57
Central Limit Theorem ยง number of measurements needed to estimate the mean ยง convergence of the estimated mean ยง a better approximation than the Chebyshev Inequality (LLN). Xingru Chen [email protected] XC 2020

Central Limit Theorem - Dartmouth College

  • Upload
    others

  • View
    13

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Central Limit Theorem - Dartmouth College

Central Limit Theorem

ยง number of measurements needed to estimate the mean

ยง convergence of the estimated mean ยง a better approximation than the

Chebyshev Inequality (LLN).

Xingru [email protected]

XC 2020

Page 2: Central Limit Theorem - Dartmouth College

Central Limit Theorem

๐‘‹! ๐‘‹"

๐‘‹# ๐‘‹$

๐‘‹% โ‹ฏ

๐‘‹& ๐‘‹'normal

density function

+

+

+

+

+

XC 2020

Page 3: Central Limit Theorem - Dartmouth College

Central Limit Theorem

๐‘‹! ๐‘‹"

๐‘‹# ๐‘‹$

๐‘‹% โ‹ฏ

๐‘‹& ๐‘‹'normal

density function

++

+

+

+

If ๐‘†' is the sum of ๐‘› mutually independent random variables, then the distribution function of ๐‘†' is well-approximated by a normal density function.

XC 2020

Page 4: Central Limit Theorem - Dartmouth College

CENTRAL LIMIT THEOREM FOR BERNOULLI TRIALS

binomial distribution

XC 2020

Page 5: Central Limit Theorem - Dartmouth College

Bernoulli Trials

A Bernoulli trials process is a sequence of ๐‘› chance experiments such that

ยง Each experiment has two possible outcomes, which we may call success and failure.

ยง The probability ๐‘ of success on each experiment is the same for each experiment, and this probability is not affected by any knowledge of previous outcomes. The probability ๐‘ž of failure is given by ๐‘ž = 1 โˆ’ ๐‘.

50%Toss a Coinhead & tail

60%Weather Forecast

not rain & rain

12.5%Wheel of Fortune50 points & others

๐’‘Bernoulli Trialsoutcome 1 & 2

XC 2020

Page 6: Central Limit Theorem - Dartmouth College

Binomial Distribution

ยง Let ๐‘› be a positive integer and let ๐‘ be a real number between 0 and 1.

ยง Let ๐ต be the random variable which counts the number of successes in a Bernoulli trials process with parameters ๐‘› and ๐‘.

ยง Then the distribution ๐‘(๐‘›, ๐‘, ๐‘˜) of ๐ต is called the binomial distribution.

Binomial Distribution

๐‘ ๐‘›, ๐‘, ๐‘˜ =๐‘›๐‘˜๐‘(๐‘ž')(

1 2 3 4 5

โœ— โœ“ โœ— โœ— โœ“

XC 2020

Page 7: Central Limit Theorem - Dartmouth College

Binomial Distribution

ยง Consider a Bernoulli trials process with probability ๐‘ for success on each trial.

ยง Let ๐‘‹* = 1 or 0 according as the ๐‘–th outcome is a success or failure.

ยง Let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹'. Then ๐‘†' is the number of successes in ๐‘› trials.

ยง We know that ๐‘†' has as its distribution the binomial probabilities ๐‘(๐‘›, ๐‘, ๐‘˜).

XC 2020

Page 8: Central Limit Theorem - Dartmouth College

๐‘› increases

drifts off to the right

flatten out

XC 2020

Page 9: Central Limit Theorem - Dartmouth College

The Standardized Sum of ๐‘†4

ยง Consider a Bernoulli trials process with probability ๐‘ for success on each trial.

ยง Let ๐‘‹* = 1 or 0 according as the ๐‘–th outcome is a success or failure.

ยง Let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹'. Then ๐‘†' is the number of successes in ๐‘› trials.

ยง We know that ๐‘†' has as its distribution the binomial probabilities ๐‘(๐‘›, ๐‘, ๐‘˜).

ยง The standardized sum of ๐‘†' is given by

๐‘†'โˆ— =,!)'-'-.

.

๐œ‡ = โ‹ฏ ๐œŽ% = โ‹ฏ

XC 2020

Page 10: Central Limit Theorem - Dartmouth College

The Standardized Sum of ๐‘†4

ยง Consider a Bernoulli trials process with probability ๐‘ for success on each trial.

