1
Dust, Aerosol Ions and Their Interactions with Gaseous Species in East Asia during Springtime 2001: Three-Dimensional Model Study Combining Observations Youhua Tang 1 , Gregory R. Carmichael 1 , John H. Seinfeld 2 , Donald Dabdub 3 , Rodney J. Weber 4 , Barry Huebert 5 , Antony D. Clarke 5 , Gakuji Kurata 6 , Sergio A. Guazzotti 7 , David A. Sodeman 7 , Kimberly A. Prather 7 , Itsushi Uno 8 , Jung-Hun Woo 1 , David G. Streets 9 , Chul-Han Song 4 , Adrian Sandu 10 , Theodore L. Anderson 11 , Robert W. Talbot 12 and Jack E. Dibb 12 1. Center for Global and Regional Environmental Research, University of Iowa 2. Dept. of Chemical Engineering and Environmental Science Engineering, California Institute of Technology 3. Dept. of Mechanical and Aerospace Engineering, U. of California at Irvine 4. School of Earth and Atmospheric Sciences, Georgia Institute of Technology 5. School of Ocean and Earth Science and Technology, University of Hawaii 6. Dept. of Ecological Engineering, Toyohashi University of Technology, Japan 7. Dept. of Chemistry and Biochemistry, University of California at San Diego 8. Research Institute for Applied Mechanics, Kyushu University, Japan 9. Decision and Information Sciences Division, Argonne National Laboratory 10. Dept. of Computer Science, Virginia Technical University 11. Dept. of Atmospheric Science, University of Washington at Seattle 12. Dept. of Earth Sciences, University of New Hampshire Framework of Chemical Interactions 3 3 3 2 2 4 2 2 3 NO Dust HNO NO Dust NO SO Dust SO 1.5O Dust O To represent the involvement of dust in heterogeneous chemistry we define the dust surface fresh ratio as active active fresh Ca NO Ca CaSO Ca D 2 3 4 ) ( where Ca active is the amount of dust active calcium that is available for heterogeneous reactions: Cloud field Dobson O 3 On-line TUV Aerosol Optical Properties Gas-phase absorption Tropospheric O 3 Photolysis Rates Aerosol Equilibrium Module SCAPE Gaseous Reactions SAPRC-99 Heterogeneou s Reactions (Dust) G a s - A e r o s o l E q u i l i b r i u m i n t e r a c t i o n Gaseous Loss Dust surface satu ration Aero sol Prod uction Four aerosol size bins are used: 0.1µm-0.3µm, 0.3µm- 1.0µm, 1.0µm-2.5µm, and 2.5µm-10µm (referred to as bins 1 to 4, respectively). TAS Total Ca (µg/std m 3 ) Ca Increase Simulated Total Ca (µg/std m 3 ) Ca Increase Irregular Points Re-Colored by Coarse Dust Fresh Ratio The C-130 measurements of sulfate and nitrate coarse ratios show different correlations under different dust loading, represented by the Ca concentrations. When dust loading increased, the correlations show less variation and converge to a certain point related to dust coarse ratio. Both model and measurements show similar trends. The simulations also show some points that do not follow this trend. For these points, nitrate and sulfate coarse ratios are linearly related. Re-colored by the coarse dust fresh ratio, these points were identified as fresh (un-aged) dust. When dust was very fresh, both nitrate and sulfate increase their coarse ratios since they follow similar uptake mechanisms. 0 2 4 6 8 10 T IM E (G M T) 0 2 4 6 F in e A m m on iu m (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) P IL S O bserved S im u la ted w ith Dust S im u la ted w ith o u t D ust F lig h t A ltitu d e 0 2 4 6 8 10 T IM E (G M T) 0 0.2 0.4 0.6 D u sr F resh R atio s 0 2000 4000 6000 8000 A ltitu d e (m ) F in e D u s t F re s h R atio C o arse D u s t F re s h R atio F lig h t A ltitu d e 0 0.2 0.4 0.6 0.8 1 M od eled R atio s 0 1000 2000 3000 4000 5000 6000 7000 A ltitu d e (m ) F in e D u s t F re s h R atio C o arse D u s t F re s h R atio S u lfa