenesh1_pg.scaffold_146000014

gb|ABW80963.1| acidic repeat protein [Treponema paraluiscuniculi] 1.00E-55

Astacin, TSP1, CLECT, TSP1 (2x) No 2 C-type Lectin - TM Can not be confirmed that these are Type II or Type III. Start and stop codons present

C-type Transmembrane Nvec

jgi|Nemve1|221181|fgenesh1_pg.scaffold_685000004 cyclase family protein [Roseovarius sp. 217] ... 1.00E-15 CLECT (wobbly), cyclase No 2 C-type Lectin - TM

Can not be confirmed that these are Type II or Type III. Start and stop codons present Unique architecture CLECT, TM, Cyclase, TM

C-type Transmembrane Nvec

jgi|Nemve1|248367|estExt_fgenesh1_pg.C_5290004

gb|ABK78718.1| dendritic cell immunoactivating receptor [Anas pl… 1.00E-07 CLECT Yes 1 C-type Lectin - TM Type I

C-type Transmembrane Nvec

jgi|Nemve1|197952|fgenesh1_pg.scaffold_7000235 No good hits CLECT Yes 1 C-type Lectin - TM Type I

C-type Transmembrane Nvec

jgi|Nemve1|238062|estExt_fgenesh1_pg.C_30109

gb|AAR24388.1| mannose receptor C1 [Sus scrofa] 1.00E-72

CLECT (3x), F5_F8_type_C, CLECT, LamG (wobbly), CLECT (5x), disc4, F5_F8_type_C (2x), SEA (wobbly) Yes 1 C-type Lectin - TM Type I Unique Architecture

C-type Transmembrane Nvec

jgi|Nemve1|199676|fgenesh1_pg.scaffold_16000126 Pod-EPPT [Podocoryne carnea] 8.00E-11 CLECT (wobbly), ntp (wobbly) Yes 1 C-type Lectin - TM Type I

C-type Transmembrane Nvec

jgi|Nemve1|204386|fgenesh1_pg.scaffold_50000070

PTX (wobbly), CLECT, ntp (wobbly) Yes 1 C-type Lectin - TM Type I

C-type Transmembrane Nvec

jgi|Nemve1|198924|fgenesh1_pg.scaffold_12000147 No good hits CLECT (2x) Yes 2 C-type Lectin - TM Type I probably only single pass

C-type Transmembrane Nvec

jgi|Nemve1|179566|estExt_GenewiseH_1.C_130133

ref|NP_055545.1| malectin [Homo sapiens] >gi|2495712|sp|Q14165.1… 1.00E-53 No domains Yes No Malectin

malectin has no domains. Malectin is a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation

Fucolectin Nvecjgi|Nemve1|216294|fgenesh1_pg.scaffold_256000002 Fucolectin-4 precursor [Esox lucius] 2.00E-06 CLECT, ftp No 2 Fucolectin - Transmembrane

There are only 2 transmembrane fucolectins… Drosophila- furrowed (CCP repeats, one CLECT, 1 ftp) and Tachylectin-4 (SP, ftp) which recognizes bacterial lipopolysaccharide, probably through binding to fucose-like sugars. Start and stop codons are presnt. Probable artifact due to lack of EST support and SP, highly repetative TM region, short scaffold.

Fucolectin Nvecjgi|Nemve1|214591|fgenesh1_pg.scaffold_204000015 FBP32 precursor [Morone chrysops] 2.00E-31 ftp Yes No Fucolectin - Secreted (FBP32 like)

Fucolectin Nvecjgi|Nemve1|221173|fgenesh1_pg.scaffold_683000006 Fucolectin-4 precursor [Esox lucius] 8.00E-28 ftp Yes No Fucolectin - Secreted

Fucolectin Nvecjgi|Nemve1|221640|fgenesh1_pg.scaffold_887000005 No good hits F5_F8_type_C, ftp (wobbly) Yes No Fucolectin - Secreted

Fucolectin Nvec jgi|Nemve1|144857|e_gw.1185.2.1 bryohealin precursor [Bryopsis plumosa] 8.00E-18 ftp No No Fucolectin - Soluble

Fucolectin Nvec jgi|Nemve1|100075|e_gw.55.26.1 FBP32 precursor [Morone saxatilis] 1.00E-41 ftp No No Fucolectin - Solubleeel-Fucolectin Tachylectin-4 Pentaxrin-1 Domain, ftp domain is the SMART version of F5_F8_type_C/FA58C

Fucolectin Nvec jgi|Nemve1|123063|e_gw.196.12.1 FBP32II precursor [Morone chrysops] 3.00E-51 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|11782|gw.196.4.1 FBP32II precursor [Morone chrysops] 9.00E-38 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|106318|e_gw.81.40.1 fucolectin [Fundulus heteroclitus] 2.00E-27 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|8429|gw.9884.1.1 Fucolectin-4 precursor [Esox lucius] 7.00E-32 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|130395|e_gw.279.36.1 Fucolectin-4 precursor [Esox lucius] 5.00E-31 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|17374|gw.224.24.1 Fucolectin-4 precursor [Esox lucius] 3.00E-30 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|113390|e_gw.117.83.1 Fucolectin-4 precursor [Esox lucius] 3.00E-29 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|101196|e_gw.60.139.1 Fucolectin-4 precursor [Esox lucius] 2.00E-26 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|16092|gw.174.11.1 Fucolectin-4 precursor [Esox lucius] 4.00E-24 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|28280|gw.196.56.1 Fucolectin-4 precursor [Esox lucius] 6.00E-23 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|101150|e_gw.59.65.1 Fucolectin-4 precursor [Esox lucius] 5.00E-18 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|155896|e_gw.9311.2.1 Fucolectin-4 precursor [Esox lucius] 4.00E-17 ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|6868|gw.741.1.1 Fucolectin-4 precursor [Esox lucius] 2.00E-13 ftp No No Fucolectin - Soluble

Fucolectin Nvecjgi|Nemve1|217467|fgenesh1_pg.scaffold_298000014 Fucolectin-4 precursor [Esox lucius] 7.00E-07 ftp No No Fucolectin - Soluble

Fucolectin Nvec jgi|Nemve1|9509|gw.10015.2.1 No good hits ftp No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|123139|e_gw.196.46.1 FBP32 precursor [Morone saxatilis] 3.00E-47 ftp (2x) No No Fucolectin - SolubleFucolectin Nvec jgi|Nemve1|112201|e_gw.110.50.1 fucose binding lectin [Dicentrarchus labrax] 5.00E-43 ftp (2x) No No Fucolectin - Soluble

Fucolectin Nvecjgi|Nemve1|239599|estExt_fgenesh1_pg.C_170022

furrowed [Aedes aegypti] >gi|108875029|gb|EA... 3.00E-12 Ricin_B_lectin (wobbly), ftp No No Fucolectin - Soluble

Fucolectin Nvec jgi|Nemve1|65775|gw.61.259.1 No good hits ftp No No Fucolectin - SolubleFucolectin Hydra CL3322Contig1 No good hits ftp Yes No Fucolectin - SecretedFucolectin Acropora Contig2805 BTB, ftp FucolectinFucolectin Acropora Contig8409 ftp FucolectinFucolectin Acropora run002_427609 ftp FucolectinFucolectin Acropora Contig11806 ftp FucolectinFucolectin Acropora Amil_c11587 ftp FucolectinFucolectin Acropora run002_434733 ftp FucolectinFucolectin Acropora run001daytona_1706338 ftp (2x) Fucolectin

Page 209: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

190  

     

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

Fucolectin Acropora run001daytona_1732288 ftp FucolectinFucolectin Acropora Amil_c56240 ftp FucolectinFucolectin Acropora run001daytona_1712753 ftp FucolectinFucolectin Acropora run002_436148 ftp FucolectinFucolectin Acropora Contig18100 ftp, disc4 FucolectinFucolectin Acropora run001daytona_1711122 ftp FucolectinFucolectin Acropora run001daytona_1719357 ftp FucolectinFucolectin Acropora run001daytona_1723531 ftp FucolectinFucolectin Acropora run001daytona_1714209 ftp FucolectinFucolectin Acropora run001daytona_1704584 ftp FucolectinFucolectin Acropora Contig2564 ricin_B_lectin(wobbly),ftp FucolectinFucolectin Acropora Amil_c24802 ftp FucolectinFucolectin Acropora Contig25156 ftp FucolectinFucolectin Acropora Amil_c83456 ftp Fucolectin

legume like Hydra CL4270Contig1mannose-binding endoplasmic reticulum-golgi inter... 3.00E-75 Lectin_leg-like Yes 1

mannose-binding endoplasmic reticulum-golgi inter...

legume like Hydra CL641Contig1Vesicular integral-membrane protein VIP36 precurs... 1.00E-84 Lectin_leg-like No No

Vesicular integral-membrane protein VIP36 precurs...

legume like Mbrevjgi|Monbr1|33100|estExt_fgenesh2_pg.C_160036

ref|XP_001654670.1| vesicular mannose-binding lectin [Aedes aegy… 1.00E-66 Lectin_leg-like Yes 1 vesicular mannose-binding lectin

legume like Mbrevjgi|Monbr1|34633|estExt_fgenesh2_pg.C_430019 vesicular mannose-binding lectin [Aedes aegy... 1.00E-52 Lectin_leg-like Yes 1 vesicular mannose-binding lectin

legume like Nvec jgi|Nemve1|129670|e_gw.268.1.1gb|EDM14702.1| lectin, mannose-binding, 1, isoform CRA_a [Rattus… 1.00E-102 Lectin_leg-like No 1 lectin, mannose-binding

legume like Nvec jgi|Nemve1|82673|e_gw.6.366.1 vesicular mannose-binding lectin [Aedes aegy... 2.00E-90 Lectin_leg-like Yes 1 vesicular mannose-binding lectinGal-lectin Hydra CL1084Contig1 No good hits Gal_lectin Yes 1Gal-lectin Hydra CL1096Contig1 No good hits Gal_lectin No NoGal-lectin Hydra CL2279Contig1 No good hits Gal_lectin Yes 1Gal-lectin Hydra CL3738Contig1 No good hits Gal_lectin No NoGal-lectin Hydra gb|CO537930.1 No good hits Gal_lectin No NoGal-lectin Hydra gb|DN245375.2 No good hits Gal_lectin No NoGal-lectin Hydra gb|DT614072.1 No good hits Gal_lectin Yes NoGal-lectin Hydra CL1172Contig1 No good hits Gal_lectin (2x) No No

Gal-lectin Hydra CL320Contig1rhamnose-binding lectin OLL [Spirinchus lanceola... 5.00E-29 Gal_lectin (2x) Yes No

Gal-lectin Hydra CL3363Contig1rhamnose-binding lectin WCL3 [Salvelinus leucoma... 3.00E-27 Gal_lectin (2x) Yes 1

Gal-lectin Hydra CL385Contig2 24 kDa egg lectin [Oncorhynchus tshawytscha] 4.00E-31 Gal_lectin (2x) No NoGal-lectin Hydra CL385Contig3 24 kDa egg lectin [Oncorhynchus tshawytscha] 2.00E-30 Gal_lectin (2x) No NoGal-lectin Hydra CL385Contig1 rhamnose binding lectin [Tribolodon brandtii] 3.00E-34 Gal_lectin (3x) No No

Gal-lectin Hydra CL9067Contig1rhamnose-binding lectin WCL3 [Salvelinus leucoma... 1.00E-31 Gal_lectin (3x) No No

Gal-lectin Hydra CL1523Contig1rhamnose-binding lectin WCL3 [Salvelinus leucoma... 3.00E-30 Gal_lectin (4x) No No

Gal-lectin Hydra CL2416Contig1rhamnose binding lectin STL3 [Oncorhynchus m... 4.00E-26 Gal_lectin (4x) No No

Gal-lectin Hydra CL55Contig1rhamnose binding lectin STL3 [Oncorhynchus m... 7.00E-30 Gal_lectin (4x) No No

Gal-lectin Hydra CL5403Contig1 No good hits Gal_lectin (wobbly) No No

Gal-lectin Hydra CL6176Contig1nematocyst outer wall antigen precursor [Clytia h... 2.00E-38

Gal_lectin (wobbly), keratin_B2 (wobbly) No No

Gal-lectin Nvecjgi|Nemve1|241976|estExt_fgenesh1_pg.C_540065 No good hits CD20 (wobbly), Gal_lectin

Gal-lectin Nvecjgi|Nemve1|214497|fgenesh1_pg.scaffold_202000001 depsiphilin [Cooperia oncophora] 1.00E-10 Gal_lectin

Gal-lectin Nvecjgi|Nemve1|216053|fgenesh1_pg.scaffold_247000022 depsiphilin [Cooperia oncophora] 4.00E-07 Gal_lectin

Gal-lectin Nvecjgi|Nemve1|232013|fgsh_est.C_scaffold_14000007

hypothetical protein A043-H7 [Acropora millepora] 5.00E-40 Gal_lectin

Gal-lectin Nvec jgi|Nemve1|18799|gw.247.36.1 lectomedin 1 alpha-like [Ciona intestinalis] 1.00E-12 Gal_lectinGal-lectin Nvec jgi|Nemve1|102384|e_gw.64.13.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|106512|e_gw.82.91.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|111827|e_gw.108.32.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|111847|e_gw.108.96.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|111952|e_gw.108.39.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|118227|e_gw.152.81.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|124712|e_gw.213.49.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|124735|e_gw.213.92.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|142147|e_gw.645.22.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|142154|e_gw.645.34.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|142157|e_gw.645.18.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|142164|e_gw.645.13.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|142165|e_gw.645.31.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|142168|e_gw.645.15.1 No good hits Gal_lectinGal-lectin Nvec jgi|Nemve1|148507|e_gw.2440.4.1 No good hits Gal_lectin

Gal-lectin Nvecjgi|Nemve1|205905|fgenesh1_pg.scaffold_64000028 No good hits Gal_lectin

Gal-lectin Nvecjgi|Nemve1|216054|fgenesh1_pg.scaffold_247000023 No good hits Gal_lectin

Page 210: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

191  

   

Sub Family Organism Sequence Id BLAST e_value HMMPFAM SP TM Conclusion Notes

Gal-lectin Nvecjgi|Nemve1|246049|estExt_fgenesh1_pg.C_1940004 No good hits Gal_lectin

Gal-lectin Nvec jgi|Nemve1|128256|e_gw.247.49.1 novel rhamnose binding lectin [Danio rerio] 9.00E-09 Gal_lectin

Gal-lectin Nvec jgi|Nemve1|87157|e_gw.15.283.1rhamnose-binding lectin precursor [Branchiostoma ... 3.00E-16 Gal_lectin

Gal-lectin Nvec jgi|Nemve1|142145|e_gw.645.12.1rhamnose-binding lectin precursor [Branchiostoma ... 3.00E-15 Gal_lectin

Gal-lectin Nvec jgi|Nemve1|148434|e_gw.2408.1.1rhamnose-binding lectin precursor [Branchiostoma ... 3.00E-15 Gal_lectin

Gal-lectin Nvec jgi|Nemve1|146503|e_gw.1697.9.1rhamnose-binding lectin precursor [Branchiostoma ... 2.00E-14 Gal_lectin

Gal-lectin Nvec jgi|Nemve1|82364|e_gw.5.561.1 skin mucus lectin [Leiognathus nuchalis] 1.00E-08 Gal_lectin

Gal-lectin Nvecjgi|Nemve1|209268|fgenesh1_pg.scaffold_103000043

rhamnose-binding lectin OLL [Spirinchus lanceola... 3.00E-13 Gal_lectin (2x wobbly)

Gal-lectin Nvec jgi|Nemve1|106614|e_gw.82.111.1 No good hits Gal_lectin (2x)Gal-lectin Nvec jgi|Nemve1|140909|e_gw.552.7.1 No good hits Gal_lectin (2x)

Gal-lectin Nvecjgi|Nemve1|205904|fgenesh1_pg.scaffold_64000027

Rhamnose-binding lectin [Salmo salar] >gi|20... 2.00E-15 Gal_lectin (2x)

Gal-lectin Nvec jgi|Nemve1|174671|estExt_gwp.C_3180014rhamnose-binding lectin WCL3 [Salvelinus leucoma... 3.00E-30 Gal_lectin (2x)

Gal-lectin Nvec jgi|Nemve1|122916|e_gw.194.48.1 rhamnose binding lectin [Tribolodon brandtii] 7.00E-37 Gal_lectin (3x)Gal-lectin Nvec jgi|Nemve1|142158|e_gw.645.36.1 rhamnose binding lectin [Tribolodon brandtii] 2.00E-36 Gal_lectin (3x)Gal-lectin Nvec jgi|Nemve1|111951|e_gw.108.118.1 rhamnose binding lectin [Tribolodon brandtii] 2.00E-34 Gal_lectin (3x)Gal-lectin Nvec jgi|Nemve1|131398|e_gw.294.64.1 rhamnose binding lectin [Tribolodon brandtii] 3.00E-21 Gal_lectin (3x)

Gal-lectin Nvecjgi|Nemve1|237832|estExt_fgenesh1_pg.C_10304 rhamnose binding lectin [Tribolodon brandtii] 1.00E-14 Gal_lectin (4x)

Gal-lectin Nvecjgi|Nemve1|212656|fgenesh1_pg.scaffold_160000021

hypothetical protein A044-C2 [Acropora millepora] 2.00E-14 Gal_lectin (wobbly)

Gal-lectin Nvecjgi|Nemve1|222353|fgenesh1_pg.scaffold_1557000001 No good hits Gal_lectin (wobbly)

Gal-lectin Nvecjgi|Nemve1|212847|fgenesh1_pg.scaffold_164000008

gb|AAX09934.1| ganglioside M2 activator-like protein [Aurelia au… 1.00E-22

Gal_lectin (wobbly), pgtp_13 (wobbly)

Gal-lectin Mbrevjgi|Monbr1|12732|fgenesh1_pg.scaffold_44000010 No good hits EGF (2x), Gal_lectin No 1

Gal-lectin Mbrevjgi|Monbr1|27352|fgenesh2_pg.scaffold_19000006

Beta-galactosidase precursor, putative, expressed... 2.00E-18 Gal_lectin No No

Gal-lectin Clytia IL0ABA5YA20RM1 novel rhamnose binding lectin [Danio rerio] e-10 Gal_lectin No No

ref|XP_002161306.1| PREDICTED: similar to novel rhamnose binding... 198 2.00E-49 this has 2xGal_lec. The Rhaminose binding lectin has one Gal_lec domain and is very short… poor hit indicates this may be something different but length is similar (this starts with an M)

Gal-lectin Clytia SA0AAB36YH22RM1 hydra homolgue only Wobbly Gal_lectin No 1 ref|XP_002169231.1| PREDICTED: similar to LOC733382 protein [Hyd... 151 1.00E-34

Gal-lectin Clytia SA0AAB73YD10CTG Cnidarian homolgues only Gal_lectin Yes No

ref|XP_002169260.1| PREDICTED: similar to predicted protein, par... 218 3.00E-55ref|XP_002159989.1| PREDICTED: similar to predicted protein [Hyd... 218 4.00E-55ref|XP_002160043.1| PREDICTED: similar to predicted protein [Hyd... 153 1.00E-35ref|XP_001639419.1| predicted protein [Nematostella vectensis] >... 130 1.00E-28gb|ACJ64660.1| hypothetical protein A043-H7 [Acropora millepora] 119 3.00E-25

Gal-lectin Clytia IL0ABA4YP02RM1gb|ABY71251.1| nematocyst outer wall antigen precursor [Clytia h... 0 Gal_lectin Yes No gb|ABY71251.1| nematocyst outer wall antigen precursor [Clytia h...

haemolytic Clytia IL0ABA8YL09RM1 CELIII 1.00E-93 2x ricin CELIII

haemolytic Clytia IL0ABA2YE22RM1 CELIII 1.00E-92 2xricin CELIII

has same domain structure and a good blast - heamolytic lectin gb|ACJ64657.1| hypothetical protein A049-E7 [Acropora millepora] 319 4.00E-85gb|ACJ64656.1| hypothetical protein A036-E7 [Acropora millepora] 305 6.00E-81

haemolytic Acropora A036-E7 A036-E7 0 2xricin CELIIIhaemolytic Acropora A049-E7 A049-E7 0 2xricin CELIIIhaemolytic Acropora Contig20384 CELIII 1.00E-131 2xricin CELIII

legume like Acropora Contig6923ref|NP_446338.1| lectin, mannose-binding, 1 [Rattus norvegicus] 1.00E-96 Lectin_leg-like

legume like Acropora run002_224851 vesicular mannose-binding lectin [Aedes aegy... 1.00E-72 Lectin_leg-likelegume like Acropora Contig768 ref|XP_001843193.1| VIP36 1.00E-85 Lectin_leg-like

Page 211: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

192  

LRR Adhesion

   

Sub Family Organism Sequence Id BLAST E-value HMMPFAM SP TM Conclusion Notes

LRR-dsl Nematostella jgi|Nemve1|200004|fgenesh1_pg.scaffold_18000128leucine rich repeat containing 15 [Rattus norve... 6.00E-22 lrrnt (wobbly), LRR (8x 7wobbly), GCC2_GCC3, dsl Yes 7 LRR-dsl

LRR-EGF Clytia SA0AAA15YN12CTG noLRR (3x wobbly), EGF (3x wobbly), ringv (wobbly), EGF (wobbly) No 1 LRR-EGF

LRR-EGF Nematostella jgi|Nemve1|203583|fgenesh1_pg.scaffold_44000028 uromodulin 2.00E-14 lrrct, EGF (3x) No 1 LRR-EGF

LRR-EGF Nematostella jgi|Nemve1|199637|fgenesh1_pg.scaffold_16000087slit-like 2 [Homo sapiens] >gi|74748436|sp|Q6EM... 2.00E-22 LRR (9x 8wobbly), lrrct, EGF (4x) Yes 1 LRR-EGF

LRR-EGF Nematostella SA0AAB6YN08RM1 no good hits LRR (6x wobbly), lrrct (wobbly), EGF Yes 1 LRR-EGF

LRR-EGF Nematostella jgi|Nemve1|208146|fgenesh1_pg.scaffold_89000008 microneme protein 4 [Eimeria tenella] 1.00E-40 lrrct (wobbly), EGF (5x) Yes 1 LRR-EGFVILL/gel domains now called GEL by SMART - Gelsolin/severin/villin homology domain

LRR-EGF Clytia jgi|Nemve1|197001|fgenesh1_pg.scaffold_4000081 no good hits lrrnt, LRR (5x), EGF, GCC2_GCC3 (all wobbly) Yes No LRR-EGF

LRR-FN3 Monosiga jgi|Monbr1|31954|estExt_fgenesh2_pg.C_60352Leukocyte-antigen-related-like, isoform B [Dros... 2.00E-22 lrrnt, LRR (10x wobbly), lrrct (wobbly), FN3 (5x) Yes 1 LRR-FN3

LRR-FN3 Nematostella jgi|Nemve1|248399|estExt_fgenesh1_pg.C_5430006ref|NP_001094549.1| protein tyrosine phosphatase, receptor type,… 2.00E-48

F-box (2x wobbly), LRR (3x wobbly), Pentaxin, LamG (wobbly), FBG, PTX, 109ultra, f5_f5_type_C (2x wobbly), MAM (wobbly), LamG (2x wobbly), VirB8 (wobbly), FN3 (9x),TM, Ion_trans_2, Yes 3 LRR-FN3

4260-4282, 4328-4350, 4508-4525 = TM regions. The first 2 overlap with the Ion_trans domain. May not be a surface protein because it has an F-box.