ยง Let ๐‘‹* = 1 or 0 according as the ๐‘–th outcome is a success or failure.

ยง Let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹'. Then ๐‘†' is the number of successes in ๐‘› trials.

ยง We know that ๐‘†' has as its distribution the binomial probabilities ๐‘(๐‘›, ๐‘, ๐‘˜).

ยง The standardized sum of ๐‘†' is given by

๐‘†'โˆ— =,!)'-'-.

.

ยง ๐‘†'โˆ— always has expected value 0 and variance 1.๐œ‡ = 0

๐œŽ% = 1

XC 2020

Page 11: Central Limit Theorem - Dartmouth College

The Standardized Sum of ๐‘†4

=๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

๐‘(๐‘›, ๐‘, 1)๐‘(๐‘›, ๐‘, 2)

๐‘(๐‘›, ๐‘, 3)๐‘(๐‘›, ๐‘, 4)

๐‘(๐‘›, ๐‘, 5)

๐‘(๐‘›, ๐‘, 0)

โ‹ฏ๐‘(๐‘›, ๐‘, ๐‘›)

๐‘(๐‘›, ๐‘, ๐‘˜)

0 1 2 3 4 5 โ€ฆ ๐‘›

0 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

1 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

2 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

3 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

4 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

5 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

โ€ฆ ๐‘› โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

๐‘˜

๐‘ฅXC 2020

Page 12: Central Limit Theorem - Dartmouth College

๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

๐œ‡ = 0

๐œŽ% = 1

XC 2020

Page 13: Central Limit Theorem - Dartmouth College

standardized sum

standard normal distribution

shapes: sameheights: different

why?

XC 2020

Page 14: Central Limit Theorem - Dartmouth College

standardized sum standard normal distribution

shapes: sameheights: different why?

standardized sum: โˆ‘(/0' โ„Ž* = 1

standard normal distribution: โˆซ)1

21๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = 1

XC 2020

Page 15: Central Limit Theorem - Dartmouth College

standardized sum: โˆ‘(/0' โ„Ž* = 1

standard normal distribution: โˆซ)1

21๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ = 1 โ‰ˆ โˆ‘(/0' ๐‘“ ๐‘ฅ* ๐‘‘๐‘ฅ

C(/0

'

โ„Ž* = 1 C(/0

'

๐‘“ ๐‘ฅ* ๐‘‘๐‘ฅ โ‰ˆ 1

=โ„Ž( = ๐‘“ ๐‘ฅ( ๐‘‘๐‘ฅ

=๐‘“ ๐‘ฅ( =โ„Ž(๐‘‘๐‘ฅ

XC 2020

Page 16: Central Limit Theorem - Dartmouth College

=โ„Ž) = ๐‘(๐‘›, ๐‘, ๐‘˜)=๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž =๐‘‘๐‘ฅ = ๐‘ฅ)*& โˆ’ ๐‘ฅ) =

1๐‘›๐‘๐‘ž

๐‘(๐‘›, ๐‘, 1)๐‘(๐‘›, ๐‘, 2)

๐‘(๐‘›, ๐‘, 3)๐‘(๐‘›, ๐‘, 4)

๐‘(๐‘›, ๐‘, 5)

๐‘(๐‘›, ๐‘, 0)

โ‹ฏ๐‘(๐‘›, ๐‘, ๐‘›)

0 1 2 3 4 5 โ€ฆ ๐‘›

0 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

1 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

2 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

3 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

4 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

5 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

โ€ฆ ๐‘› โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

=๐‘˜ = ๐‘›๐‘๐‘ž๐‘ฅ) + ๐‘›๐‘ ๐‘Ž : the integer nearest to ๐‘Ž

XC 2020

Page 17: Central Limit Theorem - Dartmouth College

โ„Ž( = ๐‘(๐‘›, ๐‘, ๐‘˜)

๐‘‘๐‘ฅ = ๐‘ฅ(2& โˆ’ ๐‘ฅ( =1๐‘›๐‘๐‘ž

๐‘˜ = ๐‘›๐‘๐‘ž๐‘ฅ( + ๐‘›๐‘

=๐‘“ ๐‘ฅ( = 3"45= ๐‘›๐‘๐‘ž ๐‘(๐‘›, ๐‘, ๐‘›๐‘๐‘ž๐‘ฅ( + ๐‘›๐‘ )

XC 2020

Page 18: Central Limit Theorem - Dartmouth College

Central Limit Theorem for Binomial Distributions

ยง For the binomial distribution ๐‘(๐‘›, ๐‘, ๐‘˜) we have

lim'โ†’1

๐‘›๐‘๐‘ž๐‘ ๐‘›, ๐‘, ๐‘›๐‘ + ๐‘ฅ ๐‘›๐‘๐‘ž = ๐œ™(๐‘ฅ),

where ๐œ™(๐‘ฅ) is the standard normal density.

