51
Centripetal Centripetal Acceleration Acceleration 12 Examples with full solutions

Centripetal Acceleration 12 Examples with full solutions

Embed Size (px)

Citation preview

Page 1: Centripetal Acceleration 12 Examples with full solutions

Centripetal AccelerationCentripetal Acceleration

12 Examples with full solutions

Page 2: Centripetal Acceleration 12 Examples with full solutions

Example 1Example 1A 1500 kg car is moving on a flat road and negotiates a curve whose radius is 35m. If the coefficient of static friction between the tires and the road is 0.5, determine the maximum speed the car can have in order to successfully make the turn.

35m

Page 3: Centripetal Acceleration 12 Examples with full solutions

Example 1 – Example 1 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

GF--------------

NF--------------

fF--------------

+y

+x

This static friction is the only horizontal force

keeping the car moving toward the centre of the arc (else the car

will drive off the road).

ca

Acceleration direction

Page 4: Centripetal Acceleration 12 Examples with full solutions

Example 1 -Example 1 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

GF--------------

NF--------------

fF--------------

ca +y

+x

0

0

0

y

N G

N

N

F

F F

F mg

F mg

--------------

----------------------------

Vertical Components

Horizontal Components

2

2

x c

f c

s N c

s

s

s

s

N

N

F ma

F ma

F ma

vF m

F

mg

R

Rv

mR

m

v g R

----------------------------

---------------------------- We have an acceleration in x-

direction

Static Frictio

nFrom Vertical Component

Page 5: Centripetal Acceleration 12 Examples with full solutions

Example 1 -Example 1 - Step 3 Step 3 ((Insert valuesInsert values))

GF--------------

NF--------------

fF--------------

ca +y

+x

20.50 9.8 35

13.0958

1 360013.0958

1000 1

47

sv g R

mm

s

m

sm km s

s m hkm

h

Page 6: Centripetal Acceleration 12 Examples with full solutions

Example 2Example 2A car is travelling at 25m/s around a level curve of radius 120m. What is the minimum value of the coefficient of static friction between the tires and the road to prevent the car from skidding?

120 m

Page 7: Centripetal Acceleration 12 Examples with full solutions

Example 2 – Example 2 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

GF--------------

NF--------------

fF--------------

+y

+x

This static friction is the only horizontal force

keeping the car moving toward the centre of the arc (else the car

will drive off the road).

ca

Acceleration direction

Page 8: Centripetal Acceleration 12 Examples with full solutions

Example 2 -Example 2 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

GF--------------

NF--------------

fF--------------

ca +y

+x

0

0

0

y

N G

N

N

F

F F

F mg

F mg

--------------

----------------------------

Vertical Components

Horizontal Components

2

2

2

2

x c

f c

s N c

s N

sN

F ma

F ma

F ma

vF m

R

m v

R

m v

R

v

mg

R

F

g

----------------------------

---------------------------- We have an acceleration in x-

direction

Static Frictio

n

From Vertical Component

Page 9: Centripetal Acceleration 12 Examples with full solutions

Example 2 -Example 2 - Step 3 Step 3 ((Insert valuesInsert values))

GF--------------

NF--------------

fF--------------

ca +y

+x

2

2

2

2

25

9.8 120

0.53

s

s

v

gR

v

gR

ms

mm

s

We require the minimum value

Page 10: Centripetal Acceleration 12 Examples with full solutions

Example 3Example 3An engineer has design a banked corner with a radius of 200m and an angle of 180. What should the maximum speed be so that any vehicle can manage the corner even if there is no friction?

180

200 m

Page 11: Centripetal Acceleration 12 Examples with full solutions

Example 3 – Example 3 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

First the car

Now for gravity

GF--------------

The normal to the road NF

--------------

18

Components of Normal force along axis (we ensured

one axis was along acceleration

direction

sin 18NF

+y

+x

ca

Acceleration

direction

cos 18NF

Notice that we have no static friction force

in this example

(question did not require

one)