LRR-IG Nematostella jgi|Nemve1|247910|estExt_fgenesh1_pg.C_3760020gb|EDL91410.1| leucine-rich repeats and immunoglobulin-like doma… 6.00E-32

lrrnt, LRR (7x 6wobbly), lrrct, IG, I-set, EGF (wobbly) Yes No LRR-IG

LRR-IG Nematostella jgi|Nemve1|238858|estExt_fgenesh1_pg.C_90051ref|NP_700356.2| leucine-rich repeats and immunoglobulin-like do… 1.00E-131

lrrnt, LRR (10x 6wobbly), lrrct, IG, I-set (2x), ChitinBD_3 (wobbly) Yes 1 LRIG3

LRR-LDLa Monosiga jgi|Monbr1|38718|estExt_fgenesh1_pg.C_300050 no good hits LRR (3x wobbly), LDLa, tyrkin No 1 LRR-LDLa

LRR-LDLa Monosiga jgi|Monbr1|29577|fgenesh2_pg.scaffold_36000018 Epha4a protein [Danio rerio] 5.00E-24 FBG (wobbly), LRR (wobbly), LDLa, tyrkin Yes 1 LRR-LDLadomain structure is very different to Ephrin recept 4a. The fibrinogen C-term may be false hit making this an kinase.

LRR-LDLa Monosiga jgi|Monbr1|37789|estExt_fgenesh1_pg.C_160136 no good hits LRR (2x), LDLa, SKG6 (all wobbly) Yes 1 LRR-LDLa

LRR-LDLa Monosiga jgi|Monbr1|34608|estExt_fgenesh2_pg.C_420022zeta-chain associated protein kinase 70kDa isof... 3.00E-35 LRR (3x wobbly), LDLa (wobbly), tyrkin yes 1 LRR-LDLa

LRR-LDLa Monosiga jgi|Monbr1|28676|fgenesh2_pg.scaffold_28000035 no good hits LRR, LDLa, tyrkin Yes 1 LRR-LDLa

LRR-LDLa Monosiga jgi|Monbr1|33342|estExt_fgenesh2_pg.C_180096Nef associated protein 1 [Homo sapiens] >gi|152... 3.00E-40 lrrnt (wobbly), LDLa, Pkinase_tyr, UPF0066 yes 1 LRR-LDLa TMH is in the SP

LRR-LDLa Monosiga jgi|Monbr1|12385|fgenesh1_pg.scaffold_38000060 no good hits LRR (3x wobbly), LDLa (wobbly), tyrkin yes 2 LRR-LDLa only 1 TMH is real.LRR-LDLa Monosiga jgi|Monbr1|32039|estExt_fgenesh2_pg.C_70171 no good hits LRR (3x wobbly), LDLa (wobbly), tyrkin yes 2 LRR-LDLa only 1 TMH is real.

LRR-LDLa Monosiga jgi|Monbr1|34526|estExt_fgenesh2_pg.C_390046gb|EEB18061.1| tyrosine-protein kinase transmembrane receptor RO… 2.00E-32 LRR (3x wobbly), LDLa, tyrkin,Pkinase_tyr Yes 2 LRR-LDLa only 1 TMH is real.

LRR-LDLa Monosiga jgi|Monbr1|7318|fgenesh1_pg.scaffold_7000050 no good hits LRR (3x wobbly), LDLa (wobbly), tyrkin yes 3 LRR-LDLa one is in the sp

LRR-LDLa Monosiga jgi|Monbr1|33520|estExt_fgenesh2_pg.C_200100ref|ZP_03154554.1| WD-40 repeat protein [Cyanothece sp. PCC 7822… 1.00E-48

WD40 (7x 1wobbly), DUF1042, ADK (wobbly), LRR (wobbly), LDLa, tyrkin, No No LRR-LDLa

LRR-LDLa Monosiga jgi|Monbr1|25751|fgenesh2_pg.scaffold_11000151 no good hits LRR (3x wobbly), LDLa (wobbly), tyrkin (wobbly) Yes No LRR-LDLa

LRR-SUSHI Nematostella jgi|Nemve1|197996|fgenesh1_pg.scaffold_8000037 no good hitsMAM (wobbly), CCP (wobbly), SR, LRR (4x), EGF (2x wobbly) Yes 5 LRR-SUSHI

LRR-SUSHI / LRR-dsl Monosiga jgi|Monbr1|33936|estExt_fgenesh2_pg.C_270059 no good hits LRR (6x 3wobbly), CCP (4x wobbly), dsl, SKG6 Yes 1 LRR-SUSHI / LRR-dsl

dsl- Ligands of the Delta/Serrate/lag-2 (DSL) family and their receptors, members of the lin-12/Notch family, mediate cell-cell interactions that specify cell fate in invertebrates and vertebrates -pfam

Scribbled Nematostella jgi|Nemve1|10117|gw.267.1.1 Scrib protein [Mus musculus] 1.00E-122 LRR (13x wobbly), PDZ (4x) No No scribbledScribbled has a role in cell polarity pathways and is associated with Fat-1.

Scribbled Acropora Contig8961scribbled homolog [Danio rerio] >gi|71000206... 1.00E-150 LRR (15x wobbly), PDZ (4x) No No Scribbled

VWA-LRR Clytia SA0AAB78YB05CTG no good hits VWA (wobbly), lrrnt (wobbly) Yes No VWA-LRRLRR-IG Acropora Amil_c39609 gb|AAI38423.1|,Lrig2 protein [Mus musculus] 1.00E-14 LRRCT, I-set LRR-IGLRR-IG Acropora run002_428190 no good hits LRRCT, I-set LRR-IGLRR-EGF Acropora Amil_c47067 no good hits LRR(3x), EGF (2x) LRR-EGF

LRR-IG Acropora Contig16713sp|Q6P1C6.1|LRIG3_MOUSE RecName: Full=Leucine-rich repeats and i… 1.00E-109 LRRNT, LRR (14x wobbly), lrrct, Ig, I-set (2x) Yes 1 LRIG3

LRR-IG Acropora Contig24535 gb|EDL91410.1| LRIG 1.00E-51 LRR (12x), Ig (2x) LRR-IG

Page 212: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

193  

Class B GPCR

 

Sub Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

7tm_2 Only Acropora Amil_c32588brain-specific angiogenesis inhibitor 3 [Mus mu... 1.00E-11 7tm_2 7tm_2

7tm_2 Only Acropora Amil_c47079class B secretin-like G-protein coupled receptor ... 3.00E-17 7tm_2 7tm_2

7tm_2 Only Acropora Amil_c53870latrophilin-like protein 2 [Haemonchus contortus]... 3.00E-22 7tm_2 7tm_2

7tm_2 Only Acropora Amil_c5902G protein-coupled receptor 64 [Mus musculus] 6.00E-08 7tm_2 7tm_2

7tm_2 Only Acropora Amil_c68305G protein-coupled receptor 133 [Danio rerio]... 1.00E-37 7tm_2 7tm_2

7tm_2 Only Acropora Contig10827 Bai3 protein [Mus musculus] 2.00E-32 7tm_2 7tm_2

7tm_2 Only Acropora Contig11360G protein-coupled receptor 133 [Bos taurus] ... 9.00E-24 7tm_2 7tm_2

7tm_2 Only Acropora Contig13559cadherin EGF LAG seven-pass G-type receptor 1 p... 3.00E-26 7tm_2 7tm_2

7tm_2 Only Acropora Contig15714 GPR133 protein [Homo sapiens] 8.00E-19 7tm_2 7tm_2

7tm_2 Only Acropora Contig1586G protein-coupled receptor 133 [Bos taurus] ... 2.00E-38 7tm_2 7tm_2

7tm_2 Only Acropora Contig17422Latrophilin receptor protein 2 [Brugia malay... 1.00E-13 7tm_2 7tm_2

7tm_2 Only Acropora Contig19559G-protein coupled receptor GPR133 [Homo sapiens] 3.00E-49 7tm_2 7tm_2

7tm_2 Only Acropora Contig19686G protein-coupled receptor 157 [Danio rerio]... 6.00E-23 7tm_2 7tm_2

7tm_2 Only Acropora Contig19849latrophilin 3, isoform CRA_d [Rattus norvegicus] 3.00E-33 7tm_2 7tm_2

7tm_2 Only Acropora Contig5114 latrophilin 3, isoform CRA_d [Homo sapiens] 2.00E-22 7tm_2 7tm_2

7tm_2 Only Acropora Contig7929G protein-coupled receptor 112 [Mus musculus] >g... 6.00E-25 7tm_2 7tm_2

7tm_2 Only Acropora run001daytona_1711571latrophilin-like protein 2 [Haemonchus contortus]... 7.00E-41 7tm_2 7tm_2

7tm_2 Only Acropora Contig22262G protein-coupled receptor 157 [Danio rerio]... 8.00E-43 7tm_2(wobbly) 7tm_2

7tm_2 Only Acropora Contig26829G protein-coupled receptor 157 [Danio rerio]... 2.00E-45 7tm_2(wobbly) 7tm_2

7tm_2 Only Acropora Contig7015cAMP receptor TasA [Polysphondylium pallidum] 5.00E-14 7tm_2(wobbly) 7tm_2

7tm_2 Only Acropora run001daytona_1717054brain-specific angiogenesis inhibitor 2 [Mus mus... 7.00E-13 7tm_2(wobbly) 7tm_2

7tm_2 Only Acropora run001daytona_1725222 latrophilin 3 precursor [Homo sapiens] 7.00E-11 7tm_2(wobbly) 7tm_2

7tm_2 Only Acropora run001daytona_4304G-protein coupled receptor MtH2, putative [Ixodes... 2.00E-10 7tm_2(wobbly) 7tm_2

7tm_2 Only Clytia SA0AAB90YJ23RM1 latrophilin 2, isoform CRA_a [Homo sapiens] 1.00E-30 7tm_2 7tm_2

7tm_2 Only Clytia SA0AAB153YN24CTGlatrophilin 3, isoform CRA_h [Rattus norvegicus] 2.00E-25 7tm_2 7tm_2

7tm_2 Only Clytia SA0AAB37YC22RM1G protein-coupled receptor 157 [Danio rerio]... 4.00E-28 Dicty_CAR (wobbly), 7tm_2 7tm_2

7tm_2 Only Clytia SA0AAB111YC11CTG latrophilin 3 precursor [Homo sapiens] 3.00E-10 Dicty_CAR (wobbly), 7tm_2 7tm_2

7tm_2 Only Hydra gb|DT607625.1G protein-coupled receptor 133 [Bos taurus] ... 3.00E-15 7tm_2 7tm_2

7tm_2 Only Hydra CL2460Contig1latrophilin 3, isoform CRA_h [Rattus norvegicus] 1.00E-14 7tm_2 7tm_2

7tm_2 Only Hydra gb|CX054457.1G protein-coupled receptor 133 [Danio rerio]... 2.00E-12 7tm_2 (wobbly) 7tm_2

7tm_2 Only Hydra CL8507Contig1G-protein coupled receptor, putative [Ixodes scap... 2.00E-10 7tm_2 (wobbly) 7tm_2

7tm_2 Only Mbrevjgi|Monbr1|33227|estExt_fgenesh2_pg.C_170070

cAMP receptor cAR [Dictyostelium aureostipes] 6.00E-19 Dicty_CAR/7tm_2 (wobbly) 7tm_2

Page 213: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

194  

 

 

Sub Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

7tm_2 Only Nvecjgi|Nemve1|202568|fgenesh1_pg.scaffold_36000045

G protein-coupled receptor 157 [Danio rerio]... 2.00E-45 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|133486|e_gw.317.3.1

latrophilin 1, isoform CRA_a [Rattus norvegicus] 1.00E-44 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|35189|gw.75.111.1G protein-coupled receptor 157 [Danio rerio]... 1.00E-44 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|145494|e_gw.1440.2.1

G-protein coupled receptor GPR133 [Homo sapiens] 8.00E-41 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|36088|gw.29.89.1G protein-coupled receptor 133 [Bos taurus] ... 2.00E-39 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|79743|e_gw.2.248.1

latrophilin 3, isoform CRA_d [Rattus norvegicus] 9.00E-34 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|81203|e_gw.4.198.1

latrophilin 3, isoform CRA_d [Rattus norvegicus] 1.00E-31 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|83594|e_gw.8.330.1

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 9.00E-30 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|53186|gw.299.70.1gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-29 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|86208|e_gw.13.340.1

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 8.00E-27 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|139162|e_gw.463.5.1 latrophilin 1, isoform CRA_d [Homo sapiens] 1.00E-26 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|44457|gw.7163.2.1gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-26 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|61965|gw.13.327.1gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 2.00E-26 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|102060|e_gw.63.184.1

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-24 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|62515|gw.36.181.1gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 6.00E-24 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|42930|gw.418.37.1gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 2.00E-20 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|187681|estExt_GenewiseH_1.C_1050036

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 4.00E-20 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|200012|fgenesh1_pg.scaffold_19000004

G protein-coupled receptor 112 [Mus musculus] >g... 1.00E-17 7tm_2 7tm_2 Group III - Has unseen FA5/8 domains

7tm_2 Only Nvecjgi|Nemve1|112360|e_gw.111.101.1

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 5.00E-17 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|43482|gw.166.57.1latrophilin 2 [Homo sapiens] >gi|56204774|emb|CA... 5.00E-17 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|218198|fgenesh1_pg.scaffold_334000025

G protein-coupled receptor 133 [Bos taurus] ... 3.00E-14 7tm_2 7tm_2

7tm_2 Only Nvec jgi|Nemve1|53347|gw.155.43.1gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-13 7tm_2 7tm_2

7tm_2 Only Nvecjgi|Nemve1|242602|estExt_fgenesh1_pg.C_670060

G protein-coupled receptor 157 [Danio rerio]... 1.00E-42 7tm_2 (wobbly) 7tm_2

7tm_2 Only Nvecjgi|Nemve1|131939|e_gw.302.47.1

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-19 7tm_2 (wobbly) 7tm_2

7tm_2 Only Nvecjgi|Nemve1|215652|fgenesh1_pg.scaffold_234000007

G protein-coupled receptor 133 [Bos taurus] ... 3.00E-13 7tm_2 (wobbly) 7tm_2

7tm_2 Only Nvecjgi|Nemve1|131887|e_gw.302.38.1 predicted peptides only 7tm_2 (wobbly) 7tm_2

7tm_2 Only Nvecjgi|Nemve1|198777|fgenesh1_pg.scaffold_11000189 predicted peptides only 7tm_2 (wobbly) 7tm_2

7tm_2 Only Nvecjgi|Nemve1|211774|fgenesh1_pg.scaffold_143000051 No good hits 7tm_2 (wobbly) 7tm_2

CLECT-GPS-7tm_2 Mbrev

jgi|Monbr1|37365|estExt_fgenesh1_pg.C_120196 MB7TM1 [Monosiga brevicollis] 2.00E-08 CLECT (wobbly), GPS, 7tm_2

Group V -Adhesion homologues in C.elegans (2) - PFAM

Page 214: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

195  

 

   

Sub Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes CLECT-GPS-7tm_3 Nvec

jgi|Nemve1|201898|fgenesh1_pg.scaffold_31000058

gb|EEB17331.1| class B secretin-like G-protein coupled receptor … 9.00E-45 CLECT, GPS, 7tm_2

Group V -Adhesion homologues in C.elegans (2) - PFAM

CLECT-GPS-7tm_4 Nvec

jgi|Nemve1|204814|fgenesh1_pg.scaffold_54000011 latrophilin 3, isoform CRA_b [Homo sapiens] 2.00E-48 CLECT, GPS, 7tm_2

Group V -Adhesion homologues in C.elegans (2) - PFAM

CLECT-GPS-7tm_5 Nvec

jgi|Nemve1|211772|fgenesh1_pg.scaffold_143000049 latrophilin 2, isoform CRA_a [Homo sapiens] 6.00E-29 CLECT, GPS, 7tm_2

Group V -Adhesion homologues in C.elegans (2) - PFAM

Frizzled Clytia SA0AAB17YK01RM1 frizzled 2 [Hydra magnipapillata] 1.00E-122 Frizzled/7tm_2 Frizzled

Frizzled Clytia IL0ABA3YD02RM1frizzled-8 [Xenopus laevis] >gi|3869266|gb|A... 2.00E-22 Fz

Frizzled - putative There are described Frizzled proteins in Hydra.