ยง The proof of this theorem can be carried out using Stirlingโ€™s approximation.

Stirlingโ€™s FormulaThe sequence ๐‘›! is asymptotically equal

to ๐‘›'๐‘’)' 2๐œ‹๐‘›.

XC 2020

Page 19: Central Limit Theorem - Dartmouth College

Approximating Binomial Distributions

=lim'โ†’1

๐‘›๐‘๐‘ž๐‘ ๐‘›, ๐‘, ๐‘›๐‘ + ๐‘ฅ ๐‘›๐‘๐‘ž = ๐œ™(๐‘ฅ)

?๐‘ ๐‘›, ๐‘, ๐‘˜ โ‰ˆ โ‹ฏ

normalbinomial

binomial normal

XC 2020

Page 20: Central Limit Theorem - Dartmouth College

Approximating Binomial Distributions

=lim'โ†’,

๐‘›๐‘๐‘ž๐‘ ๐‘›, ๐‘, ๐‘›๐‘ + ๐‘ฅ ๐‘›๐‘๐‘ž = ๐œ™(๐‘ฅ) ?๐‘ ๐‘›, ๐‘, ๐‘˜ โ‰ˆ โ‹ฏ

๐‘˜ = ๐‘›๐‘ + ๐‘ฅ ๐‘›๐‘๐‘ž

๐‘ฅ =๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

๐‘ ๐‘›, ๐‘, ๐‘˜ โ‰ˆ๐œ™(๐‘ฅ)๐‘›๐‘๐‘ž

๐‘(๐‘›, ๐‘, ๐‘˜) โ‰ˆ1๐‘›๐‘๐‘ž

๐œ™(๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

)

XC 2020

Page 21: Central Limit Theorem - Dartmouth College

Example

Toss a coin

Find the probability of exactly 55 heads in 100 tosses of a coin.

=lim'โ†’,

๐‘›๐‘๐‘ž๐‘ ๐‘›, ๐‘, ๐‘›๐‘ + ๐‘ฅ ๐‘›๐‘๐‘ž = ๐œ™(๐‘ฅ)

๐‘(๐‘›, ๐‘, ๐‘˜) โ‰ˆ1๐‘›๐‘๐‘ž

๐œ™(๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

)

XC 2020

Page 22: Central Limit Theorem - Dartmouth College

Example

Toss a coin

Find the probability of exactly 55 heads in 100 tosses of a coin.

๐‘(๐‘›, ๐‘, ๐‘˜) โ‰ˆ1๐‘›๐‘๐‘ž

๐œ™(๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

)๐‘› = 100 ๐‘ =12

๐‘›๐‘ = 50 ๐‘›๐‘๐‘ž = 5

๐‘˜ = 55

๐‘ฅ =๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž = 1 ๐‘(100,

12, 55) โ‰ˆ

15๐œ™(1)

XC 2020

Page 23: Central Limit Theorem - Dartmouth College

Example

Toss a coin

Find the probability of exactly 55 heads in 100 tosses of a coin.

๐‘(๐‘›, ๐‘, ๐‘˜) โ‰ˆ1๐‘›๐‘๐‘ž ๐œ™(

๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž )

๐‘ 100,12, 55 โ‰ˆ

15๐œ™ 1 =

15(12๐œ‹

๐‘’)&/%)

Standard normal distribution ๐’

๐œ‡ = 0 and ๐œŽ = 1

๐‘“8 ๐‘ฅ = &%9:

๐‘’) 5); #/%:# = &%9๐‘’)5#/%.