te F in e R a tio N itra te F in e R a tio A m m o n ia A e ro so lR atio 0 4 8 12 Io n C on cen tra tio n s (u g /std m 3 ) 0 1000 2000 3000 4000 5000 6000 7000 A ltitu d e (m ) S im u lated F in e C a S im u lated C o arse C a P IL S F in e C a M O I C o arse C a S im u lated F in e C O3 S im u lated C o arse C O3 C-130 Flight 8 encountered aged dust Dust did not influence the sub-micron sulfate, but significantly increased the super-micron sulfate concentration. Sub-micron dust ages faster than the super-micron dust. 99 100 101 102 103 104 Ju lia n D ay (G M T) 0 0.2 0.4 0.6 0.8 1 Io n F in e R a tio s a n d T ota l D u st F resh R atio 0 1000 2000 3000 4000 A G L (m ) S u lfa te F in e R a tio N itra te F in e R atio D u s t F resh R atio A ltitu d e (A G L) Longitude 90 100 110 120 130 L on g itu d e 99 100 101 102 103 104 Ju lian D ay (G M T) 0 4 8 12 16 20 F in e Ion s (u g /std m 3 ) C alciu m A m m onium N itrate S u lfate 99 100 101 102 103 104 Ju lian D a y (G M T) 0 2 4 6 8 C o a rse Io n s (u g /std m 3 ) C alcium A m m onium N itrate S u lfate Extracted model results along trajectory C (shown left) illustrating the dust aging process and composition variation. 0 2 4 6 8 T IM E (G M T) 0 2 4 6 8 F in e C a lciu m (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) P IL S O bserved S im u lated w ith Dust S im u lated w ith o u t D ust F lig h t A ltitud e 0 2 4 6 8 T IM E (G M T) 0 5 10 15 20 25 T o tal C a lciu m (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) T A S O bserved S im u la te d w ith Dust S im u la te d w ith o u t D ust F lig h t A ltitu de 0 2 4 6 8 T IM E (G M T) 0 0 .2 0 .4 0 .6 0 .8 F in e M agn esiu m (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) P IL S O bserved S im u la ted w ith Dust S im u la ted w ith ou t D ust F lig h t A ltitud e 0 2 4 6 8 T IM E (G M T) 0 1 2 3 T o ta l M agn esiu m (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) T A S O bserved S im u la ted w ith D ust S im u la ted w ith o u t D ust F lig h t A ltitud e 0 2 4 6 8 T IM E (G M T) 0 4 8 12 16 F in e S u lfa te (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) P IL S O bserved S im u late d w ith Dust S im u late d w ith o u t D ust F lig h t A ltitu de 0 2 4 6 8 T IM E (G M T) 0 4 8 12 16 T o ta l S u lfa te (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) TA S O bserved S im u la ted w ith Dust S im u la ted w ith o u t D ust F lig h t A ltitud e 0 2 4 6 8 T IM E (G M T) 0 1 2 3 4 5 6 7 F in e N itra te (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) P IL S O bserved S im u lated w ith D ust S im u lated w ith o u t D ust F lig h t A ltitu de 0 2 4 6 8 T IM E (G M T) 0 2 4 6 8 10 T o ta l N itra te (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) T A S O bserved S im u late d w ith Dust S im u late d w ith o u t D ust F lig h t A ltitu de 0 2 4 6 8 T IM E (G M T) 0 2 4 6 F in e A m m on iu m (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) P IL S O bserved S im u la ted w ith D ust S im u la ted w ith o u t D ust F lig h t A ltitud e 0 2 4 6 8 T IM E (G M T) 0 1 2 3 4 5 T o ta l A m m on iu m (u g /std m 3 ) 0 2000 4000 6000 8000 A ltitu d e (m ) T A S O bserved S im u lated w ith Dust S im u lated w ith o u t D ust F lig h t A ltitu d e 0 2 4 6 8 T IM E (G M T) 0 500 1000 1500 2000 2500 C oarse D u st (u g /std m 3 ) 0 2000 4000 6000 8000 F ligh t A ltitu d e (m ) O b served C o a rse P a rticle S im u la ted C oarse D u st F lig h t A ltitu de O b served an d S im u la ted D u st in C -130 F lig h t # 6 (0 4 /1 1 /2 0 0 1 ) 0 2 4 6 8 T IM E (G M T) 0 0.0002 0.0004 0.0006 0.0008 A O E @ 550n m (/m ) 0 2000 4000 6000 8000 