Page 12: Centripetal Acceleration 12 Examples with full solutions

Example 3 -Example 3 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

ca +y

+x

0

0

cos 18 0

cos 18

y

Ny G

N

N

F

F F

F mg

mgF

--------------

----------------------------

Vertical Components

Horizontal Components

2

2

cos

sin 18

sin 18

tan 18

tan 18

18

x c

N

Nx c

c

F ma

F ma

ma

vm

R

vg

R

g

R

m

v g

F

----------------------------

----------------------------We have

an acceleration in the

x-direction

From Vertical Component

GF--------------

NF--------------

18

sin 18NF

cos 18NF

Page 13: Centripetal Acceleration 12 Examples with full solutions

Example 3 -Example 3 - Step 3 Step 3 ((Insert valuesInsert values))

ca +y

+x

GF--------------

NF--------------

18

sin 18NF

cos 18NF

2

tan 18

200 9.8 tan 18

25.2357

1 360025.2357

1000 1

91

v Rg

mv m

s

m

sm km s

s m hkm

h

Page 14: Centripetal Acceleration 12 Examples with full solutions

Example 4Example 4

An engineer has design a banked corner with a radius of 230m and the bank must handle speeds of 88 km/h. What bank angle should the engineer design to handle the road if it completely ices up?

230 m

?

Page 15: Centripetal Acceleration 12 Examples with full solutions

Example 4 – Example 4 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

First the car

Now for gravity

GF--------------

The normal to the road NF

--------------

Components of Normal force along axis (we ensured

one axis was along acceleration

direction

sinNF

+y

+x

ca

Acceleration

direction

cosNF

Notice that we have no static friction force

in this example

(question did not require

one)

Page 16: Centripetal Acceleration 12 Examples with full solutions

Example 4 -Example 4 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

ca +y

+x

0

0

cos 0

cos

y

Ny G

N

N

F

F F

F mg

mgF

--------------

----------------------------

Vertical Components

Horizontal Components

2

2

21

sin

sc

in

tan

ta

os

n

x c

N

N

x c

cF

m

F ma

F ma

ma

vm

R

vg

R

g

v

Rg

----------------------------

---------------------------- We have an

acceleration in the

x-direction

From Vertical Component

GF--------------

NF--------------

sinNF

cosNF

Page 17: Centripetal Acceleration 12 Examples with full solutions

ca +y

+x

21

2

1

2

tan

1000 188

3600tan

230 9.8

15

v

Rg

km m hh km s

mm

s

GF--------------

NF--------------

sinNF

cosNF

Example 4 -Example 4 - Step 3 Step 3 ((Insert valuesInsert values))

Don’t forget to place in metres per

second

Page 18: Centripetal Acceleration 12 Examples with full solutions

Example 5Example 5

A 2kg ball is rotated in a vertical direction. The ball is attached to a light string of length 3m and the ball is kept moving at a constant speed of 12 m/s. Determine the tension is the string at the highest and lowest points.

Page 19: Centripetal Acceleration 12 Examples with full solutions

Example 5 – Example 5 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

Top Bottom

TF--------------

GF--------------

TF--------------

GF--------------

When the ball is at the

top of the curve, the string is “pulling”

down.

When the ball is at the

bottom of the curve,

the string is “pulling” up.

In both cases, gravity is pulling down

ca

ca

Note: any vertical motion problems that do not include a solid

attachment to the centre, do not maintain a constant speed, v and

thus (except at top and bottom) have an acceleration that does not point

toward the centre. (it is better to use energy conservation techniques)

Page 20: Centripetal Acceleration 12 Examples with full solutions

Example 5 -Example 5 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

TF--------------

GF--------------

TF--------------

GF--------------

Top Bottom

2

y c

T G c

T c

T c

c

F ma

F F ma

F mg ma

F mg ma

m a g

vm g

r

----------------------------

------------------------------------------

2

y c

T G c

T c

T c

c

F ma

F F ma

F mg ma

F ma mg

m g a

vm g

r

----------------------------

------------------------------------------

+y

+x

ca

ca

Note: acceleration is down

(-)

Page 21: Centripetal Acceleration 12 Examples with full solutions

Example 5 -Example 5 - Step 3 Step 3 ((Insert valuesInsert values))

TF--------------

GF--------------

TF--------------

GF--------------

+y

+x

ca

ca

Top Bottom

2

2

2

122 9.8

3

76.4

T

vF m g

r

mms

kgm s

N

2

2

2

122 9.8

3

115.6

T

vF m g

r

mm s

kgs m

N

Page 22: Centripetal Acceleration 12 Examples with full solutions

Example 6Example 6A conical pendulum consists of a mass (the pendulum bob) that travels in a circle on the end of a string tracing out a cone. If the mass of the bob is 1.7 kg, and the length of the string is 1.25 m, and the angle the string makes with the vertical is 25o.