XC 2020

Page 24: Central Limit Theorem - Dartmouth College

๐‘(๐‘›, ๐‘, 1)๐‘(๐‘›, ๐‘, 2)

๐‘(๐‘›, ๐‘, 3)๐‘(๐‘›, ๐‘, 4)

๐‘(๐‘›, ๐‘, 5)

๐‘(๐‘›, ๐‘, 0)

โ‹ฏ๐‘(๐‘›, ๐‘, ๐‘›)

0 1 2 3 4 5 โ€ฆ ๐‘›

0 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

1 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

2 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

3 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

4 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

5 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

โ€ฆ ๐‘› โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

A specific outcome

XC 2020

Page 25: Central Limit Theorem - Dartmouth College

๐‘(๐‘›, ๐‘, 1)๐‘(๐‘›, ๐‘, 2)

๐‘(๐‘›, ๐‘, 3)๐‘(๐‘›, ๐‘, 4)

๐‘(๐‘›, ๐‘, 5)

๐‘(๐‘›, ๐‘, 0)

โ‹ฏ๐‘(๐‘›, ๐‘, ๐‘›)

0 1 2 3 4 5 โ€ฆ ๐‘›

0 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

1 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

2 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

3 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

4 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

5 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

โ€ฆ ๐‘› โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

Outcomes in an Interval

XC 2020

Page 26: Central Limit Theorem - Dartmouth College

Central Limit Theorem for Binomial Distributions

ยง Let ๐‘†' be the number of successes in n Bernoulli trials with probability ๐‘ for success, and let ๐‘Ž and ๐‘ be two fixed real numbers.

ยง Then

lim'โ†’21

๐‘ƒ ๐‘Ž โ‰ค ,!)'-'-.

โ‰ค ๐‘ = โˆซ<=๐œ™ ๐‘ฅ ๐‘‘๐‘ฅ = NA(๐‘Ž, ๐‘).

ยง We denote this area by NA(๐‘Ž, ๐‘).

๐‘Ž โ‰ค๐‘†' โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

= ๐‘†'โˆ— โ‰ค ๐‘ ๐‘Ž ๐‘›๐‘๐‘ž + ๐‘›๐‘ โ‰ค ๐‘†' โ‰ค ๐‘ ๐‘›๐‘๐‘ž + ๐‘›๐‘

XC 2020

Page 27: Central Limit Theorem - Dartmouth College

lim'โ†’21

๐‘ƒ ๐‘Ž โ‰ค ,!)'-'-.

โ‰ค ๐‘ = NA(๐‘Ž, ๐‘).

๐‘Ž โ‰ค๐‘†' โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

= ๐‘†'โˆ— โ‰ค ๐‘ ๐‘Ž ๐‘›๐‘๐‘ž + ๐‘›๐‘ โ‰ค ๐‘†' โ‰ค ๐‘ ๐‘›๐‘๐‘ž + ๐‘›๐‘

๐‘– โ‰ค ๐‘†' โ‰ค ๐‘— ๐‘Ž =๐‘– โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

โ‰ค ๐‘†'โˆ— โ‰ค๐‘— โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

= ๐‘

lim'โ†’21

๐‘ƒ ๐‘– โ‰ค ๐‘†' โ‰ค ๐‘— = lim'โ†’21

๐‘ƒ *)'-'-.

โ‰ค ๐‘†'โˆ— โ‰ค>)'-'-.

= NA(*)'-'-.

, >)'-'-.

).

Approximating Binomial Distributions

XC 2020

Page 28: Central Limit Theorem - Dartmouth College

๐‘– โ‰ค ๐‘†' โ‰ค ๐‘— ๐‘Ž =๐‘– โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

โ‰ค ๐‘†'โˆ— โ‰ค๐‘— โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

= ๐‘

lim'โ†’21

๐‘ƒ ๐‘– โ‰ค ๐‘†' โ‰ค ๐‘— = lim'โ†’21

๐‘ƒ *)'-'-.

โ‰ค ๐‘†'โˆ— โ‰ค>)'-'-.

= NA(*)'-'-.

, >)'-'-.

).

Approximating Binomial Distributions (more accurate)

lim@โ†’BC

๐‘ƒ ๐‘– โ‰ค ๐‘†@ โ‰ค ๐‘— = NA(DE!"E@F

@FG,HB!"E@F

@FG).

๐‘– ๐‘—

XC 2020

Page 29: Central Limit Theorem - Dartmouth College

Example

Toss a coin

A coin is tossed 100 times. Estimate the probability that the number of heads lies between 40 and 60 (including the end points).