F ligh t A ltitu d e (m ) O b served AOE S im u la ted A O E w ith D ust S im u la ted A O E w ith ou t D u st F lig h t A ltitu d e O b served an d S im u la ted A O E in C -130 F lig h t # 6 (0 4 /1 1 /2 0 0 1 ) Measurements Compared to the Simulations with and without Dust along C-130 Flight 6 Simulations with and without dust clearly show the dust influence on secondary aerosols. Dust increased total sulfate and nitrate concentrations, especially their coarse portions, but the high Ca loading repelled ammonia uptake. The dust storms also significantly increased aerosol extinction. Averaged Dust Concentration (µg/m 3 ) Averaged in the layers below 3km GMS-5 Dust-Enhanced Image Simulated Total Dust below 3 km with Weather Stations where Dust Were Reported Simulated Dust Fresh Ratio in the 400m level Simulated Sulfate Coarse Ratio in the 400m level C-130 Flight 6 & 7 Trajectory C Simulated Dust Fresh Ratio D fresh Simulated Sulfate (contour, µg/m 3 ) and its Coarse Ratio (color-coded) Apr 7 Apr 9 Apr 11 Apr 13 The dust storms that occurred from April 4-14, 2001 in East Asia were named “perfect storm”by some ACE-Asia investigators. These dust storms accompanied with cold-air outbreak and were transported eastward. Dusts became aged (shown by dust fresh ratio) when passing over polluted areas and sulfate in the coarse fraction increased (i.e., coarse ratio). The interaction of dust, secondary aerosols and gaseous species through equilibria and heterogeneous processes significantly affected related species and aerosol size distributions, which was verified by aircrafts (C-130 and Twin Otter), NOAA ship (Ronald H. Brown), and ground measurements. The C-130 flight 6 encountered the strongest dust events. C-130 Flight 8 Thank you for your attention For further information, please contact us: Youhua Tang [email protected] Greg Carmichael [email protected] C-130 flight 6 encountered the strongest dust storm during ACE-Asia campaign, which strongly affected both aerosol (left) and gaseous species via equalibria, heterogeneous and radiative processes. P-3 #9 DC-8 #7 A A B B Total Sulfate (g/std m 3 ) in 400m level Total Nitrate (g/std m 3 ) in 400m level Simulated total sulfate, nitrate at 6GMT, March 7, 2001 at 400m layer. The left plot shows trajectories that arrived at the DC- 8 flight 7 at 8:45GMT (A), and the P-3 flight 9 at 6:55GMT(B). 0 2 4 6 8 10 12 T IM E (G M T) 0 4 8 12 T ota l S u lfa te (u g /std m 3 ) 0 4000 8000 12000 A ltitu d e (m ) O bserved S im ulated F lig h t A ltitu de 0 2 4 6 8 10 12 T IM E (G M T) 0 4 8 12 S u lfa te (u g /std m 3 ) 1 s t b in 2n d bin 3n d bin 4 th bin 0 2 4 6 8 10 12 T IM E (G M T) 0 1 2 3 T o ta l N itra te (u g /std m 3 ) 0 100 200 300 400 C O (p p b v) O b s e rv e d N itrate S im u lated N itrate O b s e rv e d CO S im u lated CO 0 2 4 6 8 10 12 T IM E (G M T) 0 1 2 3 N itra te (u g /std m 3 ) 1 st b in 2n d bin 3n d bin 4 th bin 0 2 4 6 8 10 12 T IM E (G M T) 0 1 2 3 4 T ota l A m m on iu m (u g /std m 3 ) 0 1 2 3 E th an e (p pbv) O b served A m m onium S im u lated A m m onium O b served E th an e S im u lated E th an e 0 2 4 6 8 10 12 T IM E (G M T) 0 1 2 3 4 A m m on iu m (u g /std m 3 ) 1 s t b in 2n d bin 3n d bin 4 th bin 61 61.5 62 62.5 63 63.5 64 64.5 65 65.5 66 66.5 Ju lian D a y (G M T) 0 0.2 0.4 0.6 0.8 1 Io n F in e R a tio 0 1000 2000 3000 4000 A G L (m ) S u lfate N itra te A ltitu d e (A G L) L o n g itud e 90 100 110 120 130 140 L on g itu d e 61 62 63 64 65 66 67 Ju lia n D a y (G M T) 0 2 4 6 8 S u lfa te (u g /std m 3 ) 1 s t b in 2n d bin 3n d bin 4 th bin 61 62 63 64 65 66 67 Ju lia n D a y (G M T) 0 1 2 3 4 5 N itra te (u g /std m 