Frizzled Clytia SA0AAB36YE16RM17-transmembrane receptor frizzled-1 [Xenopus... 8.00E-20 Fz, Gal_lectin(wobbly)

Frizzled - putative

Frizzled Clytia IL0ABA4YO10RM1frizzled-5 [Xenopus laevis] >gi|17432995|sp|... 2.00E-19 Fz, Gal_lectin(wobbly)

Frizzled - putative

Frizzled Hydra CL4401Contig1 frizzled 2 [Hydra magnipapillata] 1.00E-101 Fz Frizzled

Frizzled Hydra CL6396Contig1 frizzled receptor [Hydra vulgaris] 1.00E-127 Fz Frizzlednext best hit frizzled [Aedes aegypti] >gi|108875685|gb|EA... 6.00E-07

Frizzled Hydra CL10411Contig1 frizzled receptor [Hydra vulgaris] 7.00E-60 No domains Frizzled

Frizzled Hydra gb|CX835366.2PREDICTED: Frizzled4/9/10 [Hydra magnipapill... 3.00E-59 Fz (wobbly) Frizzled

Frizzled Hydra CL2039Contig1 Fzd7 protein [Mus musculus] 6.00E-25 FzFrizzled - putative

Frizzled Hydra CL5686Contig1frizzled homolog 8 [Rattus norvegicus] >gi|1... 5.00E-16 Fz, gal_lectin (wobbly)

Frizzled - putative

Frizzled Hydra gb|CN560484.1 frizzled 2 [Hydra magnipapillata] 1.00E-33 No domainsFrizzled - putative

Frizzled Nvecjgi|Nemve1|171640|estExt_gwp.C_1830043

7-transmembrane receptor frizzled-1 [Xenopus... 1.00E-180 Fz, Frizzled Frizzled

Frizzled Nvecjgi|Nemve1|168924|estExt_gwp.C_1170009

frizzled homolog 10 [Xenopus (Silurana) trop... 1.00E-155 Fz, Frizzled Frizzled

Frizzled Nvecjgi|Nemve1|139208|e_gw.466.3.1

frizzled homolog 4 [Gallus gallus] >gi|17433062... 1.00E-137 Fz, Frizzled Frizzled

Frizzled Nvecjgi|Nemve1|183962|estExt_GenewiseH_1.C_530042

frizzled-5 [Xenopus laevis] >gi|17432995|sp|... 0 Fz, Frizzled Frizzled

PREDICTED: similar to More Of MS family memb... 1.00E-107

GPCR125 Acropora Contig5283 Gpr125 protein [Mus musculus] 5.00E-75 LRRCT, Ig, HormR_1, GPS, 7tm_2 GPCR 125

GPCR125 Nvecjgi|Nemve1|242046|estExt_fgenesh1_pg.C_550116 Gpr125 protein [Mus musculus] 3.00E-69

LRR (5x 3wobbly), lrrct1, IG, Horm_R1 (wobbly), 7tm_2 GPCR 125

VLGR1 Acropora Contig33900G protein-coupled receptor 98 [Danio rerio] ... 1.00E-142 Calx-beta, GPS, 7tm_2

VLGR1/GPCR 98 - c-term

GPS-7tm_2 Acropora Contig13413 Bai3 protein [Mus musculus] 2.00E-40 GPS, 7tm_2 GPS-7tm_2GPS-7tm_2 Acropora Contig14869 GPR133 protein [Homo sapiens] 2.00E-55 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Acropora Contig17113latrophilin 1, isoform CRA_a [Rattus norvegicus] 1.00E-24 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Acropora Contig3639G protein-coupled receptor 133 [Bos taurus] ... 7.00E-45 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Acropora Contig5847latrophilin-like protein 2 [Haemonchus contortus]... 3.00E-38 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Acropora Contig8177G protein-coupled receptor 133 [Homo sapiens] >... 1.00E-57 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Acropora run001daytona_697863 Lphn3 protein [Mus musculus] 6.00E-65 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Acropora run001daytona_1134667EGF, latrophilin and seven transmembrane dom... 3.00E-21 GPS, 7tm_2(wobbly) GPS-7tm_2

GPS-7tm_2 Clytia SA0AAA8YB23RM1G-protein coupled receptor 112 [Homo sapiens] >... 3.00E-49 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Clytia SA0AAB111YO10CTGG protein-coupled receptor 133 [Homo sapiens] >... 4.00E-12 GPS, 7tm_2 (wobbly) GPS-7tm_2

GPS-7tm_2 Hydra CL9076Contig1gb|EEB17331.1| class B secretin-like G-protein coupled receptor … 2.00E-18 GPS, 7tm_2 (wobbly) GPS-7tm_2

Page 215: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

196  

 

 

Sub Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

GPS-7tm_2 Mbrev jgi|Monbr1|3267|gw1.2.830.1latrophilin-like protein 2 [Haemonchus contortus]... 3.00E-25 GPS (wobbly), 7tm_2 (wobbly) GPS-7tm_2

GPS-7tm_2 Mbrevjgi|Monbr1|6049|fgenesh1_pg.scaffold_3000547 No good hits GPS (wobbly), 7tm_2 (wobbly) GPS-7tm_2

GPS-7tm_2 Mbrevjgi|Monbr1|38087|estExt_fgenesh1_pg.C_200011 MB7TM1 [Monosiga brevicollis] 0 PMT (wobbly), GPS, 7tm_2 MB7TM1 7tm_2 may be a 7TM_GPCR_str

VLGR1 Nvecjgi|Nemve1|242264|estExt_fgenesh1_pg.C_600022

G protein-coupled receptor 98 [Danio rerio] ... 0

Calx-beta (2x), LamG, calx-beta (8x), IG (wobbly), calx-beta (9x), GPS, 7tm_2 VLGR1/GPCR98 SPU_027371 neural development

GPS-7tm_2 Nvecjgi|Nemve1|125574|e_gw.221.20.1

latrophilin 1 [Bos taurus] >gi|46576871|sp|O... 3.00E-67 GPS (wobbly), 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvecjgi|Nemve1|78835|e_gw.1.138.1

G-protein coupled receptor GPR133 [Homo sapiens] 4.00E-53 GPS (wobbly), 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvecjgi|Nemve1|90006|e_gw.23.202.1

latrophilin 2, isoform CRA_a [Rattus norvegicus] ... 5.00E-28 GPS (wobbly), 7tm_2 (wobbly) GPS-7tm_2

GPS-7tm_2 Nvec jgi|Nemve1|13642|gw.297.15.1G protein-coupled receptor 133 [Bos taurus] ... 5.00E-49 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvecjgi|Nemve1|146118|e_gw.1586.3.1 flamingo 1 [Gallus gallus] 2.00E-40 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvec jgi|Nemve1|20971|gw.105.20.1G protein-coupled receptor 133 [Bos taurus] ... 8.00E-58 GPS, 7tm_2 GPS-7tm_2 7tm_2 may be a 7TM_GPCR_Sru 0.045

GPS-7tm_2 Nvecjgi|Nemve1|211777|fgenesh1_pg.scaffold_143000054 latrophilin 2, isoform CRA_a [Homo sapiens] 9.00E-31 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvecjgi|Nemve1|217885|fgenesh1_pg.scaffold_317000008

latrophilin 1 [Rattus norvegicus] >gi|2239297|g... 2.00E-54 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvecjgi|Nemve1|237703|estExt_fgenesh1_pg.C_10031

latrophilin-like protein 2 [Haemonchus contortus]... 2.00E-14 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvec jgi|Nemve1|24490|gw.39.39.1latrophilin 2 splice variant baabe [Bos taurus] 2.00E-71 GPS, 7tm_2 GPS-7tm_2 Group I on Phylogenetics

GPS-7tm_2 Nvec jgi|Nemve1|25584|gw.39.51.1 latrophilin 3, isoform CRA_c [Homo sapiens] 2.00E-53 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvecjgi|Nemve1|98237|e_gw.48.80.1

latrophilin-like protein 2 [Haemonchus contortus]... 2.00E-35 GPS, 7tm_2 GPS-7tm_2

GPS-7tm_2 Nvecjgi|Nemve1|241064|estExt_fgenesh1_pg.C_390006 latrophilin 2, isoform CRA_a [Homo sapiens] 1.00E-13 GPS, 7tm_2 (with a GPS in one loop) GPS-7tm_2

Novel Acropora Contig18752G-protein coupled receptor 112 [Homo sapiens] >... 5.00E-50

CA (wobbly), IG, SEA (wobbly), HormR1 (wobbly), GPS, 7tm_2 Novel

Novel Acropora Contig9410latrophilin 2 splice variant baaae [Bos taurus] 3.00E-32 SEA, HormR_1, GPS, 7tm_2 Novel

Novel Mbrevjgi|Monbr1|34543|estExt_fgenesh2_pg.C_400022

gb|ABB84827.1| epidermal growth factor domain-containing protein… 3.00E-23

EGF (3x), LamG (wobbly), EGF, TSP1, OPT (wobbly)/ (GPS (wobbly), 7tm_2 (wobbly)) Adhesion Novel

Novel Nvecjgi|Nemve1|217955|fgenesh1_pg.scaffold_319000019 GPR133 protein [Homo sapiens] 2.00E-58 PA14 (2x wobbly), GPS, 7tm_2 Adhesion Novel

Novel Nvecjgi|Nemve1|199785|fgenesh1_pg.scaffold_17000074

G protein-coupled receptor 112 [Mus musculus] >g... 4.00E-59

disc_4 (3x), IG (wobbly), FN3 (wobbly), FN3,GPS, 7tm_2 Novel

Novel Nvecjgi|Nemve1|238736|estExt_fgenesh1_pg.C_80029

G protein-coupled receptor 126 [Gallus gallu... 3.00E-47

DUF885, SLG (wobbly), GCC2_GCC3, igc2_5, HormR_1 (wobbly), GPS, 7tm_2 Novel

NvX Group Nvecjgi|Nemve1|218502|fgenesh1_pg.scaffold_351000013

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-21 SO_2 (wobbly), 7tm_2 No SO (NvX)

NvX Group Nvecjgi|Nemve1|210434|fgenesh1_pg.scaffold_121000053

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 3.00E-26 SO_2, 7tm_2 No SO (NvX)

NvX Group Nvecjgi|Nemve1|211490|fgenesh1_pg.scaffold_139000007

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-20 SO_2, 7tm_2 No SO (NvX)

NvX Group Nvecjgi|Nemve1|212781|fgenesh1_pg.scaffold_162000044

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 3.00E-27 SO_2, 7tm_2 Yes SO (NvX)

NvX Group Nvecjgi|Nemve1|215376|fgenesh1_pg.scaffold_226000026

class B secretin-like G-protein coupled receptor ... 6.00E-38

SO_2, c8 (wobbly), doub1_11 (wobbly), 7tm_2 No SO (NvX)

NvX Group Nvecjgi|Nemve1|206150|fgenesh1_pg.scaffold_66000090

gb|EEB14446.1| class B secretin-like G-protein coupled receptor … 1.00E-32 Collagen, SO_2, 7tm_2 No SO (NvX) Novel

Page 216: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

197  

 

   

Sub Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Smoothened Acropora Contig8091smoothened homolog [Rattus norvegicus] >gi|6226... 1.00E-133 Fz,Frizzled,7tm_2 smoothened

Like frizzled but operates in the hedgehog pathway

Smoothened Clytia SA0AAB54YE06CTGsmoothened [Xenopus laevis] >gi|13194566|gb|... 2.00E-43 Frizzled Smoothened

Like frizzled but operates in the hedgehog pathway

Smoothened Nvecjgi|Nemve1|208236|fgenesh1_pg.scaffold_90000004

smoothened homolog (Drosophila) [Mus musculus] 1.00E-135 Fz, Frizzled Smoothened

Like frizzled but operates in the hedgehog pathway

Smoothened Nvec jgi|Nemve1|92220|e_gw.29.7.1smoothened [Homo sapiens] >gi|6226142|sp|Q99835... 2.00E-92 Fz, Frizzled Smoothened

Like frizzled but operates in the hedgehog pathway

Page 217: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

198  

Immunoglobulin

 

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM Signal PeptideTM Conclusion NotesCOLIG Acropora Contig6942 Collagen, I-setCOLIG Acropora Contig657 Collagen, I-set (2x), IgCOLIG Acropora Contig16723 Collagen, I-setCOLIG Acropora Contig27548 Collagen, I-set (2x), IgCOLIG Acropora Contig24993 Collagen, igc2 (2x)COLIG Acropora Contig11455 Collagen, I-set (2x), SushiCOLIG Acropora Contig21270 Collagen, igc2 (2x)COLIG Acropora Amil_c21796 Collagen, I-setCOLIG Acropora Contig10772 Collagen, I-setCOLIG Nvec jgi|Nemve1|207840|fgenesh1_pg.scaffold_85000017 predicted peptides only Collagen (wobbly), IG (3x) Yes No Collagen-Ig Containing Has 1 TMH in the N-terminal. Probably the signal peptide.COLIG Nvec jgi|Nemve1|208243|fgenesh1_pg.scaffold_90000011 predicted peptides only Collagen (wobbly), igc2 (2x), I-set, igc2, ultra No No Collagen-Ig Containing Has 1 TMH in the N-terminal. Probably the signal peptide.COLIG Nvec jgi|Nemve1|221269|fgenesh1_pg.scaffold_709000005 No good hits Collagen, igc2 (2x) No No Collagen-Ig Containing Has 1 TMH in the N-terminal. Probably the signal peptide.COLIG Nvec jgi|Nemve1|209947|fgenesh1_pg.scaffold_114000019 predicted peptides only Collagen, igc2 (2x), IG Yes No Collagen-Ig Containing Has 1 TMH in the N-terminal. Probably the signal peptide.COLIG Nvec jgi|Nemve1|200560|fgenesh1_pg.scaffold_22000082 predicted peptides only Collagen, igc2, I-set, igc2, I-set, igc2 No No Collagen-Ig Containing Has 1 TMH in the N-terminal. Probably the signal peptide.

DCC Hydra CL1Contig813neogenin 1 [Danio rerio] >gi|23428357|gb|AAK330... 2.00E-13 igc2_5 (2x) Yes No Neogenin putative partial

DCC Nvec jgi|Nemve1|105427|e_gw.77.120.1 neogenin variant 1b [Xenopus borealis] 3.00E-43 igc2, I-set (2x) Yes No Neogenin partial (Putative)

DS-CAM Clytia SA0AAB54YD20RM1gb|AAZ85125.1| Down Syndrome adhesion molecule splice variant 3.... 9.00E-25 igc2_5, IG, FN3 (3x) No No DS-CAM partial

DS-CAM Hydra CL2309Contig1Down Syndrome adhesion molecule splice variant 3.... 3.00E-20 IG, FN3 (3x) No 2 DS-CAM partial

DS-CAM Nvec jgi|Nemve1|104479|e_gw.73.146.1 down syndrome cell adhesion molecule [Aedes ... 2.00E-33 FN3 (2x) No No DS-CAM partial (putative)DS-CAM Nvec jgi|Nemve1|101511|e_gw.61.65.1 down syndrome cell adhesion molecule [Aedes ... 2.00E-27 FN3 (2x) No No DS-CAM partial (putative)

DS-CAM Nvec jgi|Nemve1|2043|gw.439.10.1 Down syndrome cell adhesion molecule [Rattus no... 8.00E-27 FN3 (2x) No No DS-CAM partial (putative)

DS-CAM Nvec jgi|Nemve1|108927|e_gw.92.51.1gb|AAL99986.1|AF487348_1 Down syndrome cell adhesion molecule-li… 9.00E-30 FN3 (2x) No No DS-CAM partial (putative)

DS-CAM Nvec jgi|Nemve1|120490|e_gw.171.38.1gb|AAL99986.1|AF487348_1 Down syndrome cell adhesion molecule-li… 1.00E-29 FN3 (2x) No No DS-CAM partial (putative)

DS-CAM Nvec jgi|Nemve1|224185|fgenesh1_pg.scaffold_4113000001 Down syndrome cell adhesion molecule [Xenopu... 4.00E-23 FN3 (3x) No No DS-CAM partial (putative)DS-CAM Nvec jgi|Nemve1|127554|e_gw.239.11.1 Down syndrome cell adhesion molecule-like... 2.00E-42 FN3 (3x) No No DS-CAM partial (putative)DS-CAM Nvec jgi|Nemve1|43898|gw.239.46.1 DSCAM splice variant 4.12 [Drosophila yakuba] 2.00E-28 igc2 (wobbly) No No DS-CAM partial (putative)DS-CAM Nvec jgi|Nemve1|224982|fgenesh1_pg.scaffold_6945000001 dscam [Drosophila mojavensis] >gi|193911131|... 1.00E-16 igc2 (wobbly), madsneu2 (wobbly) No No DS-CAM partial (putative)

F11/Contactin Hydra CL2585Contig1 contactin [Drosophila melanogaster] >gi|5597662... 2.00E-31 igc2_5, IG (wobbly), FN3 (2x wobbly) No No contactin putative partialF11/Contactin Nvec 199756|fgenesh1_pg.scaffold_17000045 Contactin 6 [Mus] 3.00E-96 IG (6x), FN3 (4x) Contactin This gene is a very close match to Contactin but was filtered Ig and Adhesion Clytia SA0AAA18YH11RM1 predicted proteins only CCP, CCP (wobbly), HYR, GCC2_GCC3 (2x), IG No No IG-CCPIg and Adhesion Clytia SA0AAB9YG10RM1 Bcam protein [Xenopus tropicalis] 2.00E-09 IG, I-set, IG (2x), EGF No No Ig-EGFIg and Adhesion Clytia SA0AAB66YD22CTG predicted proteins only Wap (wobbly), Kazal_3 (wobbly), IG (wobbly), KU, Kazal_3, FOLN (wobbly), Kazal_3Yes No Ig-KazalIg and Adhesion Clytia IL0ABA11YM18RM1 predicted proteins only I-set, IG, IG (wobbly), LDLa Yes No Ig-LDLaIg and Adhesion Clytia SA0AAB26YD21RM1 No good hits IG, igc2_5, TSP1, igc2_5 Yes 1 IG-TSP1Ig and Adhesion Clytia IL0ABA15YJ23RM1 No good hits igc2_5 (2x), TSP1 No 1 Ig-TSP1Ig and Adhesion Clytia SA0AAA1YF21RM1 roundabout 1 [Aedes aegypti] >gi|108879336|g... 2.00E-14 IG (2x), TSP1 (wobbly) No No Ig-TSP1Ig and Adhesion Clytia SA0AAA8YP06RM1 No good hits IG, igc2_5, TSP1, igc2_5 Yes No Ig-TSP1Ig and Adhesion Clytia SA0AAA8YI05RM1 No good hits IG (2x), GCC2_GCC3, VWA No No IG-VWAIg and Adhesion Hydra CL2877Contig1 No good hits IG (wobbly), TSP1 (wobbly), igc2_5 No No Ig-TSP1Ig and Adhesion Hydra CL1208Contig1 SPEG complex locus [Bos taurus] 5.00E-50 I-set, serkin_6 No 3 SPEG striated preferentially expressed geneIg and Adhesion Nvec jgi|Nemve1|198435|fgenesh1_pg.scaffold_10000027 No good hits KR, IG (wobbly), F5_F8_type_C (wobbly), spt (wobbly) Ig- KRIg and Adhesion Nvec jgi|Nemve1|248172|estExt_fgenesh1_pg.C_4390008 predicted peptides only CUB, igc2 No 2 Ig-CUBIg and Adhesion Nvec jgi|Nemve1|213715|fgenesh1_pg.scaffold_183000001 No good hits IG, CUB Ig-CUBIg and Adhesion Nvec jgi|Nemve1|246222|estExt_fgenesh1_pg.C_2050018 No good hits igv1 (wobbly), igc2 (wobbly), CUB Ig-CUBIg and Adhesion Nvec jgi|Nemve1|209643|fgenesh1_pg.scaffold_109000021 predicted peptides only F5_F8_type_C, EGF (4x), CCP (2x), HYR, EGF, CCP, GCC2_GCC3, IG (wobbly)Yes No Ig-EGF, CCPIg and Adhesion Nvec jgi|Nemve1|202086|fgenesh1_pg.scaffold_32000098 perlecan (heparan sulfate proteoglycan 2) [Mus m... 8.00E-23 F5_F8_type_C, I-set (2x), IG No 1 Ig-F5_F8_type_CIg and Adhesion Nvec jgi|Nemve1|241670|estExt_fgenesh1_pg.C_490046 echinonectin [Lytechinus variegatus] 4.00E-32 F5_F8_type_C, IG, PAN_1 Yes No Ig-F5_F8_type_CIg and Adhesion Nvec jgi|Nemve1|215547|fgenesh1_pg.scaffold_230000039 No good hits IG (3x), LDLa, IG (3x) Yes No Ig-LDLaIg and Adhesion Nvec jgi|Nemve1|220325|fgenesh1_pg.scaffold_502000002 predicted peptides only TPR (8x 5wobbly), I-set No No Ig-TPRIg and Adhesion Nvec jgi|Nemve1|203987|fgenesh1_pg.scaffold_47000046 No good hits IG, TY Yes 2 Ig-TYIg and Adhesion Nvec jgi|Nemve1|197457|fgenesh1_pg.scaffold_5000263 predicted peptides only WAP (3x), IG (2x), zp No 1 Ig-WAPIg and FN3 containing Acropora Amil_c7199 no good hits Ig, I-set, FN3 (2x) No 2 Ig-FN3

Ig and FN3 containing Acropora Contig10504 neuroglian 7.00E-66 Ig (6x), FN3 (wobbly) Yes No Ig-FN3ref|XP_001637406.1| predicted protein [Nematostella vectensis] >… 1E-130

Ig and FN3 containing Acropora Contig10617 no good hits I-set, FN3 No 1 Ig-FN3Ig and FN3 containing Acropora Contig11811 sidekick 2 [Rattus norvegicus] >gi|149054713... 0 I-set (2x), Ig, FN3 (13x) No 1 Ig-FN3Ig and FN3 containing Acropora Contig16551 Ret proto-oncogene [Xenopus laevis] 9.00E-78 Ig, I-set, Ig, FN3, tyrkin Yes No Ig-FN3

Ig and FN3 containing Acropora Contig1699roundabout 1 [Danio rerio] >gi|13509385|gb|AAK2... 2.00E-53 Ig (2x), I-set, Ig (2x), FN3 No 4 Ig-FN3

Ig and FN3 containing Acropora Contig212 neural cell adhesion molecule 1 [Danio rerio] >... 7.00E-19 Ig, I-set, Ig, FN3 (4x wobbly) Yes No Ig-FN3Ig and FN3 containing Acropora Contig22827 retII [Homo sapiens] 1.00E-64 I-set, Ig, FN3 (4x), tyrkin No 1 Ig-FN3Ig and FN3 containing Acropora Contig2812 no good hits Ig (wobbly), FN3 No 1 Ig-FN3Ig and FN3 containing Acropora Contig31261 Ncam1 protein [Danio rerio] 5.00E-37 Ig (5x), FN3 No No Ig-FN3

Ig and FN3 containing Acropora Contig5333gb|AAN32614.1|AF304305_1 Down syndrome cell adhesion molecule li… 4.00E-85 Ig, FN3 (4x), Ig, FN3 No 1 Ig-FN3