Determine:

a) the speed of the bob b) the frequency of the bob

Page 23: Centripetal Acceleration 12 Examples with full solutions

Example 6 – Example 6 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

ca

TF--------------

GF--------------

25 cos 25TF

sin 25TF

Let’s decompose our Tension Force

into vertical and horizontal

components

+y

+x

It’s easier to make the x axis positive

to the left

Page 24: Centripetal Acceleration 12 Examples with full solutions

ca

TF--------------

GF--------------

25 cos 25TF

sin 25TF +y

+x

Example 6 -Example 6 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

2

sin 25

sin 25

x

x c

T c

T c

T

F ma

F ma

F ma

vF m

r

----------------------------

0

0

cos 25 0

cos 25

y

Ty G

T

T

F

F F

F mg

mgF

--------------

----------------------------

Horizontal Vertical

Page 25: Centripetal Acceleration 12 Examples with full solutions

Example 6 -Example 6 - Step 3 Step 3 ((Insert values for Insert values for velocityvelocity))

ca

TF--------------

GF--------------

25 cos 25TF

sin 25TF +y

+x

2

2

2

sin 25

sin 25

tan 25

ta

co

n 2

s 2

5

5

T

vmr

vmr

v

F

mg

gr

v gr

29.8 1.25 sin 25 tan 25

1.554

1.55

mv m

s

m

sm

s

The speed of the bob is about 1.55 m/s

Page 26: Centripetal Acceleration 12 Examples with full solutions

Example 6 -Example 6 - Step 3 Step 3 ((Insert values for Insert values for frequencyfrequency))

ca

TF--------------

GF--------------

25 cos 25TF

sin 25TF +y

+x

2 2

2 2

2 2

2

sin 25

sin 25 4

sincos 25

25 4

tan 25 4

tan 25

4

T c

T

ma

m rf

rf

g rf

gf

F

F

mg

r

2

2

2

tan 25

4

9.8 tan 25

4 1.25 sin 25

0.46811

0.468

gf

r

msm

Hz

Hz

The frequency of the bob is about 0.468Hz

Page 27: Centripetal Acceleration 12 Examples with full solutions

Example 7Example 7A swing at an amusement park consists of a vertical central shaft with a number of horizontal arms. Each arm supports a seat suspended from a cable 5.00m long. The upper end of the cable is attached to the arm 3.00 m from the central shaft.

Determine the time for one revolution of the swing if the cable makes an angle of 300 with the vertical

Page 28: Centripetal Acceleration 12 Examples with full solutions

Example 7 – Example 7 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

GFC

TF--------------

30

+y

+x

ca

cos 30TF

sin 30TF

30

Page 29: Centripetal Acceleration 12 Examples with full solutions

Example 7 -Example 7 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

GFC

TF--------------

30 cos 30TF

sin 30TF

30

+y

+x

ca

2

2

sin 30

4sin 30

x

x c

T c

T c

T

F ma

F ma

F ma

rF m

T

----------------------------

0

0

cos 30 0

cos 30

y

Ty G

T

T

F

F F

F mg

mgF

--------------

----------------------------

Horizontal Vertical

Page 30: Centripetal Acceleration 12 Examples with full solutions

Example 7 -Example 7 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

GFC

TF--------------

30 cos 30TF

sin 30TF

30

+y

+x

ca

2

2

2

2

2

2

2

4sin 30

4sin 30

4tan 30

cos 3

4

t 0

0

an 3

TF

mg

rmT

rmT

rg

T

rT

g

2

2

4

9.8

3

tan 30

6.1948

6.19

.00 5.00 sin 30T

ms

s

s

m m

The period is 6.19s

3.00 5.00 sin 30.0

m m

Page 31: Centripetal Acceleration 12 Examples with full solutions

Example 8Example 8A toy car with a mass of 1.60 kg moves at a constant speed of 12.0 m/s in a vertical circle inside a metal cylinder that has a radius of 5.00 m. What is the magnitude of the normal force exerted by the walls of the cylinder at A the bottom of the circle and at B the top of the circle

Page 32: Centripetal Acceleration 12 Examples with full solutions

Example 8 – Example 8 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

Top Bottom

NF--------------

GF--------------

NF--------------

GF--------------

When the car is at the top of the curve, the

normal force is “pushing”

down.