3 ) 1 st b in 2n d bin 3n d bin 4 th bin 61 61.5 62 62.5 63 63.5 64 64.5 65 65.5 66 66.5 Ju lia n D ay (G M T) 0 0.4 0.8 1.2 1.6 2 NO x , HNO 3 , SO 2 , T ota l N itra te (p p b v) 0 1 2 3 4 5 NO y , NH 3 (p p b v) NOx HNO3 SO2 T o ta l A e ro so l N itra te NOy NH3 O b served HNO3 Simulated ions and their size distributions compared to filter measurements along on the DC-8 flight 7 (left), and simulated variations (down) along the trajectory A. Along this trajectory, SO 2 condensation and sulfate uptake on fine mode repel nitrate to coarse mode. Aerosol consideration in the 3-D also corrected the overestimation of HNO 3 by adding its aerosol uptake. S u lfate 5 5.3 1 N itrate 25.86 A m m onium 18.83 S u lfate 2 7.7 7 N itrate 54.08 A m m onium 1 8 .15 S u lfate 63.68 N itrate 17.02 A m m onium 19.3 S u lfate 51.89 N itrate 25.96 A m m onium 22.15 S u lfate 58.62 N itrate 1 3 .7 A m m onium 2 7 .68 Fine Ions Coarse Ions When The trajector y B passed over Shanghai When The trajector y B arrived at the P- 3 flight 9 Observed fine mass percentag es on P-3 flight 9 The P-3 flight 9 encountered fresh city plumes and the simulation showed the composition evolution in fine and coarse modes along the trajectory B. As the air mass moved away from the city the sulfate portion increased in both the fine and coarse modes, as the result of SO 2 condensation Ship Ron-Brown Cruise Trajectory Date Difference from the Arrival Point 94 96 98 100 102 104 106 Ju lia n D a y (G M T) 0 10 20 30 40 O b served F in e Ion s (u g /std m 3 ) S od iu m S u lfate N itrate Am m onium Ca 0 0.1 0.2 0.3 0.4 0.5 O b served F in e C a lciu m (u g /std m 3 ) 94 96 98 100 102 104 106 Ju lia n D a y (G M T) 0 10 20 30 40 S im u la ted F in e Ion s (u g /std m 3 ) S o diu m S u lfate N itrate A m m onium Dust 0 200 400 600 S im u la ted F in e D u st (u g /std m 3 ) 94 96 98 100 102 104 106 Ju lia n D a y (G M T) 0 4 8 12 16 O b served C oarse Ion s (u g /std m 3 ) S od iu m S u lfate N itrate Am m onium Ca 0 0.1 0.2 0.3 0.4 0.5 O b served C oarse C a lciu m (u g /std m 3 ) 94 96 98 100 102 104 106 Ju lia n D a y (G M T) 0 2 4 6 8 10 S im u la ted C oarse Ion s (u g /std m 3 ) Sodium S u lfate N itra te Am m onium Dust 0 400 800 1200 S im u la ted C oarse D u st (u g /std m 3 ) 94 96 98 100 102 104 106 Ju lia n D ay 0 100 200 300 400 A T O F M S A rea R atio s fo r C oarse S ea S a lt P a rticles A T O F M S C o arse A rea R a tio 8 1/1 0 8 A T O F M S C o arse A rea R a tio 8 1/1 6 5 S im u la ted P ro cessed C o arse C l 0 1 2 3 S im u la ted P rocessed C l (u g /std m 3 ) o n C oarse S ea salt 94 96 98 100 102 104 106 Ju lia n D ay (G M T) 0 1 2 3 4 5 S im u la ted C oarse N O 3 - (u g /std m 3 ) w ith ou t D u st an d th e D ifferen ce b etw een w ith an d w ith ou t D u st S im u lated C o arse N O 3 w ith o u t D ust S im u lated C o arse N O 3 D ifferen ce A T O FM S S ea S a lt P ercen ta g e A T O FM S D u s t P ercentage 0 20 40 60 80 100 A T O F M S M easu red P ercen ta g es o f C oarse N itra te C on ta in ed in S ea S alt and D ust NOAA research vessel Ron Brown performed extensive measurements during the ACE-Asia experiment. The following plots show the simulations compared to observations along the ship track (marked in Julian day). During the dust events (Julian day 101- 103), both observation and simulation show ion enhancement in the coarse mode. The single particle measurements with ATOFMS of sulfate (m/z 165 corresponding to Na 3 SO 4 + ), and nitrate (m/z 108 corresponding to Na 2 NO 3 + ) in the super- micron sea salt particles indicating chemical processed sea salt, which is consistent with the simulation.