Ig and FN3 containing Acropora Contig6272 no good hits Ig (wobbly), FN3 No No Ig-FN3

Ig and FN3 containing Acropora Contig6343ref|NP_523604.2| Leukocyte-antigen-related-like, isoform A [Dros… 1.00E-89 Ig, I-set (2x), FN3 (4x) Yes No Ig-FN3

Ig and FN3 containing Acropora Contig8183 no good hits Ig (wobbly), FN3 No No Ig-FN3Ig and FN3 containing Acropora Contig9170 no good hits I-set Yes No Ig-FN3Ig and FN3 containing Acropora Contig9397 no good hits I-set, FN3 No 1 Ig-FN3Ig and FN3 containing Acropora Contig942 Ncam1 protein [Danio rerio] 1.00E-33 Ig (4x), FN3 Yes No Ig-FN3Ig and FN3 containing Acropora run001daytona_1717233 no good hits Ig (wobbly), FN3 No No Ig-FN3

Page 218: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

199  

     

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM Signal PeptideTM Conclusion Notes

Ig and FN3 containing Acropora run002_426847 kalirin, RhoGEF kinase isoform 3 [Homo sapiens]... 5.00E-16 Ig (wobbly), FN3 No No Ig-FN3Ig and FN3 containing Acropora run002_428308 no good hits Ig (3x), FN3 No No Ig-FN3Ig and FN3 containing Clytia SA0AAB49YE16CTG No good hits IG (wobbly), FN3 (2x) No No Ig-FN3Ig and FN3 containing Hydra CL574Contig1 No good hits igc2_5 (wobbly), FN3_2 (wobbly) No 1 Ig-FN3Ig and FN3 containing Hydra CL3251Contig1 No good hits IG (3x 2wobbly), FN3 No No Ig-FN3Ig and FN3 containing Hydra gb|CV464365.1 nephrin [Mus musculus] 6.00E-12 igc2 (wobbly), FN3 No No Ig-FN3Ig and FN3 containing Hydra CL6367Contig1 myosin light chain kinase [synthetic construct] 2.00E-49 Serkin (wobbly), I-set, FN3 (wobbly) No No Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|243882|estExt_fgenesh1_pg.C_1010020 No good hits IG (2x), FN3 (wobbly) Yes 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|213889|fgenesh1_pg.scaffold_186000034 predicted peptides only IG (2x), FN3 (wobbly) Yes 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|241554|estExt_fgenesh1_pg.C_470053 mesoglein variant 1 [Aurelia aurita] 5.00E-30 IG (2x), FN3, zp Yes 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|199622|fgenesh1_pg.scaffold_16000072 No good hits IG, FN3 (wobbly), IG, SEFIR (wobbly) Yes 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|216320|fgenesh1_pg.scaffold_257000003 No good hits igc2 (wobbly), FN3 (wobbly) No 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|240082|estExt_fgenesh1_pg.C_240078 neural cell adhesion molecule [Gallus gallus] 1.00E-21 igc2, FN3 No 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|201959|fgenesh1_pg.scaffold_31000119 predicted peptides only igc2, FN3 (2x 1wobbly) No 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|218534|fgenesh1_pg.scaffold_353000001 predicted peptides only igc2, IG, igc2, FN3 No 1 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|219947|fgenesh1_pg.scaffold_458000005 predicted peptides only IG (2x 1wobbly), FN3 (wobbly) No 2 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|216378|fgenesh1_pg.scaffold_259000002 No good hits IG, FN3 Yes 2 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|241594|estExt_fgenesh1_pg.C_470130 No good hits igc2, FN3 Yes 2 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|201955|fgenesh1_pg.scaffold_31000115 predicted peptides only IG (wobbly), IG (3x), IG (wobbly), IG, madsneu2, FN3No 3 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|202226|fgenesh1_pg.scaffold_33000070 predicted peptides only igc2, FN3 (2x), MFS No 10 Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|225380|fgenesh1_pg.scaffold_8390000001 predicted peptides only I-set, FN3 (2x) No No Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|204514|fgenesh1_pg.scaffold_51000096 titin, isoform CRA_e [Homo sapiens] 1.00E-28 IG (2x wobbly), FN3 (3x 2wobbly) No No Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|216592|fgenesh1_pg.scaffold_265000021 predicted peptides only IG (2x), FN3 (2x) No No Ig-FN3

Ig and FN3 containing Nvec jgi|Nemve1|85090|e_gw.10.263.1sidekick homolog 2 (chicken), isoform CRA_a [Homo... 3.00E-38 IG, FN3 No No Ig-FN3

Ig and FN3 containing Nvec jgi|Nemve1|217293|fgenesh1_pg.scaffold_291000027 No good hits IG, FN3 (2x 1wobbly) Yes No Ig-FN3

Ig and FN3 containing Nvec jgi|Nemve1|201938|fgenesh1_pg.scaffold_31000098neural cell adhesion molecule 1, isoform CRA_a [M... 9.00E-13 igc2, FN3 No No Ig-FN3

Ig and FN3 containing Nvec jgi|Nemve1|216597|fgenesh1_pg.scaffold_265000026 predicted peptides only igc2, FN3 (2x) No No Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|218290|fgenesh1_pg.scaffold_340000001 predicted peptides only igc2, FN3 (2x) No No Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|218823|fgenesh1_pg.scaffold_370000001 predicted peptides only igc2, FN3 (2x) No No Ig-FN3Ig and FN3 containing Nvec jgi|Nemve1|202038|fgenesh1_pg.scaffold_32000050 predicted peptides only V-set (wobbly), IG, FN3 No No Ig-FN3Ig_LON Acropora Amil_c2655 limbic system-associated membrane protein [Ratt… 8.00E-13 Ig (3x) Yes 1Ig_LON Acropora Contig18527 No good hits Ig Yes 1 Ig-LON subgroup likeIg_LON Clytia SA0AAB35YA21RM1 fibroblast growth factor receptor A [Nematostella... 6.00E-20 IG (3x 1wobbly) Yes 0 Ig-LON subgroup Not an FGFR part of IgLON subgroupIg_LON Clytia SA0AAB22YF24RM1 No hits Found IG (wobbly) Yes 0 Ig-LON subgroup like

Ig_LON Hydra CL1538Contig1 neural cell adhesion molecule 1 [Felis catus] 8.00E-10 IG (2x) No 1 Ig-LON subgroupThis can not be an N-CAM as there areno FN3 domains before the TM. Must be an IgLON subgroup

Ig_LON Hydra CL2516Contig1 No good hits IG (wobbly), IG Yes 1 Ig-LON subgroup likeIg_LON Nvec jgi|Nemve1|210858|fgenesh1_pg.scaffold_128000042 No good hits IG (3x 2wobbly) Yes 1 Ig-LON subgroupIg_LON Nvec jgi|Nemve1|246644|estExt_fgenesh1_pg.C_2300034 No good hits IG (3x 2wobbly) Yes 1 Ig-LON subgroupIg_LON Nvec jgi|Nemve1|246645|estExt_fgenesh1_pg.C_2300038 No good hits IG (3x) Yes 1 Ig-LON subgroupIg_LON Nvec jgi|Nemve1|246329|estExt_fgenesh1_pg.C_2110042 predicted peptides only IG (3x) Yes 1 Ig-LON subgroupIg_LON Nvec jgi|Nemve1|214858|fgenesh1_pg.scaffold_211000043 predicted peptides only IG (wobbly), igc2, IG (wobbly) Yes 1 Ig-LON subgroupIg_LON Nvec jgi|Nemve1|222990|fgenesh1_pg.scaffold_2139000001 predicted peptides only igc2 (2x) Yes 1 Ig-LON subgroupIg_LON Nvec jgi|Nemve1|204525|fgenesh1_pg.scaffold_51000107 fibroblast growth factor receptor B [Nematostella... 1.00E-29 igc2 (2x), IG Yes 1 Ig-LON subgroupIg_LON Nvec jgi|Nemve1|183662|estExt_GenewiseH_1.C_500040 No good hits IG (wobbly) Yes 1 Ig-LON subgroup likeIg_LON Nvec jgi|Nemve1|220356|fgenesh1_pg.scaffold_506000010 No good hits igc2 Yes 1 Ig-LON subgroup likeIg_LON Nvec jgi|Nemve1|198407|fgenesh1_pg.scaffold_9000196 No good hits igc2 (wobbly) Yes 1 Ig-LON subgroup likeIg_LON Nvec jgi|Nemve1|205973|fgenesh1_pg.scaffold_65000008 No good hits igc2 (wobbly) Yes 1 Ig-LON subgroup likeIg_LON Nvec jgi|Nemve1|242464|estExt_fgenesh1_pg.C_640060 predicted peptides only igc2 (wobbly), IG (wobbly) Yes 1 Ig-LON subgroup likeIg_LON Nvec jgi|Nemve1|207612|fgenesh1_pg.scaffold_82000061 No good hits IG (wobbly), igc2 No 2 Ig-LON subgroup likeL1-Like Acropora Contig7988 neuroglian 7.00E-77 Ig (4x), FN3 (5x) No No L1L1-Like Acropora Contig20212 neuroglian 1.00E-69 Ig (3x), FN3 (5x) No 1 L1L1-Like Nvec jgi|Nemve1|240518|estExt_fgenesh1_pg.C_300161 neurofascin [Danio rerio] >gi|224383688|gb|A... 5.00E-82 IG (2x), igc2 (2x), I-set (wobbly), FN3 (5x 3 wobbly)No 2 neurofascinL1-Like Nvec jgi|Nemve1|87913|e_gw.17.200.1 hBRAVO/Nr-CAM precursor [Homo sapiens] 9.00E-29 FN3 (2x) No No Nr-CAM like (putative) fragmented contactin 6 fgenesh1_pg.scaffold_17000045

MALT-1 Clytia SA0AAA20YJ09CTGref|NP_694508.1| mucosa associated lymphoid tissue lymphoma tran… 3.00E-49 Peptidase_C14 No No MALT1

MALT 1 appears to be only in vertebrates, C.elegans, Dictostellium.

MALT-1 Nvec jgi|Nemve1|244962|estExt_fgenesh1_pg.C_1400022mucosa associated lymphoid tissue lymphoma transl… gb|EAW63079.1| 2.00E-52 igc2 (2x), Peptidase_C14 No No MALT1

MALT 1 appears to be only in vertebrates, C.elegans, Dictostellium.

MALT-1 Nvec jgi|Nemve1|211581|fgenesh1_pg.scaffold_140000023mucosa associated lymphoid tissue lymphoma transl… gb|EDM14684.1| 2.00E-68 igc2, IG, Peptidase_C14 No No MALT1

MALT 1 appears to be only in vertebrates, C.elegans, Dictostellium.

MALT-1 Acropora Contig6524ref|NP_694508.1|,mucosa associated lymphoid tissue lymphoma tran 1.00E-43 MALT1

MALT-1 Acropora Contig26161ref|NP_694508.1|,mucosa associated lymphoid tissue lymphoma tran 1.00E-48 MALT1

N-CAM Acropora Contig259immunoglobulin superfamily, member 9 [Mus muscu... 6.00E-43 Ig, (4x), FN3 (2x) Yes 1 N-CAM (putative)

N-CAM Acropora Contig3409 Ncam1 protein [Danio rerio] 2.00E-36 Ig (4x), FN3 No 1 N-CAM (putative)N-CAM Acropora Contig2418 neural cell adhesion molecule 1 [Bos taurus] 1.00E-42 Ig (5x), FN3 (2x) Yes 1 N-CAM (putative)N-CAM Nvec jgi|Nemve1|241555|estExt_fgenesh1_pg.C_470054 neural cell adhesion molecule 1 [Danio rerio] >... 9.00E-31 IG (2x), igc2 (wobbly), FN3 (2x 1wobbly) No 1 N-CAM (putative)N-CAM Nvec jgi|Nemve1|236748|estExt_fgenesh1_kg.C_470007 neural cell adhesion molecule 2 [Danio rerio] >... 2.00E-36 IG (3x), igc2 (wobbly), FN3 (2x) Yes 1 N-CAM (putative) This is N-CAM according to the KOG based approachN-CAM Nvec jgi|Nemve1|241557|estExt_fgenesh1_pg.C_470057 ncam2 [Danio rerio] 4.00E-34 IG, igc2, IG, igc2, igv1_8 (wobbly), FN3 (2x) Yes No N-CAM (putative)N-CAM Nvec jgi|Nemve1|185528|estExt_GenewiseH_1.C_710203 protogenin homolog a (Gallus gallus) [Danio ... 1.00E-75 igc2, IG (2x), igc2, FN3 (2x) Yes No protogeninRepeat PTP Acropora Contig12034 XPTP-D protein [Xenopus laevis] 1.00E-154 Ig, I-set, Ig (2x), FN3 (4x), PTP (2x) Yes 1 PTPRepeat PTP Nvec jgi|Nemve1|210515|fgenesh1_pg.scaffold_123000015 predicted peptides only MAM, IG (3x), igc2 (wobbly) Yes No PTP N-term putative partialRepeat PTP Nvec jgi|Nemve1|88020|e_gw.17.7.1 XPTP-D protein [Xenopus laevis] 0 igc2, I-set, igc2, FN3 (8x), Y_phosphatase, PTPc_3 No 1 PTP-D proteinToll Like TIR Hydra CL6112Contig1 Toll-receptor-related 1 [Hydra magnipapillata] 1.00E-102 TIR HyTRR1Toll Like TIR Hydra CL6921Contig1 Toll-receptor-related 2 [Hydra magnipapillata] 1.00E-58 TIR HyTRR2Toll Like TIR Hydra CL9285Contig1 myeloid differentiation primary response factor 8... 1.00E-16 Death (wobbly), TIR (wobbly) MyD88

Page 219: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

200  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM Signal PeptideTM Conclusion Notes

Toll Like TIR Hydra CL9986Contig1 myeloid differentiation primary response gene 88... 4.00E-07 Death (wobbly), TIR (wobbly) MyD88Toll Like TIR Mbrev jgi|Monbr1|30936|estExt_fgenesh2_pg.C_20536 No good hits PfkB, TIR (wobbly) PfkB family includes carbohyrdate and pyriamidine kinases.Toll Like TIR Mbrev jgi|Monbr1|27923|fgenesh2_pg.scaffold_22000108 predicted proteins only TUDOR_7 (wobbly), TIR (wobbly), TUDOR_7(wobbly)Toll Like TIR Nvec jgi|Nemve1|82163|e_gw.5.187.1 myeloid differentiation factor 88 [Larimichthys c... 5.00E-37 Death, TIR MyD88Toll Like TIR Nvec jgi|Nemve1|196737|fgenesh1_pg.scaffold_3000058 TIR1 [Acropora millepora] 2.00E-25 IG, igc2, IG (2x), TIR NvIL-1R

Toll Like TIR Nvec jgi|Nemve1|116780|e_gw.141.61.1 TIR1 [Acropora millepora] 3.00E-20 TIR NvIL-1RThis sequence is N-term truncated and also contains Ig domains (Miller et al 2007 Genome biology)

Toll Like TIR Nvec jgi|Nemve1|204009|fgenesh1_pg.scaffold_47000068 Toll9 [Culex quinquefasciatus] >gi|167864481... 6.00E-18 igc2, IG, TIR NvIL-1RToll Like TIR Nvec jgi|Nemve1|211916|fgenesh1_pg.scaffold_146000015 predicted proteins only TIR (wobbly) TRRToll Like TIR Nvec jgi|Nemve1|16632|gw.367.25.1 TIR1 [Acropora millepora] 2.00E-19 TIR TRRToll Like TIR Nvec jgi|Nemve1|91199|e_gw.26.221.1 Toll-like receptor (AGAP012385-PA) [Anopheles g... 3.00E-35 TIR TRRToll Like TIR Nvec jgi|Nemve1|57985|gw.141.125.1 Toll-receptor-related 2 [Hydra magnipapillata] 7.00E-17 TIR (wobbly) TRRToll Like TIR Nvec jgi|Nemve1|56601|gw.152.108.1 Toll-receptor-related 2 [Hydra magnipapillata] 4.00E-12 TIR (wobbly) TRRToll Like TIR Nvec jgi|Nemve1|217512|fgenesh1_pg.scaffold_300000025 predicted proteins only SAM (wobbly), TIR (wobbly)Toll Like TIR Nvec jgi|Nemve1|223246|fgenesh1_pg.scaffold_2476000001 predicted proteins only SAM (wobbly), TIR (wobbly)Toll Like TIR Nvec jgi|Nemve1|240728|estExt_fgenesh1_pg.C_330073 predicted proteins only Arm (3x 2wobbly), TIR(wobbly)Toll Like TIR Acropora Contig6496 LRR (2x), lrrct, TIRToll Like TIR Acropora run002_428851 TIRToll Like TIR Acropora Contig1450 TIRToll Like TIR Acropora run001daytona_1723038 TIRToll Like TIR Acropora Amil_c81406 TIRToll Like TIR Acropora Contig18494 Death, TIR MyD88Toll Like TIR Acropora Contig13468 TIR (wobbly)Toll Like TIR Acropora Contig33214 TIR (wobbly)Toll Like TIR Acropora Contig5811 TIRToll Like TIR Acropora Contig7691 TIR

Page 220: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

201  

Extracellular Matrix

 

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion NotesCollagen Cltyia SA0AAB17YN15CTG collagen-like protein [Bacillus cereus Q1] >... 2.00E-28 Collagen CollagenCollagen Cltyia SA0AAA20YH02CTG collagen [Hydra vulgaris] 1.00E-23 VWA, Mucin (wobbly), Fasciclin (wobbly) Collagen -Hydra

Collagen Cltyia SA0AAA15YD01RM1gb|EDL92062.1| procollagen, type VI, alpha 3 (predicted), isofor… 8.00E-19 Collagen (5x) Collagen 6A3

Collagen Cltyia IL0ABA3YP01RM1 collagen [Hydra vulgaris] 8.00E-87 WAP, VWA Collagen - HydraCollagen Hydra CL2056Contig1 collagen, type XII, alpha 1 [Gallus gallus] >gi... 1.00E-23 VWA CollagenCollagen Hydra CL4008Contig1 collagen [Hydra vulgaris] 1.00E-22 VWA Collagen -HydraCollagen Hydra CL6422Contig1 gb|ABG80452.1| collagen [Hydra vulgaris] 0 Collagen (wobbly), VWA, Collagen, VWA Collagen - HydraCollagen Hydra CL3504Contig1 gb|ABG80452.1| collagen [Hydra vulgaris] 1.00E-158 Collagen (4x) Collagen - HydraCollagen Hydra CL602Contig2 gb|ABG80452.1| collagen [Hydra vulgaris] 1.00E-87 Collagen (3x) Collagen - HydraCollagen Hydra CL9498Contig1 gb|ABG80452.1| collagen [Hydra vulgaris] 5.00E-50 Collagen (3x) Collagen - Hydra

Collagen Monosigajgi|Monbr1|11132|fgenesh1_pg.scaffold_26000095 collagen [Hydra vulgaris] 8.00E-39

Collagen (6x), VWA, Collagen (3x), VWA, Collagen (3x), VWA, Collagen (19x) Collagen - Hydra

Collagen Nvec jgi|Nemve1|137069|e_gw.389.18.1 collagen alpha 2(I) chain precursor [Sorangi... 4.00E-22 Collagen (wobbly) CollagenCollagen Nvec jgi|Nemve1|79543|e_gw.1.96.1 collagen type VI alpha 5 [Homo sapiens] 3.00E-30 VWA (2x) Collagen

Collagen Nvecjgi|Nemve1|215413|fgenesh1_pg.scaffold_227000024 collagen type VI alpha 6 [Homo sapiens] >gi|... 5.00E-25 WAP (wobbly), VWA (4x) Collagen

Collagen Nvec jgi|Nemve1|106478|e_gw.82.69.1 collagen type XII alpha-1 precursor 1.00E-25 VWA CollagenCollagen Nvec jgi|Nemve1|828|gw.658.2.1 collagen-like protein [Hydra vulgaris] 1.00E-33 VWA CollagenCollagen Nvec jgi|Nemve1|133516|e_gw.318.15.1 collagen, type XII, alpha 1 [Gallus gallus] >gi... 2.00E-31 VWA Collagen

Collagen Nvecjgi|Nemve1|198700|fgenesh1_pg.scaffold_11000112

collagen, type XII, alpha 1, isoform CRA_c [Homo ... 4.00E-21 VWA Collagen

Collagen Nvec jgi|Nemve1|105672|e_gw.78.76.1 collagen, type XXII, alpha 1 [Gallus gallus] 2.00E-22 VWA CollagenCollagen Nvec jgi|Nemve1|88931|e_gw.19.298.1 Col protein [Suberites domuncula] 3.00E-35 Collagen Collagen

Collagen Nvecjgi|Nemve1|188642|estExt_GenewiseH_1.C_1270035 Col protein [Suberites domuncula] 5.00E-23 Collagen (2x) Collagen

Collagen Nvec jgi|Nemve1|128410|e_gw.250.80.1 Col3a1 protein [Bacillus cereus G9241] >gi|47... 4.00E-39 Collagen (2x) Collagen

Collagen Nvecjgi|Nemve1|205490|fgenesh1_pg.scaffold_60000013 collagen type XI alpha-2 [Danio rerio] >gi|1... 3.00E-23 TSPN, Collagen (5x) Collagen 11A2

Collagen 4 Cltyia IL0ABA11YI22RM1 collagen [Hydra vulgaris] 2.00E-70 VWA, Collagen (6x), C4 (2x) C4 - Hydra

Collagen 4 Hydra CL136Contig1type IV collagen alpha 1 chain precursor [Hydra v... 0 Collagen (22x), C4 (2x) C4 - Col4a1

Collagen 4 Hydra CL602Contig1 Col4a6 protein [Mus musculus] 5.00E-80 Collagen (2x), C4 (2x) C4 - Col4a6

Collagen 4 Nvec jgi|Nemve1|127140|e_gw.235.32.1alpha-1 type IV collagen >gi|119629514|gb|EAX0910... 1.00E-94 C4 (2x) C4 - Col4a1

Collagen 4 Nvec jgi|Nemve1|127157|e_gw.235.48.1 alpha2(IV)-like collagen [Strongylocentrotus pu... 2.00E-20 C4 C4

Collagen 4 Nvec jgi|Nemve1|16003|gw.235.37.1sp|P27393.1|CO4A2_ASCSU RecName: Full=Collagen alpha-2(IV) chain… 6.00E-76 C4 (2x) C4 - Col4a2

Collagen 4 Nvec jgi|Nemve1|148660|e_gw.2548.1.1 3 alpha procollagen [Strongylocentrotus purpura... 2.00E-28 Collagen (3x), C4 C4 - Col3a

Collagen 4 Nvecjgi|Nemve1|221793|fgenesh1_pg.scaffold_1002000001

sp|P27393.1|CO4A2_ASCSU RecName: Full=Collagen alpha-2(IV) chain… 2.00E-28 Collagen (4x), C4 C4 - Col4a2

Collagen 4 Nvecjgi|Nemve1|157742|estExt_gwp.C_10237

sp|P27393.1|CO4A2_ASCSU RecName: Full=Collagen alpha-2(IV) chain… 6.00E-76 EGF (10x) C4 - Col4a2

Collagen-triple Helix Cltyia SA0AAA1YC09RM1 collagen triple helix repeat protein [Clostri... 3.00E-14 Collagen (5x) CTHDCCollagen-triple Helix Hydra gb|DN811540.2

ref|YP_142550.1| collagen triple helix repeat containing protein… 8.00E-18 Collagen (3x) CTHDC

Contactin-like Nvec jgi|Nemve1|60863|gw.3.462.1 UNCoordinated family member (unc-89) [Caenor... 2.00E-35 I-set, igc2, IG, I-set (wobbly) contactin?