When the ball is at the

bottom of the curve, the normal

force is “pushing”

up.

In both cases, gravity is pulling down

ca

ca

Note: any vertical motion problems that do not include a solid

attachment to the centre, do not maintain a constant speed, v and

thus (except at top and bottom) have an acceleration that does not point

toward the centre. (it is better to use energy conservation techniques)

Page 33: Centripetal Acceleration 12 Examples with full solutions

Example 8 -Example 8 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

NF--------------

GF--------------

NF--------------

GF--------------

Top Bottom

2

y c

N G c

N c

N c

c

F ma

F F ma

F mg ma

F mg ma

m a g

vm g

r

----------------------------

------------------------------------------

2

y c

N G c

N c

N c

c

F ma

F F ma

F mg ma

F ma mg

m g a

vm g

r

----------------------------

------------------------------------------

+y

+x

ca

ca

Note: acceleration is down

(-)

Page 34: Centripetal Acceleration 12 Examples with full solutions

Example 8 -Example 8 - Step 3 Step 3 ((Insert valuesInsert values))

NF--------------

GF--------------

NF--------------

GF--------------

+y

+x

ca

ca

Top Bottom

2

2

2

12.01.60 9.8

5.00

30.4

N

vF m g

r

mms

kgm s

N

2

2

2

12.01.60 9.8

5.00

61.8

T

vF m g

r

mm s

kgs m

N

Page 35: Centripetal Acceleration 12 Examples with full solutions

Example 9Example 9A 0.20g fly sits 12cm from the centre of a phonograph record revolving at 33.33 rpm.

a) What is the magnitude of the centripetal force on the fly?b) What is the minimum static friction between the fly and the record to prevent the fly from sliding off?

Page 36: Centripetal Acceleration 12 Examples with full solutions

Example 8 – Example 8 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

cF--------------

GF--------------

sF--------------

NF--------------

Page 37: Centripetal Acceleration 12 Examples with full solutions

Example 9 -Example 9 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

cF--------------

2

4 2

2 2

4

1 1min2.0 10 4 0.12 33

3 min 6

2. 1

4

0

9 0

s

cF m

F m

revk

a

r

g m

N

f

s

GF--------------

sF--------------

NF--------------

a.

Convert to correct units

Page 38: Centripetal Acceleration 12 Examples with full solutions

Example 9 -Example 9 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

cF--------------

4

4

4

4

2

2

2

2.9 10

2.9 10

2.9 10

2.0 10 9.8

0. 5

4

1

c

s

k

k

F m

F m

mg N

N

mg

Nm

r

s

a

kg

f

GF

--------------

sF--------------

NF--------------

b.

Page 39: Centripetal Acceleration 12 Examples with full solutions

Example 10Example 10A 4.00 kg mass is attached to a vertical rod by the means of two 1.25 m strings which are 2.00 m apart. The mass rotates about the vertical shaft producing a tension of 80.0 N in the top string.

a)What is the tension on the lower string?b)How many revolutions per minute does the system make?

Page 40: Centripetal Acceleration 12 Examples with full solutions

Example 10 – Example 10 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

1.00sin

1.2553.1

m

m

1TF--------------

2TF--------------

53.153.1

GF--------------

+y

+x

ca

Page 41: Centripetal Acceleration 12 Examples with full solutions

Example 10 -Example 10 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

1 2

1 2cos 53.1 cos 53.1

x c

T x T x cx

T T c

F ma

F F ma

F F ma

----------------------------

------------------------------------------

1 1

1 2

0

0

sin 53.1 sin 53.1 0

y

T T G

T T

F

F F F

F F mg

--------------

------------------------------------------

Horizontal Vertical

1TF--------------

2TF--------------

53.153.1

GF--------------

+y

+

ca

Page 42: Centripetal Acceleration 12 Examples with full solutions

Example 10 -Example 10 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))1TF