Center for Global and Regional Environmental Research, University of Iowa

  • Upload
    miron

  • View
    24

  • Download
    3

Embed Size (px)

DESCRIPTION

Cloud field Dobson O 3. Gaseous Reactions SAPRC-99. Gas-phase absorption Tropospheric O 3. Gaseous Loss. Photolysis Rates. On-line TUV. Heterogeneous Reactions (Dust). Gas-Aerosol Equilibrium interaction. Dust surface saturation. Aerosol Production. Aerosol Optical Properties. - PowerPoint PPT Presentation

Citation preview

Page 1: Center for Global and Regional Environmental Research, University of Iowa

Dust, Aerosol Ions and Their Interactions with Gaseous Species in East Asia during Springtime 2001: Three-Dimensional Model Study Combining Observations

Youhua Tang1, Gregory R. Carmichael1, John H. Seinfeld2, Donald Dabdub3, Rodney J. Weber4, Barry Huebert5, Antony D. Clarke5, Gakuji Kurata6, Sergio A. Guazzotti7, David A. Sodeman7,

Kimberly A. Prather7, Itsushi Uno8, Jung-Hun Woo1, David G. Streets9, Chul-Han Song4, Adrian Sandu10, Theodore L. Anderson11, Robert W. Talbot12 and Jack E. Dibb12

1. Center for Global and Regional Environmental Research, University of Iowa2. Dept. of Chemical Engineering and Environmental Science Engineering,

California Institute of Technology

3. Dept. of Mechanical and Aerospace Engineering, U. of California at Irvine4. School of Earth and Atmospheric Sciences, Georgia Institute of Technology5. School of Ocean and Earth Science and Technology, University of Hawaii6. Dept. of Ecological Engineering, Toyohashi University of Technology, Japan

7. Dept. of Chemistry and Biochemistry, University of California at San Diego 8. Research Institute for Applied Mechanics, Kyushu University, Japan9. Decision and Information Sciences Division, Argonne National Laboratory10. Dept. of Computer Science, Virginia Technical University11. Dept. of Atmospheric Science, University of Washington at Seattle12. Dept. of Earth Sciences, University of New Hampshire

Framework of Chemical Interactions

3332

24223

NODust

HNO NODust

NO

SODust

SO 1.5ODust

O

To represent the involvement of dust in heterogeneous chemistry we define the dust surface fresh ratio as

active

activefresh Ca

NOCaCaSOCaD 234 )(

where Caactive is the amount of dust active calcium that is

available for heterogeneous reactions:

Cloud fieldDobson O3

On-line TUV

Aerosol Optical

Properties

Gas-phase absorptio

n

Tropospheric O 3

Photolysis Rates

AerosolEquilibrium Module

SCAPE

Gaseous ReactionsSAPRC-99

HeterogeneousReactions (Dust)

Gas-A

erosol E

quilib

rium

interaction

Gaseous Loss

Dust su

rface

satu

ratio

n

Aeroso

l Pro

duction

Four aerosol size bins are used: 0.1µm-0.3µm, 0.3µm-1.0µm, 1.0µm-2.5µm, and 2.5µm-10µm (referred to as bins 1 to 4, respectively).

TA

S T

otal Ca (µ

g/std m

3)

Ca Increase

Sim

ulated

Total C

a (µg/std

m3

)

Ca Increase

Irregular Points

Re-Colored by Coarse Dust Fresh RatioThe C-130 measurements of sulfate and nitrate coarse ratios show different correlations under different dust loading, represented by the Ca concentrations. When dust loading increased, the correlations show less variation and converge to a certain point related to dust coarse ratio. Both model and measurements show similar trends. The simulations also show some points that do not follow this trend. For these points, nitrate and sulfate coarse ratios are linearly related. Re-colored by the coarse dust fresh ratio, these points were identified as fresh (un-aged) dust. When dust was very fresh, both nitrate and sulfate increase their coarse ratios since they follow similar uptake mechanisms.

0 2 4 6 8 10T IM E (G M T )

0

2

4

6

Fin

e A

mm

oniu

m (

ug/

std

m3 )

0

2000

4000

6000

8000

Alt

itu

de

(m)

PILS ObservedSim ulated with DustSim ulated without DustFlight Altitude

0 2 4 6 8 10T IM E (G M T )

0

0.2

0.4

0.6

Du

sr F

resh

Rat

ios

0

2000

4000

6000

8000

Alt

itu

de

(m)

Fine Dust Fresh RatioCoarse Dust Fresh RatioFlight Altitude

0 0.2 0.4 0.6 0.8 1M o d e le d R a tio s

0

1000

2000

3000

4000

5000

6000

7000

Alt

itud

e (m

)

Fine Dust Fresh RatioCoarse Dust Fresh RatioSulfate Fine RatioNitrate Fine RatioAmmonia Aerosol Ratio

0 4 8 12Io n C o nc e n tr a tio n s (u g /s td m 3)

0

1000

2000

3000

4000

5000

6000

7000

Alt

itud

e (m

)

Simulated Fine CaSimulated Coarse CaPILS Fine CaMOI Coarse CaSimulated Fine CO3Simulated Coarse CO3

C-130 Flight 8 encountered aged dust Dust did not influence the sub-micron sulfate, but significantly increased the super-micron sulfate concentration. Sub-micron dust ages faster than the super-micron dust.