Contactin-like Nvec jgi|Nemve1|80685|e_gw.3.464.1 UNCoordinated family member (unc-89) [Caenor... 4.00E-34 IG, I-set, IG contactin?Fibrilin Cltyia SA0AAB91YK06RM1 Fibrillin -1 6.00E-31 EGF (6x 1wobbly) FibrillinFibrilin Cltyia SA0AAB39YH05CTG Fibrillin -1 1.00E-24 EGF (5x), SEA (wobbly), EGF (wobbly) FibrillinFibrilin Cltyia SA0AAB122YL04RM1 Fibrillin -2 5.00E-44 EGF (9x) Fibrillin BLAST vs swissprot: Full=Fibrillin-2 [human] 5E-44

Fibrilin Cltyia IL0ABA1YF08RM1 fibrillin [Podocoryna carnea] 0EGF, TB, EGF (7x 1wobbly), TB, EGF (5x), TB, EGF (6x) Fibrillin

TB- This cysteine rich repeat is found in TGF binding protein and fibrillin - PFAM

Fibrilin Cltyia SA0AAB4YB12RM1sp|O08746.1|MATN2_MOUSE RecName: Full=Matrilin-2; Flags: Prec... 4.00E-58 CUB, LDLa (3x), EGF (9x), trypsin Fibrillin hits to fribrillin at 1E-58

Fibrilin Hydra CL5183Contig1 fibrillin [Oikopleura dioica] >gi|18029271|g... 4.00E-36 EGF (6x) FibrillinFibrilin Hydra CL1329Contig1 fibrillin 1 [Rattus norvegicus] >gi|4959650|gb|... 5.00E-29 EGF (10x 5wobbly) Fibrillin?Fibrilin Hydra gb|DN603738.2 fibrillin 1 [Bos taurus] >gi|1706768|sp|P98133.... 6.00E-23 EGF (3x)Fibrilin Hydra CL4709Contig1 fibrillin 4 [Danio rerio] 9.00E-22 EGF (5x)Fibrilin Nvec jgi|Nemve1|212|gw.113.1.1 fibrillin [Podocoryna carnea] 0 EGF (14x) FibrillinFibrilin Nvec jgi|Nemve1|22881|gw.113.27.1 fibrillin 2 [Mus musculus] 9.00E-89 EGF (8x) FibrillinFibrilin Nvec jgi|Nemve1|11770|gw.113.6.1 fibrillin 2 [Rattus norvegicus] >gi|4959652|gb|... 5.00E-82 EGF (8x) FibrillinFibrilin Nvec jgi|Nemve1|70073|gw.28.267.1 fibrillin 3, isoform CRA_a [Homo sapiens] 2.00E-83 EGF (12x) Fibrillin

Fibrilin Nvecjgi|Nemve1|221487|fgenesh1_pg.scaffold_791000001 Fibrillin-1 4.00E-82 EGF (16x) Fibrillin

Fibrilin Nvec jgi|Nemve1|32913|gw.1.126.1 Fibrillin-1 4.00E-69 EGF (10x) FibrillinFibrilin Nvec jgi|Nemve1|61301|gw.1.495.1 Fibrillin-1 6.00E-68 EGF (10x) FibrillinFibrilin Nvec jgi|Nemve1|80370|e_gw.3.48.1 Fibrillin-2 1.00E-82 EGF (16x) FibrillinFibrilin Nvec jgi|Nemve1|108241|e_gw.89.14.1 Fibrillin-2 [mus] 6.00E-35 Laminin_EGF (5x) Fibrillin

Page 221: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

202  

     

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Fibrilin Nvecjgi|Nemve1|223762|fgenesh1_pg.scaffold_3290000001 Fibrillin-3 5.00E-68 EGF (12x) Fibrillin

Fibrilin Nvecjgi|Nemve1|163197|estExt_gwp.C_380029 Fibrillin-3 precursor, putative [Pediculus humanu... 6.00E-89 Cub (2x), EGF (15x), vwc (wobbly) Fibrillin

Fibrilin Nvec jgi|Nemve1|24372|gw.113.33.1 fibrillin 1 [Sus scrofa] >gi|13626617|sp|Q9T... 6.00E-39 EGF (3x) Fibrillin?

Fibrilin Nvecjgi|Nemve1|224395|fgenesh1_pg.scaffold_4621000001 fibrillin 2b [Danio rerio] >gi|184198736|gb|... 7.00E-39 EGF (3x) Fibrillin?

Fibrilin Nvec jgi|Nemve1|18668|gw.113.18.1 fibrillin 1 [Bos taurus] >gi|1706768|sp|P98133.... 3.00E-21 EGF (3x)Fibrilin Nvec jgi|Nemve1|112718|e_gw.113.12.1 fibrillin 1 precursor [Homo sapiens] 1.00E-31 EGF (2x)Fibrillar Collagens Cltyia SA0AAB139YM20RM1 No good hits COLFI (wobbly) COLFIFibrillar Collagens Cltyia SA0AAB3YD15CTG

gb|AAA48707.1| alpha-1 type XI collagen/pro-collagen alpha1 type V 2.00E-37 Collagen (3x), COLFI COLFI - Col11A1

Fibrillar Collagens Cltyia IL0ABA5YB21RM1 alpha 1 type I collagen [Oncorhynchus mykiss] 1.00E-64 Collagen(7x), COLFI COLFI - COl1A1Fibrillar Collagens Cltyia IL0ABA5YM21RM1 fibrillar collagen [Hydra vulgaris] 2.00E-85 Collagen(7x), COLFI COLFI - HydraFibrillar Collagens Cltyia IL0ABA25YC24RM1 fibrillar collagen [Hydra vulgaris] 7.00E-83 Collagen(7x), COLFI COLFI - HydraFibrillar Collagens Cltyia IL0ABA1YB18RM1 fibrillar collagen [Hydra vulgaris] 1.00E-73 Collagen (16x), COLFI COLFI - hydraFibrillar Collagens Cltyia SA0AAB109YA10RM1 fibrillar collagen [Hydra vulgaris] 2.00E-46 Collagen, COLFI COLFI - HydraFibrillar Collagens Cltyia SA0AAB121YB12RM1 fibrillar collagen [Hydra vulgaris] 7.00E-22 Collagen, COLFI COLFI - HydraFibrillar Collagens Cltyia IL0ABA16YI03RM1 fibrillar collagen [Hydra vulgaris] 5.00E-14 Collagen (3x) COLFI - Hydra putativeFibrillar Collagens Cltyia SA0AAA9YB21RM1 fibrillar collagen [Hydra vulgaris] 9.00E-14 VWA COLFI - Hydra putativeFibrillar Collagens Cltyia IL0ABA1YF15RM1

gb|AAM77398.1|AF525468_1 fibrillar collagen precursor [Hydra vul... 6.00E-75 Collagen(7x), COLFI COLFI - Hydra

Fibrillar Collagens Hydra CL8418Contig1 alpha 1 type V collagen [Gallus gallus] >gi|675... 7.00E-17 Collagen (wobbly), COLFI COLFI - Col5a1Fibrillar Collagens Hydra CL208Contig1

gb|AAM77398.1|AF525468_1 fibrillar collagen precursor [Hydra vul... 0 Collagen (17x), COLFI COLFI - Hydra

Fibrillar Collagens Hydra CL16Contig3 gb|ABG80449.1| fibrillar collagen [Hydra vulgaris] 0 Collagen (17x), COLFI COLFI - HydraFibrillar Collagens Hydra gb|DN815934.2 gb|ABG80449.1| fibrillar collagen [Hydra vulgaris] 3.00E-06 Collagen (wobbly) COLFI - Hydra putativeFibrillar Collagens Hydra gb|DN811440.2 gb|ABG80450.1| fibrillar collagen [Hydra vulgaris] 1.00E-108 VWA COLFI - HydraFibrillar Collagens Hydra gb|DN636048.2 gb|ABG80450.1| fibrillar collagen [Hydra vulgaris] 2.00E-51 Collagen (2x) COLFI - HydraFibrillar Collagens Hydra gb|CN554418.1 gb|ABG80450.1| fibrillar collagen [Hydra vulgaris] 1.00E-21 Collagen COLFI putativeFibrillar Collagens Hydra gb|CX832276.2 gb|ABG80450.1| fibrillar collagen [Hydra vulgaris] 2.00E-18 Collagen (wobbly) COLFI putativeFibrillar Collagens Hydra CL2403Contig1 gb|ABG80451.1| fibrillar collagen [Hydra vulgaris] 0 Collagen (10x) COLFI - HydraFibrillar Collagens Hydra CL2038Contig1 gb|ABG80451.1| fibrillar collagen [Hydra vulgaris] 6.00E-85 COLFI COLFI - HydraFibrillar Collagens Hydra CL7128Contig1 gb|ABG80451.1| fibrillar collagen [Hydra vulgaris] 3.00E-78 Collagen COLFI - HydraFibrillar Collagens Hydra CL4453Contig1 gb|ABG80451.1| fibrillar collagen [Hydra vulgaris] 4.00E-74 Collagen (3x) COLFI - HydraFibrillar Collagens Monosiga

jgi|Monbr1|31893|estExt_fgenesh2_pg.C_60234 No good hits COLFI COLFI

Fibrillar Collagens Monosiga

jgi|Monbr1|31892|estExt_fgenesh2_pg.C_60233 No good hits COLFI, MIT (wobbly) COLFI

Fibrillar Collagens Nvec

jgi|Nemve1|184625|estExt_GenewiseH_1.C_600080 COL11A1 protein [Homo sapiens] 2.00E-41 COLFI COLFI

Fibrillar Collagens Nvec jgi|Nemve1|80481|e_gw.3.268.1 collagen, type II, alpha 1 [Xenopus laevis] ... 5.00E-55 COLFI COLFIFibrillar Collagens Nvec

jgi|Nemve1|177989|estExt_GenewiseH_1.C_50144 fibrillar collagen [Lethenteron japonicum] 4.00E-47 COLFI COLFI

Fibrillar Collagens Nvec

jgi|Nemve1|226013|fgenesh1_pg.scaffold_16382000001 GCN1 general control of amino-acid synthesis 1-... 1.00E-12 COLFI (wobbly) COLFI

Fibrillar Collagens Nvec

jgi|Nemve1|240904|estExt_fgenesh1_pg.C_360101

procollagen, type XXVII, alpha 1, isoform CRA_a [... 4.00E-52 Collagen (12x), COLFI COLFI - Col17A1

Fibrillar Collagens Nvec jgi|Nemve1|80945|e_gw.3.433.1 alpha 2 type I collagen [Canis lupus familia... 7.00E-43 Collagen (6x), COLFI COLFI - Col2a1A

Page 222: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

203  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Fibrillar Collagens Nvec

jgi|Nemve1|205652|fgenesh1_pg.scaffold_61000084 Col2a1a protein [Danio rerio] 4.00E-24 Collagen (16x), COLFI COLFI - Col2a1A

Fibrillar Collagens Nvec

jgi|Nemve1|240903|estExt_fgenesh1_pg.C_360100 collagen, type V, alpha 3 [Mus musculus] >gi|73... 8.00E-30 Collagen (15x), COLFI COLFI - Col5A3

Fibrillar Collagens Nvec jgi|Nemve1|182|gw.3.2.1 fibrillar collagen [Podocoryne carnea] 2.00E-08 Collagen (6x) COLFI putativeFibrillar Collagens Nvec

jgi|Nemve1|204742|fgenesh1_pg.scaffold_53000081 collagen, type I, alpha 2 [Rattus norvegicus] >... 1.00E-53 WAP, Collagen (16x), COLFI COLFI -Col1A2

Fibrinogen Domain Cltyia IL0ABA19YP18RM1 fibrinogen-like 2 [Gallus gallus] >gi|600989... 2.00E-39 Conotoxin (wobbly), EGF (wobbly), FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB16YA15RM1 microfibrillar-associated protein 4 type I [Perca... 2.00E-26 FBG FBGFibrinogen Domain Cltyia SA0AAB31YC18RM1

angiopoietin 1 [Danio rerio] >gi|148725450|emb|C... 4.00E-24 FBG FBG - angiopoietin

Fibrinogen Domain Cltyia SA0AAB30YI23RM1

Angiopoietin 1 [Danio rerio] >gi|190339926|gb|AAI... 1.00E-22 FBG FBG - angiopoietin

Fibrinogen Domain Cltyia SA0AAB6YB01CTG

angiopoietin 1, isoform CRA_a [Rattus norvegicus]... 3.00E-24 FBG FBG - angiopoietin

Fibrinogen Domain Cltyia SA0AAB1YF10RM1

angiopoietin 2 [Danio rerio] >gi|15077796|gb|AA... 3.00E-33 FBG FBG - angiopoietin

Fibrinogen Domain Cltyia SA0AAB2YN22RM1

angiopoietin 2 [Danio rerio] >gi|15077796|gb|AA... 8.00E-30 FBG FBG - angiopoietin

Fibrinogen Domain Cltyia SA0AAB44YF22CTG

angiopoietin 4 [Homo sapiens] >gi|17433288|sp|Q... 5.00E-32 FBG FBG - angiopoietin

Fibrinogen Domain Cltyia SA0AAB30YC22RM1 angiopoietin-1 [Bos taurus] 2.00E-21 FBG FBG - angiopoietinFibrinogen Domain Cltyia SA0AAB14YK05RM1

angiopoietin-like protein 4 [Bos taurus] >gi|1884... 4.00E-23 FBG FBG - angiopoietin

Fibrinogen Domain Cltyia SA0AAB40YC16RM1

fibrinogen C domain containing 1 [Mus musculus]... 5.00E-35 FBG FBG - FCDC

Fibrinogen Domain Cltyia SA0AAB121YJ19CTG fibrinogen C domain containing 1 [Rattus nor... 9.00E-37 FBG FBG - FCDCFibrinogen Domain Cltyia SA0AAB25YB20CTG fibrinogen C domain containing 1 [Rattus nor... 3.00E-36 FBG FBG - FCDCFibrinogen Domain Cltyia SA0AAB151YO02CTG fibrinogen C domain containing 1 [Rattus nor... 1.00E-33 FBG FBG - FCDCFibrinogen Domain Cltyia SA0AAB10YA11RM1 fibrinogen C domain containing 1 [Xenopus (S... 2.00E-34 FBG FBG - FCDCFibrinogen Domain Cltyia SA0AAA22YK09CTG fibrinogen-like 1 [Bos taurus] >gi|122140308... 2.00E-33 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB108YC15CTG fibrinogen-like 1 precursor [Homo sapiens] >gi|... 9.00E-33 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB6YL01RM1 fibrinogen-like 2 [Gallus gallus] >gi|600989... 6.00E-43 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAA5YL04RM1 fibrinogen-like 2 [Gallus gallus] >gi|600989... 2.00E-41 gth (wobbly), FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB3YK12RM1 fibrinogen-like 2 [Gallus gallus] >gi|600989... 3.00E-41 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB19YK18CTG fibrinogen-like 2 [Gallus gallus] >gi|600989... 1.00E-39 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB16YN22RM1 fibrinogen-like 2 [Gallus gallus] >gi|600989... 1.00E-38 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB2YG24RM1 fibrinogen-like 2 [Gallus gallus] >gi|600989... 1.00E-31 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB41YK15RM1 fibrinogen-like 2 [Gallus gallus] >gi|600989... 3.00E-30 FBG FBG - fibrinogenFibrinogen Domain Cltyia SA0AAB18YN18RM1

Fcn3-A protein [Xenopus laevis] >gi|213625378|gb|... 7.00E-41 FBG FBG - Ficolin

Fibrinogen Domain Cltyia SA0AAB103YH02RM1

ficolin 1 precursor [Homo sapiens] >gi|20455484... 7.00E-30 FBG FBG - Ficolin

Fibrinogen Domain Cltyia SA0AAB119YM21RM1

ficolin B [Mus musculus] >gi|119370492|sp|O7049... 4.00E-38 FBG FBG - Ficolin

Fibrinogen Domain Cltyia SA0AAB87YN23CTG ficolin-2 [Xenopus laevis] >gi|55154000|gb|A... 9.00E-32 FBG FBG - FicolinFibrinogen Domain Cltyia SA0AAB28YI15RM1

gb|EAW88140.1| ficolin (collagen/fibrinogen domain containing) 1… 4.00E-39 FBG FBG - Ficolin

Fibrinogen Domain Cltyia SA0AAA19YE16RM1

ref|NP_112638.2| ficolin (collagen/fibrinogen domain containing)… 9.00E-48 FBG FBG - Ficolin

Fibrinogen Domain Cltyia SA0AAB36YJ19RM1

ref|NP_112638.2| ficolin (collagen/fibrinogen domain containing)… 9.00E-19 FBG FBG - Ficolin

Fibrinogen Domain Cltyia SA0AAB40YO07CTG

sp|Q9WTS8.2|FCN1_RAT RecName: Full=Ficolin-1; AltName: Full=Fico… 7.00E-24 FBG FBG - Ficolin

Page 223: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

204  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Fibrinogen Domain Cltyia SA0AAB20YN11RM1

tenascin C [Rattus norvegicus] >gi|183013175|gb... 1.00E-42 FBG FBG - Tenascin C

Fibrinogen Domain Cltyia SA0AAB19YC15RM1

tenascin R [Gallus gallus] >gi|61216379|sp|Q005... 5.00E-44 EGF (wobbly), FBG FBG - Tenascin R