=lim'โ†’21

๐‘ƒ ๐‘– โ‰ค ๐‘†' โ‰ค ๐‘— = NA(๐‘– โˆ’ 12 โˆ’ ๐‘›๐‘

๐‘›๐‘๐‘ž ,๐‘— + 12 โˆ’ ๐‘›๐‘

๐‘›๐‘๐‘ž )

XC 2020

Page 30: Central Limit Theorem - Dartmouth College

Toss a coin

A coin is tossed 100 times. Estimate the probability that the number of heads lies between 40 and 60 (including the end points).

๐‘› = 100 ๐‘ =12

๐‘›๐‘ = 50 ๐‘›๐‘๐‘ž = 5

๐‘– = 40

๐‘– โˆ’ 12 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

= โˆ’2.1

๐‘— = 60

๐‘— + 12 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

= 2.1

the outcome will not deviate by more than two standard deviations from the expected value

XC 2020

Page 31: Central Limit Theorem - Dartmouth College

Toss a coin

A coin is tossed 100 times. Estimate the probability that the number of heads lies between 40 and 60 (including the end points).

๐‘– = 40

๐‘– โˆ’ 12 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž = โˆ’2.1

๐‘— = 60

๐‘— + 12 โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž = 2.1

=lim$โ†’&'

๐‘ƒ ๐‘– โ‰ค ๐‘†$ โ‰ค ๐‘— = NA(๐‘– โˆ’ 12 โˆ’ ๐‘›๐‘

๐‘›๐‘๐‘ž,๐‘— + 12 โˆ’ ๐‘›๐‘

๐‘›๐‘๐‘ž)

=lim$โ†’&'

๐‘ƒ 40 โ‰ค ๐‘†$ โ‰ค 60 = NA โˆ’2.1,2.1= 2NA 0, 2.1

2๐œŽ 2.1๐œŽ

XC 2020

Page 32: Central Limit Theorem - Dartmouth College

Approximating Binomial Distribution

๐‘บ๐’โˆ— = ๐’™lim$โ†’'

๐‘›๐‘๐‘ž๐‘ ๐‘›, ๐‘, ๐‘›๐‘ + ๐‘ฅ ๐‘›๐‘๐‘ž = ๐œ™(๐‘ฅ)

๐‘บ๐’ = ๐’Œ

๐‘(๐‘›, ๐‘, ๐‘˜) โ‰ˆ1๐‘›๐‘๐‘ž ๐œ™(

๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž )

๐’‚ โ‰ค ๐‘บ๐’โˆ— โ‰ค ๐’ƒ

lim'โ†’*,

๐‘ƒ ๐‘Ž โ‰ค -!.'/'/0

โ‰ค ๐‘ = NA(๐‘Ž, ๐‘).

๐’Š โ‰ค ๐‘บ๐’ โ‰ค ๐’‹

lim$โ†’&'

๐‘ƒ ๐‘– โ‰ค ๐‘†$ โ‰ค ๐‘— = NA(()!")$*

$*+,,&!")$*

$*+).

CLT

XC 2020

Page 33: Central Limit Theorem - Dartmouth College

CENTRAL LIMIT THEOREM FOR DISCRETE INDEPENDENT TRIALS

any independent trials process such that the individual trials have finite variance

XC 2020

Page 34: Central Limit Theorem - Dartmouth College

The Standardized Sum of ๐‘†4

ยง Consider an independent trials process with common distribution function ๐‘š ๐‘ฅdefined on the integers, with expected value ๐œ‡ and variance ๐œŽ%.

ยง Let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹' be the sum of ๐‘› independent discrete random variables of the process.

ยง The standardized sum of ๐‘†' is given by

๐‘†'โˆ— =,!)';':#

.

ยง ๐‘†'โˆ— always has expected value 0 and variance 1.

๐ธ(๐‘†') = โ‹ฏ

๐‘‰(๐‘†') = โ‹ฏ

XC 2020

Page 35: Central Limit Theorem - Dartmouth College

independent trials process

๐‘ƒ(๐‘†' = ๐‘˜)

๐‘˜ ๐‘ฅ)=๐‘˜ โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

=๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

normal

๐‘›๐œŽ-๐‘ƒ(๐‘†$ = ๐‘˜)

XC 2020

Page 36: Central Limit Theorem - Dartmouth College

Approximation Theorem

ยง Let ๐‘‹&, ๐‘‹%, โ‹ฏ, ๐‘‹' be an independent trials process and let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹'.