9 9 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4J u lian D a y (G M T )

0

0.2

0.4

0.6

0.8

1

Ion

Fin

e R

atio

s an

d T

otal

Dus

t F

resh

Rat

io0

1000

2000

3000

4000

AG

L (

m)

Sulfate Fine RatioNitrate Fine RatioDust Fresh RatioAltitude (AGL)Longitude

9 0

1 0 0

1 1 0

1 2 0

1 3 0

Lon

gitu

de

9 9 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4J u lia n D a y (G M T )

0

4

8

12

16

20

Fin

e Io

ns

(ug/

std

m3 )

CalciumAmmoniumNitrateSulfate

9 9 1 0 0 1 0 1 1 0 2 1 0 3 1 0 4J u lia n D a y (G M T )

0

2

4

6

8

Coa

rse

Ion

s (u

g/st

d m

3 )

CalciumAmmoniumNitrateSulfate

Extracted model results along trajectory C (shown left) illustrating the dust aging process and composition variation.

0 2 4 6 8T IM E (G M T )

0

2

4

6

8

Fin

e C

alci

um (

ug/s

td m

3 )

0

2000

4000

6000

8000

Alt

itu

de

(m)

PILS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

5

10

15

20

25

Tot

al C

alci

um (

ug/s

td m

3 )

0

2000

4000

6000

8000

Alt

itu

de

(m)

TAS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

0.2

0.4

0.6

0.8

Fin

e M

agn

esiu

m (

ug/

std

m3 )

0

2000

4000

6000

8000

Alt

itu

de

(m)

PILS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

1

2

3

Tot

al M

agne

sium

(u

g/st

d m

3 )

0

2000

4000

6000

8000

Alt

itu

de (

m)

TAS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

4

8

12

16

Fin

e S

ulf

ate

(ug/

std

m3 )

0

2000

4000

6000

8000

Alt

itu

de

(m)

PILS ObservedSim ulated with DustSim ulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

4

8

12

16

Tot

al S

ulfa

te (

ug/s

td m

3 )

0

2000

4000

6000

8000

Alt

itud

e (m

)

TAS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

1

2

3

4

5

6

7

Fin

e N

itra

te (

ug/s

td m

3 )

0

2000

4000

6000

8000

Alt

itud

e (m

)

PILS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

2

4

6

8

10

Tot

al N

itra

te (

ug/

std

m3 )

0

2000

4000

6000

8000

Alt

itud

e (m

)

TAS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

2

4

6

Fin

e A

mm

oniu

m (

ug/

std

m3 )

0

2000

4000

6000

8000

Alt

itud

e (m

)

PILS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

1

2

3

4

5

Tot

al A

mm

oniu

m (

ug/

std

m3 )

0

2000

4000

6000

8000

Alt

itu

de

(m)

TAS ObservedSimulated with DustSimulated without DustFlight Altitude

0 2 4 6 8T IM E (G M T )

0

500

1000

1500

2000

2500

Coa

rse

Du

st (

ug/

std

m3 )

0

2000

4000

6000

8000

Fli

ght

Alt

itud

e (m

)

O b serv ed C oa rse P a rtic leS im u la ted C oa rse D u stF lig h t A ltitu d e

O b served an d S im u la ted D u st in C -130 F lig h t #6 (04 /11 /2001 )

0 2 4 6 8T IM E (G M T )

0

0.0002

0.0004

0.0006

0.0008

AO

E @

550

nm

(/m

)

0

2000

4000

6000

8000

Fli

ght

Alt

itud

e (m

)

O b serv ed A O ES im u la ted A O E w ith D u stS im u la ted A O E w ith o u t D u stF lig h t A ltitu d e

O b serv ed a n d S im u la ted A O E in C -13 0 F lig h t # 6 (0 4 /1 1 /2 00 1 )

Measurements Compared to the Simulations with and without Dust along C-130 Flight 6

Simulations with and without dust clearly show the dust influence on secondary aerosols. Dust increased total sulfate and nitrate concentrations, especially their coarse portions, but the high Ca loading repelled ammonia uptake. The dust storms also significantly increased aerosol extinction.