Fibrinogen Domain Cltyia SA0AAA17YC03RM1

tenascin R [Rattus norvegicus] >gi|61216102|sp|... 3.00E-33 FBG FBG - Tenascin R

Fibrinogen Domain Cltyia SA0AAB71YF03RM1 tenascin R, isoform CRA_a [Rattus norvegicus] 3.00E-44 EGF (wobbly), FBG FBG - Tenascin RFibrinogen Domain Cltyia SA0AAA24YI07RM1 tenascin R, isoform CRA_a [Rattus norvegicus] 2.00E-36 FBG FBG - Tenascin RFibrinogen Domain Cltyia SA0AAB36YN13RM1 tenascin R, isoform CRA_a [Rattus norvegicus] 1.00E-35 FBG FBG - Tenascin RFibrinogen Domain Cltyia SA0AAA5YE04RM1 tenascin R, isoform CRA_a [Rattus norvegicus] 7.00E-33 FBG FBG - Tenascin RFibrinogen Domain Cltyia SA0AAA3YN21RM1 tenascin R, isoform CRA_a [Rattus norvegicus] 1.00E-28 FBG FBG - Tenascin RFibrinogen Domain Cltyia SA0AAB6YH05CTG tenascin R, isoform CRA_b [Rattus norvegicus] 2.00E-34 FBG FBG - Tenascin RFibrinogen Domain Cltyia SA0AAB127YB20CTG TNR protein [Homo sapiens] 4.00E-30 FBG FBG - Tenascin RFibrinogen Domain Cltyia SA0AAB57YG08CTG tenascin-W [Gallus gallus] 4.00E-29 FBG FBG - Tenascin WFibrinogen Domain Cltyia SA0AAB9YJ17RM1 FIBCD1 protein [Homo sapiens] 1.00E-33 FBG FBG DCFibrinogen Domain Hydra CL3068Contig1 No good hits FBG (wobbly) FBGFibrinogen Domain Hydra CL4995Contig1 predicted peptides only FBG (wobbly) FBGFibrinogen Domain Monosiga

jgi|Monbr1|37116|estExt_fgenesh1_pg.C_100171 No good hits EGF, FBG, EGF (2x) (all wobbly) FBG

Fibrinogen Domain Monosiga

jgi|Monbr1|25354|fgenesh2_pg.scaffold_10000004 No good hits FBG FBG

Fibrinogen Domain Monosiga

jgi|Monbr1|24183|fgenesh2_pg.scaffold_6000092 predicted peptides only FBG FBG

Fibrinogen Domain Nvec

jgi|Nemve1|213673|fgenesh1_pg.scaffold_181000014 adaptor-related protein complex 3, mu 1 subu... 6.00E-10 FBG FBG

Fibrinogen Domain Nvec jgi|Nemve1|104480|e_gw.73.98.1 angiopoietin-1 [Culex quinquefasciatus] >gi|... 6.00E-19 FBG FBGFibrinogen Domain Nvec

jgi|Nemve1|210726|fgenesh1_pg.scaffold_126000052 egg protein [Galaxea fascicularis] 2.00E-36 FBG (wobbly) FBG

Fibrinogen Domain Nvec jgi|Nemve1|124495|e_gw.211.54.1

gb|EAW88140.1| ficolin (collagen/fibrinogen domain containing) 1... 4.00E-19 FBG FBG

Fibrinogen Domain Nvec

jgi|Nemve1|200589|fgenesh1_pg.scaffold_22000111 No good hits EGF (wobbly), FBG FBG

Fibrinogen Domain Nvec jgi|Nemve1|65269|gw.16.345.1 No good hits FBG FBGFibrinogen Domain Nvec jgi|Nemve1|66974|gw.38.279.1 No good hits FBG FBGFibrinogen Domain Nvec jgi|Nemve1|84873|e_gw.10.325.1 No good hits FBG FBGFibrinogen Domain Nvec jgi|Nemve1|92024|e_gw.29.228.1 No good hits FBG FBGFibrinogen Domain Nvec jgi|Nemve1|95763|e_gw.40.258.1 No good hits FBG FBGFibrinogen Domain Nvec

jgi|Nemve1|201999|fgenesh1_pg.scaffold_32000011 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec

jgi|Nemve1|216620|fgenesh1_pg.scaffold_266000018 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec

jgi|Nemve1|220900|fgenesh1_pg.scaffold_598000005 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec

jgi|Nemve1|224116|fgenesh1_pg.scaffold_3959000001 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec

jgi|Nemve1|224158|fgenesh1_pg.scaffold_4056000001 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec

jgi|Nemve1|224198|fgenesh1_pg.scaffold_4141000001 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec

jgi|Nemve1|239078|estExt_fgenesh1_pg.C_110150 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec

jgi|Nemve1|248548|estExt_fgenesh1_pg.C_6550005 No good hits FBG (wobbly) FBG

Fibrinogen Domain Nvec jgi|Nemve1|85018|e_gw.10.356.1 No good hits FBG (wobbly) FBG

Page 224: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

205  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Fibrinogen Domain Nvec jgi|Nemve1|9022|gw.9208.1.1 No good hits FBG (wobbly) FBGFibrinogen Domain Nvec

jgi|Nemve1|218031|fgenesh1_pg.scaffold_325000006 No good hits FBG (wobbly), TSP1 FBG

Fibrinogen Domain Nvec

jgi|Nemve1|229259|fgenesh1_pm.scaffold_63000016 No hits found FBG FBG

Fibrinogen Domain Nvec jgi|Nemve1|150226|e_gw.3344.3.1 predicted peptides only FBG FBGFibrinogen Domain Nvec

jgi|Nemve1|200421|fgenesh1_pg.scaffold_21000106 predicted peptides only FBG FBG

Fibrinogen Domain Nvec

jgi|Nemve1|214950|fgenesh1_pg.scaffold_214000013 predicted peptides only FBG FBG

Fibrinogen Domain Nvec

jgi|Nemve1|214952|fgenesh1_pg.scaffold_214000015 predicted peptides only FBG FBG

Fibrinogen Domain Nvec

jgi|Nemve1|200362|fgenesh1_pg.scaffold_21000047

ref|YP_001803317.1| putative pathogenesis related protein [Cyano… 5.00E-43 FBG FBG

Fibrinogen Domain Nvec jgi|Nemve1|110903|e_gw.103.133.1 techylectin-5B [Culex quinquefasciatus] >gi|... 9.00E-25 FBG FBGFibrinogen Domain Nvec jgi|Nemve1|154536|e_gw.7411.1.1

tenascin R [Danio rerio] >gi|30909302|gb|AAP370... 1.00E-18 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|152370|e_gw.4892.4.1 tenascin XB [Homo sapiens] 1.00E-20 FBG FBG - Tenascin XBFibrinogen Domain Nvec jgi|Nemve1|101484|e_gw.61.218.1 tenascin Y variant [Gallus gallus] 9.00E-18 FBG FBG - Tenascin YFibrinogen Domain Nvec jgi|Nemve1|134301|e_gw.334.16.1 angiopoietin-like 1 [Xenopus (Silurana) trop... 3.00E-37 FBG FBG - angiopoietinFibrinogen Domain Nvec jgi|Nemve1|109792|e_gw.96.16.1

angiopoietin-like protein 4 [Bos taurus] >gi|1884... 3.00E-27 FBG FBG - angiopoietin

Fibrinogen Domain Nvec jgi|Nemve1|81906|e_gw.5.175.1

sp|O43827.1|ANGL7_HUMAN RecName: Full=Angiopoietin-related prote... 1.00E-44 FBG FBG - angiopoietin

Fibrinogen Domain Nvec jgi|Nemve1|87498|e_gw.16.346.1

sp|Q24K15.1|ANGP4_BOVIN RecName: Full=Angiopoietin-4; Short=ANG-.. 1.00E-33 FBG FBG - angiopoietin

Fibrinogen Domain Nvec jgi|Nemve1|53126|gw.155.41.1

sp|Q24K15.1|ANGP4_BOVIN RecName: Full=Angiopoietin-4; Short=ANG-... 4.00E-34 FBG FBG - angiopoietin

Fibrinogen Domain Nvec jgi|Nemve1|63444|gw.40.231.1

sp|Q5EA66.1|ANGL7_BOVIN RecName: Full=Angiopoietin-related prote... 7.00E-54 FBG FBG - angiopoietin

Fibrinogen Domain Nvec jgi|Nemve1|89408|e_gw.21.100.1

sp|Q9UKU9.1|ANGL2_HUMAN RecName: Full=Angiopoietin-related prote.. 9.00E-30 FBG FBG - angiopoietin

Fibrinogen Domain Nvec jgi|Nemve1|89534|e_gw.21.217.1

sp|Q9UKU9.1|ANGL2_HUMAN RecName: Full=Angiopoietin-related prote... 2.00E-32 FBG FBG - angiopoietin

Fibrinogen Domain Nvec jgi|Nemve1|150225|e_gw.3344.5.1

sp|Q9Y264.1|ANGP4_HUMAN RecName: Full=Angiopoietin-4; Short=A... 3.00E-25 FBG FBG - angiopoietin

Fibrinogen Domain Nvec

jgi|Nemve1|218034|fgenesh1_pg.scaffold_325000009 collagen, type XI, alpha 2 [Xenopus (Siluran... 1.00E-40 FBG FBG - Collagen

Fibrinogen Domain Nvec jgi|Nemve1|123220|e_gw.197.32.1 fibrinogen C domain containing 1 [Xenopus (S... 3.00E-60 FBG FBG - FCDCFibrinogen Domain Nvec

jgi|Nemve1|216157|fgenesh1_pg.scaffold_250000030 fibrinogen C domain containing 1 [Xenopus (S... 3.00E-57 FBG FBG - FCDC

Fibrinogen Domain Nvec jgi|Nemve1|153808|e_gw.6595.1.1 fibrinogen C domain containing 1 [Xenopus (S... 2.00E-26 FBG FBG - FCDCFibrinogen Domain Nvec jgi|Nemve1|35431|gw.12.187.1

sp|A2AV25.1|FBCD1_MOUSE RecName: Full=Fibrinogen C domain-contai... 4.00E-33 FBG FBG - FCDC

Fibrinogen Domain Nvec jgi|Nemve1|54314|gw.121.105.1

sp|A2AV25.1|FBCD1_MOUSE RecName: Full=Fibrinogen C domain-contai... 1.00E-20 FBG FBG - FCDC

Fibrinogen Domain Nvec jgi|Nemve1|142843|e_gw.709.6.1

sp|Q6AX44.1|FBCDA_XENLA RecName: Full=Fibrinogen C domain-con... 2.00E-54 FBG FBG - FCDC

Fibrinogen Domain Nvec

jgi|Nemve1|228530|fgenesh1_pm.scaffold_22000015

sp|Q6AX44.1|FBCDA_XENLA RecName: Full=Fibrinogen C domain-con... 8.00E-52 FBG FBG - FCDC

Fibrinogen Domain Nvec

jgi|Nemve1|228654|fgenesh1_pm.scaffold_29000006

sp|Q8N539.2|FBCD1_HUMAN RecName: Full=Fibrinogen C domain-con... 1.00E-53 FBG FBG - FCDC

Fibrinogen Domain Nvec

jgi|Nemve1|219569|fgenesh1_pg.scaffold_421000004

sp|Q8N539.2|FBCD1_HUMAN RecName: Full=Fibrinogen C domain-con... 6.00E-42 FBG FBG - FCDC

Fibrinogen Domain Nvec jgi|Nemve1|78851|e_gw.1.251.1

sp|Q8N539.2|FBCD1_HUMAN RecName: Full=Fibrinogen C domain-contai... 1.00E-48 FBG FBG - FCDC

Fibrinogen Domain Nvec jgi|Nemve1|87541|e_gw.16.164.1

sp|Q95LU3.1|FBCD1_MACFA RecName: Full=Fibrinogen C domain-contai... 3.00E-57 FBG FBG - FCDC

Fibrinogen Domain Nvec jgi|Nemve1|92090|e_gw.29.208.1

sp|Q95LU3.1|FBCD1_MACFA RecName: Full=Fibrinogen C domain-contai... 2.00E-53 FBG FBG - FCDC

Fibrinogen Domain Nvec jgi|Nemve1|118635|e_gw.155.49.1 fibrinogen [Branchiostoma belcheri tsingtaunese] 4.00E-35 FBG FBG - fibrinogenFibrinogen Domain Nvec jgi|Nemve1|113410|e_gw.118.81.1 FCN protein [Xenopus laevis] 3.00E-42 FBG FBG - Ficolin

Page 225: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

206  

     

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Fibrinogen Domain Nvec jgi|Nemve1|113476|e_gw.118.82.1 FCN protein [Xenopus laevis] 7.00E-42 FBG FBG - FicolinFibrinogen Domain Nvec jgi|Nemve1|90597|e_gw.24.49.1

ficolin (collagen/fibrinogen domain containing)… ref|NP_112638.2| 3.00E-57 Collagen, FBG Ficolin same domain structure as Ficolin

Fibrinogen Domain Nvec

jgi|Nemve1|198298|fgenesh1_pg.scaffold_9000087 ficolin 2 isoform a precursor [Homo sapiens] >g... 3.00E-50 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|107528|e_gw.86.58.1

ficolin A [Mus musculus] >gi|13124179|sp|O70165... 2.00E-53 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|125975|e_gw.226.21.1 ficolin B [Bos taurus] >gi|75061130|sp|Q5I2E... 4.00E-39 FBG FBG - FicolinFibrinogen Domain Nvec jgi|Nemve1|95664|e_gw.40.235.1

sp|O00602.2|FCN1_HUMAN RecName: Full=Ficolin-1; AltName: Full=Fi... 1.00E-55 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|95732|e_gw.40.215.1

sp|O00602.2|FCN1_HUMAN RecName: Full=Ficolin-1; AltName: Full=Fi... 1.00E-55 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|95608|e_gw.40.234.1

sp|O00602.2|FCN1_HUMAN RecName: Full=Ficolin-1; AltName: Full=Fi... 3.00E-51 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|82053|e_gw.5.274.1

sp|O75636.2|FCN3_HUMAN RecName: Full=Ficolin-3; AltName: Full=Co... 6.00E-37 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|95788|e_gw.40.232.1

sp|Q5I2E5.1|FCN2_BOVIN RecName: Full=Ficolin-2; AltName: Full=Fi... 4.00E-57 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|35755|gw.45.115.1

sp|Q5I2E5.1|FCN2_BOVIN RecName: Full=Ficolin-2; AltName: Full=Fi... 9.00E-51 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|36375|gw.45.120.1

sp|Q5I2E5.1|FCN2_BOVIN RecName: Full=Ficolin-2; AltName: Full=Fi… 5.00E-51 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|81419|e_gw.4.205.1

sp|Q9WTS8.2|FCN1_RAT RecName: Full=Ficolin-1; AltName: Full=Fico... 3.00E-42 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|89338|e_gw.21.197.1

sp|Q9WTS8.2|FCN1_RAT RecName: Full=Ficolin-1; AltName: Full=Fico... 3.00E-30 FBG FBG - Ficolin

Fibrinogen Domain Nvec jgi|Nemve1|129798|e_gw.269.68.1 Tenascin-R - BLASTp vs swissprot 2.00E-47 FBG FBG - Tenascin RFibrinogen Domain Nvec jgi|Nemve1|147942|e_gw.2188.3.1

gb|EAW90994.1| tenascin R (restrictin, janusin), isoform CRA_a [… 8.00E-36 FBG FBG - Tenascin R

Fibrinogen Domain Nvec

jgi|Nemve1|222877|fgenesh1_pg.scaffold_2028000001

sp|Q00546.1|TENR_CHICK RecName: Full=Tenascin-R; Short=TN-R; ... 2.00E-55 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|92262|e_gw.29.206.1

sp|Q00546.1|TENR_CHICK RecName: Full=Tenascin-R; Short=TN-R; Alt... 3.00E-59 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|79044|e_gw.1.562.1

sp|Q00546.1|TENR_CHICK RecName: Full=Tenascin-R; Short=TN-R; Alt... 8.00E-50 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|89364|e_gw.21.171.1

sp|Q00546.1|TENR_CHICK RecName: Full=Tenascin-R; Short=TN-R; Alt... 1.00E-34 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|48984|gw.421.11.1

sp|Q00546.1|TENR_CHICK RecName: Full=Tenascin-R; Short=TN-R; Alt… 8.00E-24 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|138098|e_gw.422.22.1

sp|Q8BYI9.1|TENR_MOUSE RecName: Full=Tenascin-R; Short=TN-R; Alt... 1.00E-44 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|36094|gw.10.149.1

sp|Q8BYI9.1|TENR_MOUSE RecName: Full=Tenascin-R; Short=TN-R; Alt… 3.00E-53 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|92082|e_gw.29.93.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt.. 2.00E-54 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|95828|e_gw.40.128.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt... 8.00E-58 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|92258|e_gw.29.67.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt... 1.00E-56 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|92265|e_gw.29.70.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt... 5.00E-54 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|80480|e_gw.3.276.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt... 5.00E-49 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|92150|e_gw.29.212.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt... 6.00E-49 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|94623|e_gw.37.231.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt... 2.00E-56 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|92266|e_gw.29.62.1

sp|Q92752.2|TENR_HUMAN RecName: Full=Tenascin-R; Short=TN-R; Alt... 3.00E-50 FBG FBG - Tenascin R

Fibrinogen Domain Nvec jgi|Nemve1|140550|e_gw.527.4.1 tenascin R, isoform CRA_b [Rattus norvegicus] 2.00E-55 FBG FBG - Tenascin RFibrinogen Domain Nvec jgi|Nemve1|113867|e_gw.121.24.1 tenascin-R [Homo sapiens] 1.00E-54 FBG FBG - Tenascin RFibrinogen Domain Nvec jgi|Nemve1|113913|e_gw.121.63.1 tenascin-R [Homo sapiens] 1.00E-54 FBG FBG - Tenascin RFibrinogen Domain Nvec jgi|Nemve1|108972|e_gw.93.52.1 tenascin-R [Homo sapiens] 4.00E-53 FBG FBG - Tenascin RFibrinogen Domain Nvec

jgi|Nemve1|214077|fgenesh1_pg.scaffold_191000041 tenascin-R [Homo sapiens] 3.00E-51 FBG FBG - Tenascin R

Page 226: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

207  

     

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Fibrinogen Domain Nvec jgi|Nemve1|107155|e_gw.85.168.1 tenascin-R [Homo sapiens] 2.00E-42 FBG FBG - Tenascin RFibropellin/Fibrosurfin Clytia IL0ABA10YE07RM1 fibrosurfin [Paracentrotus lividus] 3.00E-29 No domainsFibropellin/Fibrosurfin Clytia IL0ABA8YH17RM1 RecName: Full=Adhesive plaque matrix prote... 3.00E-34Fibropellin/Fibrosurfin Clytia SA0AAB50YK15CTG fibropellin Ib 7.00E-58Fibropellin/Fibrosurfin Clytia SA0AAB73YD11RM1 RecName: Full=Fibropellin-1; AltName: Ful... 1.00E-51Fibropellin/Fibrosurfin Hydra gb|CX831322.2 fibropellin Ia 2.00E-18 No domainsFibropellin/Fibrosurfin Monosiga

jgi|Monbr1|25143|fgenesh2_pg.scaffold_9000077 fibrosurfin [Paracentrotus lividus] 7.00E-57 EGF (7x), FN3 (2x), Tyrkin

Fibropellin/Fibrosurfin Nvec jgi|Nemve1|103841|e_gw.70.1.1 fibropellin Ib 1.00E-114Fibropellin/Fibrosurfin Nvec jgi|Nemve1|104325|e_gw.72.146.1 fibrosurfin [Paracentrotus lividus] 2.00E-97Fibropellin/Fibrosurfin Nvec jgi|Nemve1|1059|gw.947.1.1 RecName: Full=Fibropellin-1; AltName: Ful... 1.00E-67Fibropellin/Fibrosurfin Nvec jgi|Nemve1|106413|e_gw.81.97.1 fibropellin III 1.00E-41Fibropellin/Fibrosurfin Nvec jgi|Nemve1|110299|e_gw.99.104.1 fibropellin Ib 2.00E-27Fibropellin/Fibrosurfin Nvec jgi|Nemve1|110621|e_gw.101.87.1

Notch homolog 2 (Drosophila), isoform CRA_b [Homo... 5.00E-42

Fibropellin/Fibrosurfin Nvec jgi|Nemve1|114572|e_gw.126.143.1 fibropellin Ia 2.00E-29Fibropellin/Fibrosurfin Nvec jgi|Nemve1|128516|e_gw.251.27.1 RecName: Full=Adhesive plaque matrix prote... 3.00E-67Fibropellin/Fibrosurfin Nvec jgi|Nemve1|130363|e_gw.278.1.1 RecName: Full=Fibropellin-1; AltName: Ful... 1.00E-82Fibropellin/Fibrosurfin Nvec jgi|Nemve1|136382|e_gw.374.52.1 fibropellin III 1.00E-42Fibropellin/Fibrosurfin Nvec

jgi|Nemve1|223067|fgenesh1_pg.scaffold_2231000001 fibropellin Ia 6.00E-42

Fibropellin/Fibrosurfin Nvec jgi|Nemve1|40287|gw.934.3.1 fibropellin Ia 2.00E-54Fibropellin/Fibrosurfin Nvec jgi|Nemve1|52068|gw.170.90.1 RecName: Full=Fibropellin-1; AltName: Ful... 1.00E-108Fibropellin/Fibrosurfin Nvec jgi|Nemve1|60721|gw.29.181.1

notch homolog 1b [Danio rerio] >gi|60418506|gb|... 7.00E-41

Fibropellin/Fibrosurfin Nvec jgi|Nemve1|61395|gw.24.212.1 RecName: Full=Fibropellin-1; AltName: Ful... 2.00E-49Fibropellin/Fibrosurfin Nvec jgi|Nemve1|84211|e_gw.9.242.1 RecName: Full=Fibropellin-1; AltName: Ful... 3.00E-68Fibropellin/Fibrosurfin Nvec jgi|Nemve1|84597|e_gw.9.264.1 fibropellin Ia 1.00E-58Fibropellin/Fibrosurfin Nvec jgi|Nemve1|87929|e_gw.17.277.1 fibropellin Ia 1.00E-93