ยง Assume that the greatest common divisor of the differences of all the values that the ๐‘‹( can take on is 1.

ยง Let ๐ธ ๐‘‹( = ๐œ‡ and ๐‘‰ ๐‘‹( = ๐œŽ%.

ยง Then for ๐‘› large,

๐‘ƒ(๐‘†' = ๐‘˜) โ‰ˆ &':#

๐œ™(()';':#

).

ยง Here ๐œ™(๐‘ฅ) is the standard normal density.

XC 2020

Page 37: Central Limit Theorem - Dartmouth College

Central Limit Theorem for a Discrete Independent Trials Process

ยง Let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹' be the sum of n discrete independent random variables with common distribution having expected value ๐œ‡ and variance ๐œŽ%.

ยง Then, for ๐‘Ž < ๐‘,

lim'โ†’21

๐‘ƒ ๐‘Ž โ‰ค ,!)';':#

โ‰ค ๐‘ = &%9โˆซ<

= ๐‘’)5#/%๐‘‘๐‘ฅ = NA(๐‘Ž, ๐‘).

XC 2020

Page 38: Central Limit Theorem - Dartmouth College

Approximating a Discrete Independent Trials Process

๐‘ƒ(๐‘†' = ๐‘˜) โ‰ˆ1๐‘›๐œŽ%

๐œ™(๐‘˜ โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

)

lim'โ†’*,

๐‘ƒ ๐‘ โ‰ค ๐‘†' โ‰ค ๐‘‘ =

NA(1.'2'3"

, 4.'2'3"

).

๐‘บ๐’ = ๐’Œ

๐’„ โ‰ค ๐‘บ๐’ โ‰ค ๐’…

CLT

XC 2020

Page 39: Central Limit Theorem - Dartmouth College

Approximating a Discrete Independent Trials Process

lim'โ†’*,

๐‘ƒ ๐‘– โ‰ค ๐‘†' โ‰ค ๐‘— =

NA(5.#".'/

'/0,6*#".'/

'/0).

๐’Š โ‰ค ๐‘บ๐’ โ‰ค ๐’‹

๐‘ƒ(๐‘†' = ๐‘˜) โ‰ˆ1๐‘›๐œŽ%

๐œ™(๐‘˜ โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

)

๐‘บ๐’ = ๐’Œ

๐‘(๐‘›, ๐‘, ๐‘˜) โ‰ˆ1๐‘›๐‘๐‘ž

๐œ™(๐‘˜ โˆ’ ๐‘›๐‘๐‘›๐‘๐‘ž

)

๐‘บ๐’ = ๐’Œ

lim'โ†’*,

๐‘ƒ ๐‘ โ‰ค ๐‘†' โ‰ค ๐‘‘ =

NA(1.'2'3"

, 4.'2'3"

).

๐’„ โ‰ค ๐‘บ๐’ โ‰ค ๐’…

Bernoulli

XC 2020

Page 40: Central Limit Theorem - Dartmouth College

ExampleA surveying instrument makes an error of -2, -1, 0, 1, or 2 feet with equal probabilities when measuring the height of a 200-foot tower.

XC 2020

Page 41: Central Limit Theorem - Dartmouth College

Find the expected value and the variance for the height obtained using this instrument once.

Example

height = error + 200

error -2 -1 0 1 2

probability15

15

15

15

15

๐ธ error =15โˆ’2 โˆ’ 1 + 0 + 1 + 2 = 0

๐‘‰ error =15(โˆ’2)%+(โˆ’1)%+0% + 1% + 2% = 2

๐ธ height= 0 + 200 = 200

๐‘‰ height = 2

XC 2020

Page 42: Central Limit Theorem - Dartmouth College

Estimate the probability that in 18 independent measurements of this tower, the average of the measurements is between 199 and 201, inclusive.

Example

๐œ‡ = 200 ๐œŽ% = 2

=lim'โ†’21

๐‘ƒ ๐‘ โ‰ค ๐‘†' โ‰ค ๐‘‘ = NA(๐‘ โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

,๐‘‘ โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

).