--------------

2TF--------------

53.153.1

GF--------------

+y

+

ca

2

2

2

80.0 sin 53.1 sin 53.1 4.00 9.8 0

4.00 9.8 80.0 sin 53.1

sin 53.1

30.98

31

T

T

T

NN F kg

kg

Nkg N

kgF

F N

N

a)

Page 43: Centripetal Acceleration 12 Examples with full solutions

Example 10 -Example 10 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))1TF

--------------

2TF--------------

53.153.1

GF--------------

+y

+

ca

b)

1 2

2 21 2

1 222

1 2

2

2

cos 53.1 cos 53.1

cos 53.1 cos 53.1 4

cos 53.1 cos 53.1

4

cos 53.1 cos 53.1

4

80.0 cos 53.1 30.98 c

1.25 cos 53.

os 53.1

4 4.001

T T c

T T

T T

T T

F F ma

F F m rf

F Ff

rm

F Ff

m

N N

r

m kg

0.7498

600.7498

44.99min

45min

rev

srev s

s mrev

rev

Page 44: Centripetal Acceleration 12 Examples with full solutions

Example 11Example 11The moon orbits the Earth in an approximately circular path of radius 3.8 x 108 m. It takes about 27 days to complete one orbit. What is the mass of the Earth as obtained by this data?

Page 45: Centripetal Acceleration 12 Examples with full solutions

Example 11 – Example 11 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

GF--------------

Page 46: Centripetal Acceleration 12 Examples with full solutions

Example 11 -Example 11 - Step 2 Step 2 ((Sum of Vector Sum of Vector

ComponentsComponents))

GF--------------

2

2

2

2

E

x cm

a cm

E mm c

E mm c

Ec

c

F m a

F m a

GM mm a

rGM m

m arGM

ar

a rM

G

----------------------------

----------------------------

2

2

2 3

2

32 8

2211

2

2

24

4

4 3.8 10

24 36006.67 10 27

1 1

5.97 10

4 r

GT

r

GT

m

N m h sd

kg d h

k

r

g

The mass of the Earth is about 6.0x1024 kg

Horizontal

Page 47: Centripetal Acceleration 12 Examples with full solutions

Example 12Example 12 (Hard Question) (Hard Question)

An engineer has design a banked corner with a radius of R and an angle of β. What is the equation that determines the velocity of the car given that the coefficient of friction is µ ?

Page 48: Centripetal Acceleration 12 Examples with full solutions

Example 12 – Example 12 – Step 1 Step 1 ((Free Body Free Body DiagramDiagram))

First the car

Now for gravity

GF--------------

The normal to the road NF

--------------

Components of Normal force along axis (we ensured

one axis was along acceleration

direction

sinNF

+y

+x

ca

Acceleration

direction

cosNF

fF--------------

Friction

We have friction going down by

assuming car wants to slide up. This will

provide an equations for the

maximum velocity

Page 49: Centripetal Acceleration 12 Examples with full solutions

0

0

cos sin 0

cos sin 0

N f

N G

N

f

N

y

y

F

F

F F F

F

F uF

mg

mg

--------------

------------------------------------------

Vertical Components

Horizontal Components

sin cos

sin cos

x c

Nx fx c

N

cN

cf

N

F F

F ma

F F ma

m

F

a

maF

----------------------------

------------------------------------------

Example 12 – Example 12 – Step 2 Step 2 ((ComponentsComponents))

GF--------------

NF--------------

sinNF +y

+x

ca

cosNF

fF--------------

From Vertical

cos sinN Nmg

F F

Page 50: Centripetal Acceleration 12 Examples with full solutions

Sub into Horizontal

2

sin cos

cos sinsin cos

N N c

N NN N

F F ma

F

R

FF

v

gF

Example 12 – Example 12 – Step 2 Step 2 ((ComponentsComponents))

GF--------------

NF--------------

sinNF +y

+x

ca

cosNF

fF--------------

From Vertical

cos sinN Nmg

F F

Solve for v

2sin cos

cos sin

sin cos

cos sin

N N

N N

gR F Fv

F F

gRv

π

sin cos

cos sin

gRv

Minimum velocity (slides down)

Page 51: Centripetal Acceleration 12 Examples with full solutions

Flash