Fibulin Cltyia SA0AAB11YG20RM1 Fbln2 protein [Danio rerio] 2.00E-32 EGF (5x) Fibulinref|XP_001625395.1| predicted protein [Nematostella vectensis] >... 2.00E-47

Fibulin Cltyia SA0AAB49YL02RM1 Fibulin 1 2.00E-26 EMI (wobbly), EGF (6x), Gal_lectin FibulinFibulin Cltyia SA0AAB131YO02CTG Fibulin 1 [Homo sapiens] 5.00E-30 EGF (4x) FibulinFibulin Hydra gb|CN774245.1 fibulin-6 [Homo sapiens] 2.00E-25 TSP1 (2x) hemicentin-1

Fibulin Nvecjgi|Nemve1|182469|estExt_GenewiseH_1.C_380136 fibulin 2 [Danio rerio] 1.00E-80 EGF (10x) Fibulin

Fibulin Nvec jgi|Nemve1|919|gw.1034.1.1 fibulin-6 [Homo sapiens] 2.00E-41 TSP1 (4x) fibulin

Fibulin Nvecjgi|Nemve1|216821|fgenesh1_pg.scaffold_273000013 fibulin-6 [Homo sapiens] 5.00E-85 EGF (12x) Fibulin

Fibulin Nvec jgi|Nemve1|110159|e_gw.98.68.1 fibulin-6 [Homo sapiens] 8.00E-87 TSP1 (6x) Fibulin

Fibulin Nvec jgi|Nemve1|12396|gw.273.23.1hemicentin 1, isoform CRA_c [Homo sapiens] / Fibulin-6 [Homo sapiens] 8.00E-56 I-set, TSP1 (3x) hemicentin

Fibulin Nvec jgi|Nemve1|384|gw.329.6.1hemicentin 2 [Mus musculus] >gi|123228129|emb|CA... 5.00E-47 IG, I-set, igc2, I-set, igc2 hemicentin

Fibulin Nvecjgi|Nemve1|224641|fgenesh1_pg.scaffold_5311000001 Hemicentin-1 [human] 4.00E-42 EGF (5x)

Hemicentin-1/Fibrillin-6

Fibulin Nvecjgi|Nemve1|205787|fgenesh1_pg.scaffold_62000106 hemicentin [Homo sapiens] 3.00E-46 IG, igc2 (4x), ig, igc2 hemicentin

Fibulin Nvecjgi|Nemve1|185165|estExt_GenewiseH_1.C_660169 hemicentin 1, isoform CRA_c [Homo sapiens] 3.00E-36 TSP1 (3x)

Page 227: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

208  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

FN2 Domain Containing Cltyia SA0AAB59YM08RM1 coagulation factor XII precursor 1.00E-08 FN2 (3x) FN2

FN2 domains!!! These are supported as E-06 - E-11. there is only one FN2 domain in Nvec (genome paper).

FN2 Domain Containing Hydra CL1445Contig3 predicted peptides only Endotoxin_N (wobbly), FN2 FN2FN2 Domain Containing Hydra CL1445Contig1 predicted peptides only FN2 (wobbly) FN2FN2 Domain Containing Nvec jgi|Nemve1|134613|e_gw.343.31.1 matrix metalloproteinase 9 [Equus caballus] ... 4.00E-24 FN2 (2x) FN2FN2 Domain Containing Nvec jgi|Nemve1|92581|e_gw.30.41.1 vMMP-Lio1 [Liophis poecilogyrus] 1.00E-20 FN2 (2x) FN2FN2 Domain Containing Nvec jgi|Nemve1|28616|gw.30.33.1 vMMP-Lio1 [Liophis poecilogyrus] 8.00E-18 FN2 (2x) FN2FN2 Domain Containing Nvec jgi|Nemve1|92494|e_gw.30.37.1 vMMP-Lio1 [Liophis poecilogyrus] 9.00E-18 FN2 (2x) FN2FN2 Domain Containing Nvec jgi|Nemve1|9233|gw.686.4.1 matrix metalloproteinase 2 isoform a preproprot... 1.00E-11 FN2 FN2FN2 Domain Containing Nvec jgi|Nemve1|142575|e_gw.686.3.1 matrix metallopeptidase 9 (gelatinase B, 92k... 1.00E-09 FN2 FN2FN2 Domain Containing Nvec jgi|Nemve1|130895|e_gw.287.17.1 matrix metallopeptidase 9 (gelatinase B, 92k... 3.00E-09 FN2 FN2FN2 Domain Containing Nvec jgi|Nemve1|86166|e_gw.13.285.1

matrix metalloproteinase 9 [Notophthalmus virides... 3.00E-08 FN2 FN2

FN2 Domain Containing Nvec

jgi|Nemve1|201172|fgenesh1_pg.scaffold_26000101 No good hits PAN (2x), FN2 FN2

FN2 Domain Containing Nvec

jgi|Nemve1|201718|fgenesh1_pg.scaffold_30000069 predicted peptides only EGF, SLG (wobbly), disc (wobbly), FN2 FN2

FN2 Domain Containing Nvec

jgi|Nemve1|198667|fgenesh1_pg.scaffold_11000079 MAM domain containing 4 [Mus musculus] 9.00E-80 FN2, MAM (23x) MAMDC

FN3 Domain Containing Monosiga

jgi|Monbr1|6293|fgenesh1_pg.scaffold_4000175

gb|EEB11871.1| Fibronectin type-III domain-containing protein 3A… 2.00E-41 FN3 (7x) FN3 DC

FN3 Domain Containing Monosiga

jgi|Monbr1|32243|estExt_fgenesh2_pg.C_90007 fibronectin, type III domain-containing protein... 7.00E-75 No domains FN3DC

FN3 Domain Containing Nvec

jgi|Nemve1|243939|estExt_fgenesh1_pg.C_1020048 fibronectin type III domain containing 3B [Homo... 1.00E-118 FN3 (9x) FN3DC

Fras1 Cltyia SA0AAA25YK13CTG Fras1 1.00E-108 No domains Fras1Fras1 Hydra CL917Contig2 FRAS1 protein [Homo sapiens] 6.00E-18 vwc (3x) Fras1

Fras1 Nvec jgi|Nemve1|107201|e_gw.85.18.1FRAS1 related extracellular matrix protein 2, iso… gb|EAX08608.1| 0 NIbeta_1 (3x) Fras1

Fras1 Nvecjgi|Nemve1|207897|fgenesh1_pg.scaffold_85000074

ref|NP_001131133.1| Fras1 related extracellular matrix protein 2… 0 CA, Nibeta_1 (all wobbly)

Fras1 related ECM protein 2

HSPG2 Cltyia SA0AAB41YI05CTG heparan sulfate proteoglycan 2 [Gallus gallu... 1.00E-81 LamG, EGF (2x), LamG, EGF (2x), LamG HSPG2

HSPG2 Clytia SA0AAB56YE16RM1 heparan sulfate proteoglycan 2 [Gallus gallu... 5.00E-34 igc2_5, I-set No Noperlecan puative partial

HSPG2 Hydra CL8208Contig1 heparan sulfate proteoglycan 2 [Danio rerio]... 2.00E-22 I-set, IG No Noperlecan putative partial

HSPG2 Nvec jgi|Nemve1|21768|gw.196.36.1 Hspg2 protein [Mus musculus] 1.00E-136igc2, LamG_3, EGF (2x), LamG_3, EGF, EGF (wobbly), LamG_3 No No Perlecan/HSPG2

Insulin Receptor Like Monosiga

jgi|Monbr1|12183|fgenesh1_pg.scaffold_36000008 insulin receptor, putative [Ixodes scapularis] 7.00E-69 Recep_L_domain, FN3 (2x wobbly), tyrkin insulin receptor

Insulin Receptor Like Monosiga

jgi|Monbr1|7936|fgenesh1_pg.scaffold_9000066

insulin receptor (AGAP012424-PA) [Anopheles gam... 2.00E-46

EGF (6x), Recep_L_domain (wobbly), FN3 (2x 1wobbly), tyrkin insulin receptor like

Insulin Receptor Like Nvec

jgi|Nemve1|198971|fgenesh1_pg.scaffold_12000194

gb|AAI70430.1| Insulin receptor, beta-subunit [Xenopus laevis] >… 2.00E-75

Recep_L_domain, furin, Recep_L_domain, FN3 (3x) insulin receptor beta

Laminin Alpha Hydra gb|DT619742.1 laminin, alpha 5 [Mus musculus] >gi|12328398... 4.00E-28 EGF (3x) Laminin A putativeLaminin Alpha Hydra CL9494Contig1 laminin alpha-1, 2 chain, putative [Ixodes scapul... 9.00E-05 No domains Laminin A putativeLaminin Alpha Monosiga

jgi|Monbr1|6041|fgenesh1_pg.scaffold_3000539 laminin, alpha 1 precursor [Homo sapiens] >gi|2... 4.00E-14

Laminin_N, EGF (3x 2wobbly), PAN (wobbly) Laminin A putative

Laminin Alpha Nvec jgi|Nemve1|110910|e_gw.103.117.1 laminin A chain, putative [Aedes aegypti] >g... 0

Laminin_N, Laminin_EGF (15x), Laminin_B Laminin A

Laminin Alpha Nvec

jgi|Nemve1|248148|estExt_fgenesh1_pg.C_4300002 laminin subunit alpha [Culex quinquefasciatu... 1.00E-115

Laminin_N, Laminin_EGF (7x), Laminin_B, Laminin_EGF (6x) Laminin A

Laminin Alpha Nvec

jgi|Nemve1|208267|fgenesh1_pg.scaffold_90000035 laminin alpha 3 subunit isoform 3 [Homo sapi... 4.00E-64 Laminin_N, Laminin_EGF (11x) Laminin A

Laminin Alpha Nvec jgi|Nemve1|109158|e_gw.93.3.1 laminin subunit alpha [Culex quinquefasciatu... 1.00E-59 EGF (6x 1wobbly) Laminin ALaminin Alpha Nvec jgi|Nemve1|111045|e_gw.103.86.1 laminin, alpha 1 [Danio rerio] >gi|71370785|... 6.00E-51 Laminin_EGF (4x) Laminin A

Page 228: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

209  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Laminin Alpha Nvec jgi|Nemve1|108950|e_gw.93.116.1 laminin, alpha 5 [Mus musculus] >gi|12328398... 3.00E-45 Laminin_EGF (5x) Laminin ALaminin Alpha Nvec jgi|Nemve1|155465|e_gw.8623.2.1 laminin alpha-1, 2 chain [Culex quinquefasci... 2.00E-29 Laminin_EGF (5x) Laminin A putativeLaminin Alpha Nvec jgi|Nemve1|34098|gw.27.98.1 laminin, alpha 2, isoform CRA_a [Mus musculus] 3.00E-26 EGF (4x) Laminin A putativeLaminin Alpha Nvec jgi|Nemve1|155008|e_gw.8010.1.1 laminin alpha 1 [Danio rerio] 1.00E-22 EGF (2x 1wobbly) Laminin A putative

Laminin Beta Nvecjgi|Nemve1|187372|estExt_GenewiseH_1.C_1000105 laminin, beta 1 precursor [Homo sapiens] >gi|51... 0

Laminin_N, Laminin_EGF (13x), SPEC (wobbly)/HAMP (wobbly), MA (wobbly) Laminin B

Laminin Gamma Hydra gb|CX831146.2 LAMC1 protein [Homo sapiens] 9.00E-34 Laminin_N Laminin GLaminin Gamma Hydra CL5311Contig1 laminin gamma 1 chain [Aedes aegypti] >gi|10... 1.00E-39 EGF (2x) Laminin G putativeLaminin Gamma Hydra gb|CO538695.1 laminin gamma 1 [Gallus gallus] 1.00E-24 EGF (2x 1wobbly) Laminin G putativeLaminin Gamma Hydra gb|DT616193.1

laminin, beta 2 [Mus musculus] >gi|19913504|gb|... 1.00E-24 EGF (2x) Laminin G putative

Laminin Gamma Monosiga

jgi|Monbr1|24778|fgenesh2_pg.scaffold_8000012 laminin subunit gamma-3 [Culex quinquefascia... 2.00E-73

CUB, Kelch (wobbly), PSI (3x wobbly), EGF (4x), CUB, EGF (2x), Kelch (5x wobbly), PSI (4x wobbly), EGF (3x wobbly) Laminin G putative

Laminin Gamma Nvec jgi|Nemve1|119462|e_gw.162.15.1

laminin, gamma 1 precursor [Homo sapiens] >gi|2... 0

Laminin_N, Laminin_EGF (11x), tSNARE (wobbly), MA (wobbly), hr1 (wobbly) Laminin G

Laminin Gamma Nvec

jgi|Nemve1|245481|estExt_fgenesh1_pg.C_1620025

sp|Q61292.1|LAMB2_MOUSE RecName: Full=Laminin subunit beta-2; Al… 1.00E-107

Laminin_N, Laminin_EGF (9x), Laminin_B (wobbly), Laminin_EGF, MA (wobbly) Laminin G

Laminin Gamma Nvec

jgi|Nemve1|245480|estExt_fgenesh1_pg.C_1620024 laminin, beta 2 [Gallus gallus] >gi|2708707|gb|... 1.00E-94

Laminin_N, Laminin_EGF (7x), Laminin_B, Laminin_EGF (3x), MA (wobbly) Laminin G

Laminin Gamma Nvec

jgi|Nemve1|221570|fgenesh1_pg.scaffold_839000001 laminin beta-2 chain [Aedes aegypti] >gi|108... 6.00E-50 Laminin_EGF (10x) Laminin G

MEGF Cltyia IL0ABA9YP03RM1 MEGF6 [homo sapien] 1.00E-51 EMI (wobbly), furin (wobbly), EGF (7x) MEGFMEGF Cltyia SA0AAB125YO15CTG MEGF6 [rat] 3.00E-50 EGF (7x), CCP MEGF

MEGF Cltyia SA0AAA2YG05RM1sp|Q7Z7M0.2|MEGF8_HUMAN RecName: Full=Multiple epidermal growth … 8.00E-33 EGF (4x 3wobbly) MEGF

MEGF Monosigajgi|Monbr1|38323|estExt_fgenesh1_pg.C_230054

multiple EGF-like-domains 8 [Homo sapiens] >gi|... 4.00E-54

CUB, EGF (2x), Kelch (5x wobbly), EGF (wobbly), ftp (wobbly), PSI (5x 4wobbly), EGF (18x), CUB, EGF (2x), KELCH (3x 2wobbly), PSI (3x 2wobbly), EGF (4x), lim (wobbly) MEGF

MEGF Nvec jgi|Nemve1|97756|e_gw.47.6.1 MEGF8 [Homo sapiens] 0

CUB, EGF (wobbly), Kelch (5x wobbly), PSI (5x wobbly), EGF (4x 2wobbly), CUB, EGF (3x wobbly), Kelch (7x wobbly), PSI, P_2, PSI (2x), EGF (4x) MEGF

MEGF Nvec jgi|Nemve1|20469|gw.71.15.1sp|Q80T91.3|MEG11_MOUSE RecName: Full=Multiple epidermal growth … 1.00E-120 EGF (14x) MEGF

MEGF Nvec jgi|Nemve1|104003|e_gw.71.71.1 multiple EGF-like-domains 10 [Xenopus (Silur... 2.00E-47 EGF (5x wobbly) MEGF?Minicollagen Cltyia IL0ABA3YI18RM1_p minicollagen 1 [Clytia hemisphaerica] 0.0003 Collagen (wobbly) Minicollagen

Minicollagen Cltyia SA0AAB59YD11RM1ref|XP_002163332.1| PREDICTED: hypothetical protein [Hydra magni… 8.00E-22 Collagen (wobbly), GRP (wobbly) Minicollagen

GRP is a rare domain that is found in plants (not in combination), there are only 4 in metazoa. Only blast hit is PREDICTED: hypothetical protein [Hydra magni... 8.00E-22 ref|XP_002163332.1|

Minicollagen Hydra CL1Contig600 PREDICTED: similar to minicollagen-15 [Hydra... 1.00E-34 Collagen (wobbly) Minicollagen minicollagen similar region is interupted

Minicollagen Hydra CL1Contig103pir||C41132 collagen-related protein 3 precursor - Hydra magnipa...sphaerica] 8.00E-12 GRP (wobbly), Collagen Minicollagen

Minicollagen Hydra CL1Contig299nematoblast-specific protein nb001 [Hydra oligactis] 2.00E-10 Collagen Minicollagen

Minicollagen Hydra CL1Contig531gb|ABR19841.1| minicollagen-15 [Hydra vulgaris] >gi|193792440|gb… 3.00E-10 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL334Contig2 hypothetical protein A032-H1 [Acropora millepora] 4.00E-10 Collagen Minicollagen A032-H1 is a minicollagen containing SP-Collagen-CLECT protein.

Minicollagen Hydra CL1Contig549gb|ABR19841.1| minicollagen-15 [Hydra vulgaris] >gi|193792440|gb… 5.00E-09 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL1Contig295minicollagen-15 [Hydra vulgaris] >gi|193792440|gb... 1.00E-08 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL1Contig296collagen-related protein 2 - Hydra magnipapillata (f... 2.00E-08 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL1Contig300collagen-related protein 2 - Hydra magnipapillata (f... 2.00E-08 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL334Contig1 hypothetical protein A032-H1 [Acropora millepora] 9.00E-08 Collagen Minicollagen A032-H1 is a minicollagen containing SP-Collagen-CLECT protein. Minicollagen Hydra CL334Contig3 hypothetical protein A032-H1 [Acropora millepora] 9.00E-08 Collagen Minicollagen A032-H1 is a minicollagen containing SP-Collagen-CLECT protein.

Minicollagen Hydra CL1Contig323collagen-related protein 2 - Hydra magnipapillata (f... 5.00E-06 Collagen (wobbly) Minicollagen

Minicollagen Hydra gb|CD680901.1collagen-related protein 2 - Hydra magnipapillata (f... 8.00E-06 Collagen (wobbly) Minicollagen

Page 229: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

210  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Minicollagen Hydra CL1Contig495collagen-related protein 2 - Hydra magnipapillata (f... 0.0001 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL1Contig97collagen-related protein 3 precursor - Hydra magnipa... 0.0006 Collagen Minicollagen

Minicollagen Hydra CL1Contig638minicollagen-15 [Hydra vulgaris] >gi|193792440|gb... 0.049 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL1Contig500minicollagen-15 [Hydra vulgaris] >gi|193792440|gb... 0.093 Collagen (wobbly) Minicollagen

Minicollagen Hydra CL1Contig572minicollagen-15 [Hydra vulgaris] >gi|193792440|gb... 0.17 No domains Minicollagen

Minicollagen Hydra CL1Contig287collagen-related protein 4 - Hydra magnipapillata (f... 0.43 Collagen Minicollagen

Minicollagen Hydra CL1Contig83ref|XP_002163332.1| PREDICTED: hypothetical protein [Hydra magni… 3.00E-88 Collagen (wobbly), GRP Minicollagen

Minicollagen Nvecjgi|Nemve1|238353|estExt_fgenesh1_pg.C_50097 mini-collagen [Acropora donei] 0.029 Collagen Minicollagen

Minicollagen Nvecjgi|Nemve1|211803|fgenesh1_pg.scaffold_144000020 mini-collagen [Acropora donei] 0.096 Collagen Minicollagen

Minicollagen Nvec jgi|Nemve1|81941|e_gw.5.7.1 mini-collagen [Acropora donei] 0.28 Collagen (wobbly) MinicollagenNetrin Hydra gb|DT613962.1 ntn1b [Danio rerio] 4.00E-16 Laminin_N netrin-like

Netrin Nvec jgi|Nemve1|118526|e_gw.154.10.1 netrin [Nematostella vectensis] 1.00E-155 Laminin_N, Laminin_EGF (3x), c345c Netrin [Nvec]c345c - Netrin C-terminal Domainhe domain is also found in cobra venom factor and in complement factors C3, C4 and C5

Notch Nvec jgi|Nemve1|41337|gw.2075.6.1 Notch 2 [Takifugu rubripes] 5.00E-73Other Clytia IL0ABA17YC15RM1 papilin, isoform A [Drosophila melanogaster] >g... 6.00E-48 TSP1, ADAM_spacer (wobbly) Papilin related

Other Hydra CL84Contig2emb|CAJ80765.2| thrombospondin type 1 repeat-containing protein … 0 TSP1 (8x)

thrombospondin type 1 repeat-containing protein 2 precursor [Hydra magnipapillata]

Other Hydra CL1487Contig2gb|AAD43811.1|AF159157_1 head-activator binding protein precurso… 1.00E-130 FN3

head-activator binding protein precursor [Hydra vulgaris]

Other Nvecjgi|Nemve1|193237|estExt_GenewiseH_1.C_2820017 nidogen [Aedes aegypti] >gi|108876881|gb|EAT... 5.00E-72 EGF (12x ?wobbly), LY (4x) Nidogen

Other Nvec jgi|Nemve1|87211|e_gw.15.190.1sp|Q61982.1|NOTC3_MOUSE RecName: Full=Neurogenic locus notch … 8.00E-52 EGF (10x)

Notch3 homolgue_N terminal

Other Nvecjgi|Nemve1|238669|estExt_fgenesh1_pg.C_70144 periostin isoform 2 [Danio rerio] >gi|42627706|... 7.00E-50 Fasciclin (3x) periostin

Other Nvecjgi|Nemve1|199904|fgenesh1_pg.scaffold_18000028 usherin isoform B [Homo sapiens] 0

Laminin_N, Laminin_EGF (10x), FN3 (4x), LamG (2x), FN3 (11x) Usherin

Other Nvecjgi|Nemve1|199903|fgenesh1_pg.scaffold_18000027 usherin isoform B [Homo sapiens] 1.00E-118 LamG, Laminin_N, laminin_EGF (5x) Usherin

Other Nvec jgi|Nemve1|59990|gw.18.225.1 usherin isoform B [Homo sapiens] 0 FN3 (16x) Usherin?