199 โ‰ค๐‘†'๐‘›=๐‘†'18

โ‰ค 201๐‘› = 18

XC 2020

Page 43: Central Limit Theorem - Dartmouth College

Example

๐œ‡ = 200 ๐œŽ% = 2

=lim'โ†’*,

๐‘ƒ ๐‘ โ‰ค ๐‘†' โ‰ค ๐‘‘ = NA(๐‘ โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

,๐‘‘ โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

).

199 โ‰ค๐‘†'๐‘›=๐‘†'18

โ‰ค 201๐‘› = 18

๐‘ƒ 199 โ‰ค๐‘†'18

โ‰ค 201 = ๐‘ƒ 3582 โ‰ค ๐‘†' โ‰ค 3618

โ‰ˆ NA3582 โˆ’ 3600

36,3618 โˆ’ 3600

36= NA(โˆ’3, 3).

XC 2020

Page 44: Central Limit Theorem - Dartmouth College

03

01

02

ยง independent

Discrete Random Variables

ยง independentยง identical

Bernoulli Trials

ยง independentยง identical

Discrete Trials

Central Limit Theorem

XC 2020

Page 45: Central Limit Theorem - Dartmouth College

Central Limit Theorem

ยง Let ๐‘‹&, ๐‘‹%, โ‹ฏ, ๐‘‹' be a sequence of independent discrete random variables. There exist a constant ๐ด, such that ๐‘‹* โ‰ค ๐ด for all ๐‘–.

ยง Let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹' be the sum. Assume that ๐‘†' โ†’ โˆž.

ยง For each ๐‘–, denote the expected value and variance of ๐‘‹* by ๐œ‡* and ๐œŽ*%, respectively.

ยง Define the expected value and variance of ๐‘†' to be ๐‘š' and ๐‘ '%, respectively.

ยง For ๐‘Ž < ๐‘,

lim'โ†’21

๐‘ƒ ๐‘Ž โ‰ค ,!)@!A!

โ‰ค ๐‘ = &%9โˆซ<

= ๐‘’)5#/%๐‘‘๐‘ฅ = NA(๐‘Ž, ๐‘).

XC 2020

Page 46: Central Limit Theorem - Dartmouth College

CENTRAL LIMIT THEOREM FOR CONTINUOUS INDEPENDENT TRIALScontinuous random variables with a common density function

XC 2020

Page 47: Central Limit Theorem - Dartmouth College

Central Limit Theorem

ยง Let ๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹' be the sum of ๐‘› independent continuous random variables with common density function ๐‘ having expected value ๐œ‡ and variance ๐œŽ%.

ยง Let

๐‘†'โˆ— =,!)';':#

.

ยง Then we have, for all ๐‘Ž < ๐‘,

lim'โ†’21

๐‘ƒ ๐‘Ž โ‰ค ๐‘†'โˆ— โ‰ค ๐‘ = &%9โˆซ<

= ๐‘’)5#/%๐‘‘๐‘ฅ = NA(๐‘Ž, ๐‘).

XC 2020

Page 48: Central Limit Theorem - Dartmouth College

Example

ยง Suppose a surveyor wants to measure a known distance, say of 1 mile, using a transit and some method of triangulation.

ยง He knows that because of possible motion of the transit, atmospheric distortions, and human error, any one measurement is apt to slightly in error.

ยง He plans to make several measurements and take an average.

ยง He assumes that his measurements are independent random variables with common distribution of mean ๐œ‡ = 1 and standard deviation ๐œŽ =0.0002.

XC 2020

Page 49: Central Limit Theorem - Dartmouth College

Example

ยง He can say that if ๐‘› is large, the average ,!

'has a density function that

is approximately normal, with mean 1mile, and standard deviation 0.000%

'miles.

ยง How many measurements should he make to be reasonably sure that his average lies within 0.0001 of the true value?

XC 2020

Page 50: Central Limit Theorem - Dartmouth College

Example

๐œ‡ = 1

Expected Value

๐œŽ = 0.0002

Standard Deviation๐‘†' = ๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹'

Sum of ๐’ independent measurements

ยง He can say that if ๐‘› is large, the average ,!' has a density function that is approximately normal, with mean 1 mile, and standard deviation 0.000%

'miles.