Averaged Dust Concentration (µg/m3) Averaged in the layers below 3km

GMS-5 Dust-Enhanced Image

Simulated Total Dust below 3 km with Weather Stations where Dust Were Reported

Simulated Dust Fresh Ratio in the 400m level Simulated Sulfate Coarse Ratio in the 400m level

C-130 Flight 6 & 7

Trajectory C

Simulated Dust Fresh Ratio DfreshSimulated Sulfate (contour, µg/m3) and its Coarse Ratio (color-coded)

Apr 7

Apr 9

Apr 11

Apr 13

The dust storms that occurred from April 4-14, 2001 in East Asia were named “perfect storm”by some ACE-Asia investigators. These dust storms accompanied with cold-air outbreak and were transported eastward. Dusts became aged (shown by dust fresh ratio) when passing over polluted areas and sulfate in the coarse fraction increased (i.e., coarse ratio). The interaction of dust, secondary aerosols and gaseous species through equilibria and heterogeneous processes significantly affected related species and aerosol size distributions, which was verified by aircrafts (C-130 and Twin Otter), NOAA ship (Ronald H. Brown), and ground measurements. The C-130 flight 6 encountered the strongest dust events.

C-130 Flight 8

Thank you for your attention

For further information, please contact us:

Youhua Tang [email protected] Carmichael [email protected]

C-130 flight 6 encountered the strongest dust storm during ACE-Asia campaign, which strongly affected both aerosol (left) and gaseous species via equalibria, heterogeneous and radiative processes.

P-3 #9

DC-8 #7

A

A

BB

Total Sulfate (g/std m3) in 400m level Total Nitrate (g/std m3) in 400m level

Simulated total sulfate, nitrate at 6GMT, March 7, 2001 at 400m layer. The left plot shows trajectories that arrived at the DC-8 flight 7 at 8:45GMT (A), and the P-3 flight 9 at 6:55GMT(B).

0 2 4 6 8 10 12T IM E (G M T )

0

4

8

12

Tot

al S

ulf

ate

(ug/

std

m3 )

0

4000

8000

12000

Alt

itu

de

(m)

ObservedSimulatedFlight Altitude

0 2 4 6 8 10 12T IM E (G M T )

0

4

8

12

Su

lfat

e (u

g/st

d m

3 )

1st bin2nd bin3nd bin4th bin

0 2 4 6 8 10 12T IM E (G M T )

0

1

2

3

Tot

al N

itra

te (

ug/

std

m3 )

0

100

200

300

400

CO

(p

pb

v)

Observed NitrateSimulated NitrateObserved COSimulated CO

0 2 4 6 8 10 12T IM E (G M T )

0

1

2

3

Nit

rate

(u

g/st

d m

3 )

1st bin2nd bin3nd bin4th bin

0 2 4 6 8 10 12T IM E (G M T )

0

1

2

3

4

Tot

al A

mm

oniu

m (

ug/

std

m3 )

0

1

2

3

Eth

ane

(pp

bv)

Observed AmmoniumSimulated AmmoniumObserved EthaneSimulated Ethane

0 2 4 6 8 10 12T IM E (G M T )

0

1

2

3

4

Am

mon

ium

(u

g/st

d m

3 )

1st bin2nd bin3nd bin4th bin

6 1 6 1 . 5 6 2 6 2 . 5 6 3 6 3 . 5 6 4 6 4 . 5 6 5 6 5 . 5 6 6 6 6 . 5Ju lia n D a y (G M T )

0

0.2

0.4

0.6

0.8

1

Ion

Fin

e R

atio

0

1000

2000

3000

4000

AG

L (

m)

SulfateNitrateAltitude (AGL)Longitude

9 0

1 0 0

1 1 0

1 2 0

1 3 0

1 4 0

Lon

gitu

de

6 1 6 2 6 3 6 4 6 5 6 6 6 7Ju lian D ay (G M T )

0

2

4

6

8

Sulf

ate

(ug/

std

m3 )

1st bin2nd bin3nd bin4th bin

6 1 6 2 6 3 6 4 6 5 6 6 6 7J u lia n D a y (G M T )

0

1

2

3

4

5

Nit

rate

(u

g/st

d m

3 )

1st bin2nd bin3nd bin4th bin

6 1 6 1 . 5 6 2 6 2 . 5 6 3 6 3 . 5 6 4 6 4 . 5 6 5 6 5 . 5 6 6 6 6 . 5J u lian D ay (G M T )

0

0.4

0.8

1.2

1.6

2

NO

x, H

NO

3, S

O2,

Tot

al N

itra

te (

pp

bv)

0

1

2

3

4

5

NO

y, N

H3 (

pp

bv)

NOxHNO3SO2Total Aerosol NitrateNOyNH3Observed HNO3

Simulated ions and their size distributions compared to filter measurements along on the DC-8 flight 7 (left), and simulated variations (down) along the trajectory A. Along this trajectory, SO2 condensation and sulfate uptake on fine mode repel nitrate to coarse mode. Aerosol consideration in the 3-D also corrected the overestimation of HNO3 by adding its aerosol uptake.