Other Nvec jgi|Nemve1|20140|gw.66.6.1rabconnectin-3 beta isoform 2 [Homo sapiens] >g... 0 WD40 (8x) Rabconnectin synaptic transport scaffold for Rab3 GEP and GAP

Other Nvecjgi|Nemve1|240569|estExt_fgenesh1_pg.C_310074

sortilin-related receptor, LDLR class A repeats... ref|NP_035566.2| 0 vps10, LY (3x), LDLa (12x), FN3 (3x) Sortilin lysosomal trafficking

Other Nvecjgi|Nemve1|206807|fgenesh1_pg.scaffold_74000003 sidekick 1 [Gallus gallus] >gi|82242600|sp|Q8AV... 8.00E-67 FN3 (13x) sidekick?

Other Nvecjgi|Nemve1|209051|fgenesh1_pg.scaffold_100000057

stabilin 2 precursor [Homo sapiens] >gi|1455595... 1.00E-159

EGF (4x wobbly), Fasciclin (2x), EGF (6x), Fasciclin (2x) stabilin engulfment

Other Nvec jgi|Nemve1|134716|e_gw.344.35.1 sorting nexin 2 [Gallus gallus] >gi|60098595... 1.00E-137 PX, vps5 sorting nexin endosomal trafficking

Other Nvecjgi|Nemve1|204357|fgenesh1_pg.scaffold_50000041 sidekick 1 [Gallus gallus] >gi|82242600|sp|Q8AV... 2.00E-55

Pan (wobbly), FN3, SEA (wobbly), FN3 (11x) Sidekick?

Other Nvecjgi|Nemve1|242037|estExt_fgenesh1_pg.C_550105

sidekick homolog 1 (chicken), isoform CRA_a [Homo... 1.00E-42 FN3 (9x), Ion_trans_2 sidekick?

Other Nvec jgi|Nemve1|35615|gw.11.151.1 bone morphogenetic protein gb|AAC41710.1| 4.00E-44 CUB (2x) BMP1 like

Other Nvec jgi|Nemve1|36325|gw.11.185.1bone morphogenetic protein 1 [Branchiostoma flori... 1.00E-31 CUB (2x) BMP1 like

PAN-FBG Nvecjgi|Nemve1|206268|fgenesh1_pg.scaffold_67000113 GP2 THP-like protein [Montipora capitata] 5.00E-17 PAN (wobbly), EGF PAN

PAN-FBG Nvecjgi|Nemve1|239485|estExt_fgenesh1_pg.C_150108 No good hits PAN (wobbly), COLFI (wobbly) PAN-COLFI

PAN-FBG Nvecjgi|Nemve1|220640|fgenesh1_pg.scaffold_549000011 No good hits PAN (wobbly), FBG PAN-FBG

PAN-FBG Nvecjgi|Nemve1|221450|fgenesh1_pg.scaffold_771000004 No good hits PAN (wobbly), FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|240565|estExt_fgenesh1_pg.C_310061 No good hits PAN (wobbly), FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|210066|fgenesh1_pg.scaffold_116000022 predicted peptides only PAN (wobbly), EGF (4X) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|202154|fgenesh1_pg.scaffold_32000166 predicted peptides only

Pan (wobbly), EGF (Wobbly), FBG (wobbly) PAN-FBG

Page 230: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

211  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

PAN-FBG Nvecjgi|Nemve1|205103|fgenesh1_pg.scaffold_56000069 predicted peptides only Pan (wobbly), EGF, FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|199873|fgenesh1_pg.scaffold_17000162 predicted peptides only PAN (wobbly), FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|201513|fgenesh1_pg.scaffold_28000130 predicted peptides only PAN (wobbly), FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|207725|fgenesh1_pg.scaffold_83000086 predicted peptides only PAN (wobbly), FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|220897|fgenesh1_pg.scaffold_598000002 predicted peptides only PAN (wobbly), FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|243269|estExt_fgenesh1_pg.C_830083 predicted peptides only PAN (wobbly), FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|205658|fgenesh1_pg.scaffold_61000090 predicted peptides only PAN, EGF, FBG (wobbly) PAN-FBG

PAN-FBG Nvecjgi|Nemve1|207720|fgenesh1_pg.scaffold_83000081 predicted peptides only PAN, EGF, FBG (wobbly) PAN-FBG

PAPPA Nvec jgi|Nemve1|10113|gw.217.3.1gb|AAC50543.1| pregnancy-associated plasma protein-A preproform … 0

LamGL, Notch (2x wobbly), Peptidase_M43, CCP (5x), Notch PAPPA

Rhamnospondin Acropora Contig6659

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 6.00E-66 Rhanspondin

Rhamnospondin Acropora Contig3825

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 1.00E-91 Rhanspondin

Rhamnospondin Acropora Contig13375

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 1.00E-99 Rhanspondin

Rhamnospondin Acropora Contig3488

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 1.00E-71 Rhanspondin

Rhamnospondin Acropora Contig7659

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 3.00E-59 Rhanspondin

Rhamnospondin Acropora Contig28422

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 3.00E-57 Rhanspondin

Rhamnospondin Acropora Amil_c933

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 5.00E-51 Rhanspondin

Rhamnospondin Acropora Contig10705

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 3.00E-59 Rhanspondin

Rhamnospondin Acropora Contig8704

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 1.00E-115 Rhanspondin

Rhamnospondin Acropora Contig5323

gb|ABD95939.1|,rhamnospondin 1 [Hydractinia symbiolongicarpus] 6.00E-89 Rhanspondin

Rhamnospondin Cltyia SA0AAB1YK18RM1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 1.00E-108 TSP1 (6x)Rhamnospondin Cltyia SA0AAA8YF13RM1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 8.00E-98 TSP1 (5x), Gal_lectin Gal_lectinRhamnospondin Cltyia SA0AAB114YB09RM1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 1.00E-86 TSP1 (5x)Rhamnospondin Cltyia SA0AAA22YC16RM1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 2.00E-63 TSP1 (4x)Rhamnospondin Cltyia IL0ABA24YA14RM1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 6.00E-71 TSP1 (4x)Rhamnospondin Nvec jgi|Nemve1|86049|e_gw.12.133.1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 5.00E-92 TSP1 (6x) RhamnospondinRhamnospondin Nvec jgi|Nemve1|34322|gw.12.157.1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 2.00E-88 TSP1 (6x) RhamnospondinRhamnospondin Nvec jgi|Nemve1|138675|e_gw.439.15.1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 5.00E-87 TSP1 (6x) RhamnospondinRhamnospondin Nvec jgi|Nemve1|2608|gw.2423.1.1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 7.00E-85 TSP1 (6x) RhamnospondinRhamnospondin Nvec jgi|Nemve1|2130|gw.3298.1.1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 4.00E-80 TSP1 (6x) RhamnospondinRhamnospondin Nvec jgi|Nemve1|82974|e_gw.6.92.1 rhamnospondin 1 [Hydractinia symbiolongicarpus] 8.00E-56 TSP1 (6x) Rhamnospondin

SPOCK Cltyia SA0AAB33YO03RM1sparc/osteonectin, cwcv and kazal-like domains pr... 4.00E-28 Kazal, efhand (wobbly), TY SPOCK

ref|XP_002155894.1| PREDICTED: similar to predicted protein [Hyd... 2.00E-78ref|XP_001641707.1| predicted protein [Nematostella vectensis] >... 3.00E-43

SPOCK Hydra CL2620Contig1gb|EDL32181.1| sparc/osteonectin, cwcv and kazal-like domains pr… 7.00E-23 Kazal, efhand (wobbly), TY SPOCK

SPOCK Nvecjgi|Nemve1|196524|fgenesh1_pg.scaffold_2000146

sparc/osteonectin, cwcv and kazal-like domains pr... 1.00E-28

FOLN (wobbly), Kazal, efhand (2x wobbly), TY SPOCK

Thrombospondin Cltyia IL0ABA26YN08RM1 HyTSR1 protein [Hydra vulgaris] 0 TSP1 (16x) HyTSRThrombospondin Cltyia IL0ABA4YL14RM1 HyTSR1 protein [Hydra vulgaris] 1.00E-144 TSP1 (8x) HyTSR

Page 231: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

212  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Thrombospondin Cltyia SA0AAA6YH14RM1 HyTSR1 protein [Hydra vulgaris] 4.00E-84 TSP1 (5x) HyTSRThrombospondin Cltyia IL0ABA18YA16RM1 HyTSR1 protein [Hydra vulgaris] 3.00E-83 TSP1 (5x) HyTSRThrombospondin Cltyia SA0AAB5YL07RM1 HyTSR1 protein [Hydra vulgaris] 8.00E-55 TSP1 (3x) HyTSRThrombospondin Cltyia SA0AAA8YF14CTG HyTSR1 protein [Hydra vulgaris] 6.00E-37 TSP1 (6x), MAM (wobbly) HyTSRThrombospondin Hydra gb|CX055898.1 HyTSR1 protein [Hydra vulgaris] 1.00E-124 TSP1 (4x) HyTSRThrombospondin Hydra gb|CF777333.1 HyTSR1 protein [Hydra vulgaris] 1.00E-113 TSP1 (3x) HyTSRThrombospondin Hydra gb|DR436385.1 HyTSR1 protein [Hydra vulgaris] 4.00E-74 TSP1 (2x) HyTSRThrombospondin Hydra CL954Contig1 HyTSR1 protein [Hydra vulgaris] 6.00E-45 TSP1 (3x) HyTSRThrombospondin Nvec jgi|Nemve1|116985|e_gw.142.42.1 HyTSR1 protein [Hydra vulgaris] 5.00E-78 TSP1 (6x) HyTSRThrombospondin Nvec jgi|Nemve1|35366|gw.12.184.1 HyTSR1 protein [Hydra vulgaris] 6.00E-66 TSP1 (5x) HyTSRThrombospondin Nvec jgi|Nemve1|33857|gw.12.136.1 HyTSR1 protein [Hydra vulgaris] 2.00E-48 TSP1 (6x) HyTSR

Page 232: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

213  

Planar Cell Polarity Signalling

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion NotesPrickle Acropora Contig10161 Prickle like 2 1.00E-126 PET, 3xLIM PricklePrickle Acropora Contig12413 Prickle 1.00E-86 PET, 3xLIM PricklePrickle Acropora Contig2872 Lim-9 1.00E-69 PET, 3xLIM PricklePrickle Acropora Contig14408 Lim-9 1.00E-92 PET, 6x LIMPrickle Acropora run001daytona_1711137 Prickle 1.00E-86 PET, 3xLIM PricklePrickle Acropora run002_436495 Prickle 1.00E-86 PET, 3xLIM PricklePrickle Clytia SA0AAB127YD03CTG Prickle 1.00E-86 3x LIM Prickle

Prickle Nvecjgi|Nemve1|177334|estExt_GenewiseH_1.C_20501 Lim-9 1.00E-112 PET, 6x LIM

Prickle Nvec jgi|Nemve1|79617|e_gw.2.68.1 Prickle 2 1.00E-129 PET, 3xLIM PricklePrickle Hydra CL9755Contig1 prickle 1.00E-31 PET PrickleDishevelled Acropora Contig1475 Dsh (Lv) 1.00E-135 clonedDishevelled Nvec jgi|Nemve1|50431|gw.98.139.1 Dsh 1.00E-176 clonedDishevelled Clytia IL0ABA16YH15RM1 Dsh 1.00E-44

Dishevelled Hydra gb|DN603381.2 Dsh (Hydra) 1.00E-67cloned -XP_002162745

Van Gogh Hydra CL8947Contig1 Vangl 1.00E-67Van Gogh Acropora Contig17842 Vangl 1.00E-100

Van Gogh Nvecjgi|Nemve1|113928|e_gw.121.14.1 Vangl 1.00E-96

Van Gogh Clytia SA0AAA8YK14RM1 Vangl 1.00E-92Inversin Acropora Contig20726 Vangl 1.00E-56Inversin Acropora Contig28177 Vangl 1.00E-73Inversin Acropora Contig499 Vangl 1.00E-63

Inversin Nvecjgi|Nemve1|94580|e_gw.37.192.1 Vangl 1.00E-63

beta-catenin Acropora !"#$%"%&'()*+,-..beta-catenin Nvec Genbank: AAL49498beta-catenin Hydra Genbank: AAC47137beta-catenin Clytia SA0AAA13YE16CTG 1.00E-170LRP5/6 Acropora Contig26866 LRP6 1.00E-156LRP5/6 Acropora run001daytona_1726367 LRP6 1.00E-126LRP5/6 Acropora run002_425839 LRP6 0 *LRP5/6 Acropora Contig33249 LRP6 0LRP5/6 Acropora Contig14656 LRP6 1.00E-127LRP5/6 Acropora Contig34020 LRP6 1.00E-87LRP5/6 Nvec jgi|Nemve1|32389|gw.3.133.1 LRP6 1.00E-81Kynepk Acropora Contig1784 1.00E-67Kynepk Acropora Amil_c20217 1.00E-74Kynepk Nvec 1.00E-84

Kynepk Hyrda CL2103Contig1Genbank XP_002157574

Atrophin Acropora Contig34266 1.00E-125Atrophin Hydra CL5991Contig1 1.00E-129Atrophin Hydra CL6620Contig1 1.00E-114

Atrophin Nvecjgi|Nemve1|93577|e_gw.33.159.1 1.00E-46

Frizzled Acropora Amil_c46307 + Amil_c11915

Frizzled Acropora Contig20909 + EST_C007-H4 Fz4 Human 1.00E-156Frizzled domain

ref|XP_001622965.1| 3063bp

Frizzled Acroporarun001daytona_628203 + Contig 7411 Fz7 1.00E-172

Frizzled domain XP_001647540.1 0

Frizzled Acropora Contig30897 + EST_D019-E7 Fz2 Xenoppus 1.00E-32 FRI domains 3286bp

jgi|Nemve1|247677|estExt_fgenesh1_pg.C_3350009

Page 233: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

214  

   

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Frizzled Acropora

EST_D016-E8 + Amil_rep_c193699 + Amil_c4306 + run001daytona_1734729 + Contig24514 893bp

Frizzled Acropora Contig6070 Fz8 Danio 1.00E-175Frizzled domain

ref|XP_001634995.1| 2958bp

Frizzled Acropora run001daytona_1732102 Fz2 Xenoppus 1.00E-32 FRI domainsFrizzled Acropora Contig8892 Fz7 Danio 1.00E-41 FRI domains ref|XP_001647540.1|Frizzled Acropora Contig4001 Frizzled-related 1.00E-38 FRI domains 976bpFrizzled Acropora Contig12602 Fz8 Mus 1.00E-21 FRI domains 954bp

Frizzled Acropora Contig11982 Fz10 Danio 1.00E-147Frizzled domain

ref|XP_001630630.1| 3063bp

Frizzled Acropora Contig8177 latrophillin3Frizzled domain

Frizzled Acropora Contig8091 smoothenedFrizzled domain

Frizzled Clytia SA0AAB17YK01RM1frizzled 2 [Hydra magnipapillata] 1.00E-122

Frizzled/7tm_2 Frizzled

Frizzled Clytia IL0ABA3YD02RM1frizzled-8 [Xenopus laevis] >gi|3869266|gb|A... 2.00E-22 Fz Frizzled - putative There are described Frizzled proteins in Hydra.

Frizzled Clytia SA0AAB36YE16RM17-transmembrane receptor frizzled-1 [Xenopus... 8.00E-20

Fz, Gal_lectin(wobbly) Frizzled - putative

Frizzled Clytia IL0ABA4YO10RM1frizzled-5 [Xenopus laevis] >gi|17432995|sp|... 2.00E-19

Fz, Gal_lectin(wobbly) Frizzled - putative

Frizzled Hydra CL4401Contig1frizzled 2 [Hydra magnipapillata] 1.00E-101 Fz Frizzled

Frizzled Hydra CL6396Contig1frizzled receptor [Hydra vulgaris] 1.00E-127 Fz Frizzled

next best hit frizzled [Aedes aegypti] >gi|108875685|gb|EA... 6.00E-07

Frizzled Hydra CL10411Contig1 frizzled receptor [Hydra vulgaris] 7.00E-60 No domains Frizzled

Frizzled Hydra gb|CX835366.2PREDICTED: Frizzled4/9/10 [Hydra magnipapill... 3.00E-59 Fz (wobbly) Frizzled

Frizzled Hydra CL2039Contig1 Fzd7 protein [Mus musculus] 6.00E-25 Fz Frizzled - putative

Frizzled Hydra CL5686Contig1frizzled homolog 8 [Rattus norvegicus] >gi|1... 5.00E-16

Fz, gal_lectin (wobbly) Frizzled - putative

Frizzled Hydra gb|CN560484.1 frizzled 2 [Hydra magnipapillata] 1.00E-33 No domains Frizzled - putative

Frizzled Nvecjgi|Nemve1|171640|estExt_gwp.C_1830043

7-transmembrane receptor frizzled-1 [Xenopus... 1.00E-180 Fz, Frizzled Frizzled

Frizzled Nvecjgi|Nemve1|168924|estExt_gwp.C_1170009

frizzled homolog 10 [Xenopus (Silurana) trop... 1.00E-155 Fz, Frizzled Frizzled

Frizzled Nvecjgi|Nemve1|139208|e_gw.466.3.1

frizzled homolog 4 [Gallus gallus] >gi|17433062... 1.00E-137 Fz, Frizzled Frizzled

Frizzled Nvecjgi|Nemve1|183962|estExt_GenewiseH_1.C_530042

frizzled-5 [Xenopus laevis] >gi|17432995|sp|... 0 Fz, Frizzled Frizzled

PREDICTED: similar to More Of MS family memb... 1.00E-107

Axin Acropora Contig4409 Axin2 1.00E-24Axin Clytia SA0AAB78YI15RM1 Axin1 1.00E-08Axin Hydra CL7700Contig1 Axin 1.00E-09

Axin Nvecjgi|Nemve1|248853|estExt_fgenesh1_pg.C_40840001 Axin1 1.00E-03

Axin Nvecjgi|Nemve1|182113|estExt_GenewiseH_1.C_340142 Axin1 1.00E-28

Page 234: Cell adhesion factors in cnidariansresearchonline.jcu.edu.au/36991/1/36991-knack-2011... · 2014-12-23 · as Dr. Mallett had very limited knowledge of biology and bioinformatics

Appendix  B       JCUSMART  survey  of  the  cnidarian  adhesome  

215  

 

Sub-Family Organism Sequence Id BLAST E_value HMMPFAM SP TM Conclusion Notes

Flamingo Nvec jgi|Nemve1|84228|e_gw.9.5.1 CELSR 0

CA (8x), EGF (2-3), LamG, EGF, LamG, EGF (3x), HormR_1, GPS, 7tm_2 No 1 Flamingo start and stop codons present

Flamingo Acropora Contig8737 + Contig3665APC Acropora Contig20548

APC Nvecjgi|Nemve1|137471|e_gw.401.17.1

APC Hydra CL4732Contig1Wnt16 Clytia SA0AAB3YI03CTG Hydra Wnt16 1.00E-86Wnt16 Hydra BAH23775.1Wnt16 Nvec ABF48091.1Wnt16 AcroporaGSK3beta Acropora Contig33988 GSK3b 0GSK3beta Clytia SA0AAB127YF01CTG GSK3b 0GSK3beta Hydra gb|CV985547.1 GSK3bGSK3beta Nvec 190252 GSK3bGroucho Acropora Contig21079

Groucho Nematostellajgi|Nemve1|184640|estExt_GenewiseH_1.C_600171

Groucho Clytia SA0AAB51YI19RM1Groucho Hydra CL3019Contig1

cloned from cDNA -Ukolova, unpublished