๐œŽU = (0.0002)UVariance ๐ด' =

๐‘‹& + ๐‘‹% +โ‹ฏ+ ๐‘‹'๐‘›

๐ธ ๐ด' = ๐œ‡๐ท ๐ด' =

๐œŽ๐‘›

๐‘‰ ๐ด' =๐œŽ%

๐‘›

Average of ๐’ independent measurements

XC 2020

Page 51: Central Limit Theorem - Dartmouth College

Example

Chebyshev inequality

LLN

๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

CLT

ยง How many measurements should he make to be reasonably sure that his average lies within 0.0001 of the true value?

XC 2020

Page 52: Central Limit Theorem - Dartmouth College

๐ˆ๐Ÿ

๐œบ๐Ÿ

๐‘ท(|๐‘ฟ โˆ’ ๐|โ‰ฅ ๐œบ)

inequalityChebyshev๐‘ท(|๐‘ฟ โˆ’ ๐| โ‰ฅ ๐œบ) โ‰ค

๐ˆ๐Ÿ

๐œบ๐Ÿ

This is a sample text. Insert your desired text

here.

This is a sample text. Insert your desired text here.

Let ๐‘‹ be a discrete random variable with expected value ๐œ‡ = ๐ธ(๐‘‹) and variance ๐œŽ% = ๐‘‰(๐‘‹), and let ๐œ€ > 0 be any positive number. Then

not necessarily positive

XC 2020

Page 53: Central Limit Theorem - Dartmouth College

Example

Chebyshev inequality

LLN

ยง How many measurements should he make to be reasonably sure that his average lies within 0.0001 of the true value?

๐œ‡ = 1 ๐œŽ% = (0.0002)%

=๐‘ƒ(|๐‘‹ โˆ’ ๐œ‡| โ‰ฅ ๐œ€) โ‰ค๐œŽ%

๐œ€%

๐‘ƒ ๐ด' โˆ’ ๐œ‡ โ‰ฅ 0.0001 โ‰ค๐œŽ%

๐‘›๐œ€%=

0.0002 %

๐‘› 0.0001 % =4๐‘›

XC 2020

Page 54: Central Limit Theorem - Dartmouth College

Example

Chebyshev inequality

LLN

ยง How many measurements should he make to be reasonably sure that his average lies within 0.0001 of the true value?

=๐‘ƒ(|๐‘‹ โˆ’ ๐œ‡| โ‰ฅ ๐œ€) โ‰ค๐œŽ%

๐œ€%

๐‘ƒ ๐ด' โˆ’ ๐œ‡ โ‰ฅ 0.0001 โ‰ค๐œŽ%

๐‘›๐œ€%=4๐‘›= 0.05 ๐‘› = 80

XC 2020

Page 55: Central Limit Theorem - Dartmouth College

Example

๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

CLT

=lim'โ†’21

๐‘ƒ ๐‘Ž โ‰ค ๐‘†'โˆ— โ‰ค ๐‘ = NA(๐‘Ž, ๐‘)

๐‘ƒ ๐ด' โˆ’ ๐œ‡ โ‰ค 0.0001 = ๐‘ƒ ๐‘†' โˆ’ ๐‘›๐œ‡ โ‰ค 0.5๐‘›๐œŽ

= ๐‘ƒ๐‘†' โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

โ‰ค 0.5 ๐‘› = ๐‘ƒ โˆ’0.5 ๐‘› โ‰ค ๐‘†'โˆ— โ‰ค 0.5 ๐‘›

โ‰ˆ NA โˆ’0.5 ๐‘›, 0.5 ๐‘›

๐œ‡ = 1 ๐œŽ% = (0.0002)%

XC 2020

Page 56: Central Limit Theorem - Dartmouth College

Example

๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

CLT

=lim'โ†’21

๐‘ƒ ๐‘Ž โ‰ค ๐‘†'โˆ— โ‰ค ๐‘ = NA(๐‘Ž, ๐‘)

๐‘ƒ ๐ด' โˆ’ ๐œ‡ โ‰ค 0.0001 โ‰ˆ NA โˆ’0.5 ๐‘›, 0.5 ๐‘› = 0.95

0.5 ๐‘› = 2 ๐‘› = 16

XC 2020

Page 57: Central Limit Theorem - Dartmouth College

Example

Chebyshev inequality

LLN

๐‘†'โˆ— =๐‘†' โˆ’ ๐‘›๐œ‡๐‘›๐œŽ%

CLT

ยง How many measurements should he make to be reasonably sure that his average lies within 0.0001 of the true value?

๐‘› = 80 ๐‘› = 16

XC 2020