Sulfate55.31

Nitrate25.86

Am m onium18.83

Sulfate27.77

Nitrate54.08

Amm onium18.15

Sulfate63.68

Nitrate17.02

Am m onium19.3

Sulfate51.89

Nitrate25.96

Am monium22.15

Sulfate58.62

Nitrate13.7

Ammonium27.68

Fine Ions Coarse Ions

When The trajectory B passed over

Shanghai

When The trajectory B arrived at the P-3 flight 9

Observed fine mass percentages on P-3 flight 9

The P-3 flight 9 encountered fresh city plumes and the simulation showed the composition evolution in fine and coarse modes along the trajectory B. As the air mass moved away from the city the sulfate portion increased in both the fine and coarse modes, as the result of SO2 condensation

Ship Ron-Brown Cruise

Trajectory Date Difference from the Arrival Point

9 4 9 6 9 8 1 0 0 1 0 2 1 0 4 1 0 6J u lia n D a y (G M T )

0

10

20

30

40

Obs

erve

d F

ine

Ions

(ug

/std

m3 ) Sodium

SulfateNitrateAmmoniumCa

0

0.1

0.2

0.3

0.4

0.5

Obs

erve

d F

ine

Cal

cium

(ug

/std

m3 )

9 4 9 6 9 8 1 0 0 1 0 2 1 0 4 1 0 6J u lia n D a y (G M T )

0

10

20

30

40

Sim

ulat

ed F

ine

Ions

(ug

/std

m3 ) Sodium

SulfateNitrateAmmoniumDust

0

200

400

600

Sim

ulat

ed F

ine

Dus

t (u

g/st

d m

3 )

9 4 9 6 9 8 1 0 0 1 0 2 1 0 4 1 0 6Ju lian D a y (G M T )

0

4

8

12

16

Obs

erve

d C

oars

e Io

ns (

ug/s

td m

3 )

SodiumSulfateNitrateAmmoniumCa

0

0.1

0.2

0.3

0.4

0.5

Obs

erve

d C

oars

e C

alci

um (

ug/s

td m

3 )

9 4 9 6 9 8 1 0 0 1 0 2 1 0 4 1 0 6J u lia n D a y (G M T )

0

2

4

6

8

10

Sim

ulat

ed C

oars

e Io

ns (

ug/s

td m

3 )

SodiumSulfateNitrateAmmoniumDust

0

400

800

1200

Sim

ulat

ed C

oars

e D

ust

(ug/

std

m3 )

9 4 9 6 9 8 1 0 0 1 0 2 1 0 4 1 0 6J u lian D a y

0

1 0 0

2 0 0

3 0 0

4 0 0

AT

OF

MS

Are

a R

atio

sfo

r C

oars

e S

ea S

alt

Par

ticl

es

ATOFMS Coarse Area Ratio 81/108ATOFMS Coarse Area Ratio 81/165Simulated Processed Coarse Cl

0

1

2

3

Sim

ulat

ed P

roce

ssed

Cl (

ug/s

td m

3 ) on

C

oars

e Se

a sa

lt

9 4 9 6 9 8 1 0 0 1 0 2 1 0 4 1 0 6J u lia n D a y (G M T )

0

1

2

3

4

5

Sim

ulat

ed C

oars

e N

O3- (u

g/st

d m

3 ) w

itho

ut

Du

stan

d th

e D

iffe

ren

ce b

etw

een

wit

h an

d w

ith

out

Dus

t

Simulated Coarse NO3 without DustSimulated Coarse NO3 DifferenceATOFMS Sea Salt PercentageATOFMS Dust Percentage

0

20

40

60

80

100

AT

OF

MS

Mea

sure

d P

erce

nta

ges

of C

oars

e N

itra

te C

onta

ined

in S

ea S

alt

and

Du

st

NOAA research vessel Ron Brown performed extensive measurements during the ACE-Asia experiment. The following plots show the simulations compared to observations along the ship track (marked in Julian day). During the dust

events (Julian day 101-103), both observation and simulation show ion enhancement in the coarse mode. The single particle measurements with ATOFMS of sulfate (m/z 165 corresponding to Na3SO4

+), and nitrate (m/z 108

corresponding to Na2NO3+) in the

super-micron sea salt particles indicating chemical processed sea salt, which is consistent with the simulation.