30
Centro de Estudios de Energía Bibliografía

Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Embed Size (px)

Citation preview

Page 1: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Bibliografía

Page 2: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Libro de texto1- Conceptos Fundamentales

Tierras eléctricas, Armando Llamas, Jorge de los Reyes, Jesús Baez, Innovación Editorial Lagares, Monterrey, 2005.

Page 3: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

1- Conceptos Fundamentales• Sistema eléctrico• Puesta a tierra del sistema• Puesta a tierra de equipos• Definiciones

– CONDUCTOR DE PUESTA A TIERRA (GROUND) – PUESTO A TIERRA (GROUNDED)– PUESTO A TIERRA EFICAZMENTE (EFFECTIVELY GROUNDED)– CONDUCTOR DE PUESTA A TIERRA DE EQUIPO (EQUIPMENT GROUNDING

CONDUCTOR) – CONDUCTOR PUESTO A TIERRA (GROUNDED CONDUCTOR) – CONDUCTOR DEL ELECTRODO DE PUESTA A TIERRA– EQUIPO DE ACOMETIDA (SERVICE EQUIPMENT)– PUENTE DE UNIÓN PRINCIPAL (MAIN BONDING JUMPER) – BARRA DE PUESTA A TIERRA (EQUIPMENT GROUNDING BUS) – BARRA DE NEUTROS (NEUTRAL BUS)– SISTEMA DERIVADO SEPARADAMENTE (SEPARATELY DERIVED SYSTEM)

• Sistemas de distribución de energía eléctrica• comúnmente utilizados

– SISTEMA MONOFÁSICO DE DOS HILOS– SISTEMA MONOFÁSICO DE TRES HILOS– SISTEMA TRIFÁSICO

Page 4: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Sistema Eléctrico

•Porción de los conductores eléctricos que forman un nivel de tensión, delimitado por transformadores. En caso del último transformador, es la porción de los conductores que van del transformador a la carga.

D.W. Zipse, “Earthing – Grounding Methods: A Primer”, IEEE.

• Puesta a tierra del sistema: Conexión intencional de un conductor de fase o conductor neutro con el terreno, con el propósito de controlar el voltaje a tierra dentro de límites predecibles.

IEEE St 142.

Page 5: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

.

carganeutros

tierras

puente de uniónprincipal

equipo de desconexión principal

tubería hidráulica

conductor de puesta a tierra de equipo

apartarrayos

media tensión

cuchillas fusibles en media tensión

transformador

Dos sistemas eléctricos: Media tensión y baja tensión

Page 6: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

¿Porqué aterrizar el sistema de alimentación eléctrica?

NEC 250-1, FPN No.1 (FPN = “Fine Print Note”).

a) limitar los sobrevoltajes transitorios debidos a descargas atmosféricas, a maniobras con interruptores,

b) para limitar los voltajes en caso de contacto accidental del sistema de alimentación con líneas de voltaje superior y

c) para estabilizar el voltaje del sistema de alimentación con respecto a tierra.

Page 7: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Puesta a tierra del sistema de alimentación

fase c

fase b

fase a

Ic

Ia

Ib

delta Y

a) sin puesta a tierra

fase c

fase b

fase a

delta Y

b) puesto a tierra

transformador transformador

puente de unión principal

conductorpuesto a tierra

sistema de electrodos

Ic

Ia

Ib

G

X0

X1

X2

X3

G

X0

X1

X2

X3

Page 8: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 1• Respecto a la Figura a) de la filmina

7, y considerando un voltaje secundario de 208 V entre líneas.

A) ¿Cuál es el voltaje entre X1 y X2?

B) ¿Cuál es el voltaje entre X1 y X0?

C) ¿Cuál es el voltaje entre X1 y la barra que se une al electrodo de tierra, rotulada con una G?

SOLUCIÓN:

A) 208V;

B) 120 V;

C) No sabemos, al realizar una medición podría ser 120V; pero también podría tener cualquier otro valor. Cuando las cargas, rotuladas fases a, b y c tienen electrónica de estado sólido que realiza conexiones y desconexiones (como en un Drive de CD), la forma de onda del voltaje a tierra es bastante arbitraria debido a los transitorios de desconexión y conexión.

fase c

fase b

fase a

Ic

Ia

Ib

delta Y

a) sin puesta a tierra

fase c

fase b

fase a

delta Y

b) puesto a tierra

transformador transformador

puente de unión principal

conductorpuesto a tierra

sistema de electrodos

Ic

Ia

Ib

fase c

fase b

fase a

Ic

Ia

Ib

delta Y

a) sin puesta a tierra

fase c

fase b

fase a

delta Y

b) puesto a tierra

transformador transformador

puente de unión principal

conductorpuesto a tierra

sistema de electrodos

Ic

Ia

Ib

G

X0

X1

X2

X3

Page 9: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 2• Respecto a la Figura b), y

considerando un voltaje secundario de 208 V entre líneas.

A) ¿Cuál es el voltaje entre X1 y X2?

B) ¿Cuál es el voltaje entre X1 y X0?

C) ¿Cuál es el voltaje entre X1 y la barra que se une al electrodo de tierra, rotulada con una G?

D) ¿Qué valor de voltaje se encontraría entre la barra de neutros y la barra G?

SOLUCIÓN:

A) 208V;

B) 120 V;

C) 120 V;

D) 0V, a menos que hubiera una corriente extremadamente alta en el puente de unión principal.

fase c

fase b

fase a

Ic

Ia

Ib

delta Y

a) sin puesta a tierra

fase c

fase b

fase a

delta Y

b) puesto a tierra

transformador transformador

puente de unión principal

conductorpuesto a tierra

sistema de electrodos

Ic

Ia

Ib

fase c

fase b

fase a

Ic

Ia

Ib

delta Y

a) sin puesta a tierra

fase c

fase b

fase a

delta Y

b) puesto a tierra

transformador transformador

puente de unión principal

conductorpuesto a tierra

sistema de electrodos

Ic

Ia

Ib

G

X0

X1

X2

X3

Page 10: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

¿Porqué se requiere la puesta a tierra de equipos?

NEC 250-1, FPN No.2

a) limitar el voltaje de los materiales metálicos no portadores de corriente con respecto a tierra y

b) que en caso de falla a tierra, opere la protección de sobrecorriente

Page 11: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Puesta a tierra de equipo

chasis

fase

neutro

tierra

(a) Alambrado correcto. (b) La protección de sobrecorriente opera en caso de que el hilo vivo toque accidentalmente el chasis .

fase

neutro

tierra

i

ichasis

fase

neutro

tierra

chasis energizado jarp

(c) La ausencia de la puesta a tierra de equipo es un peligro de electrocución

Page 12: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Términos de tierras eléctricas

conductor puesto atierra de acometida

barra de neutros

puente de uniónprincipal

barra de tierras

equipo dedesconexión principal

conductor del electrodode puesta a tierra

electrodo de puesta a tierra

conductor de puesta a tierra

conductor puesto a tierra

conductor vivo

CFE

medidor

Page 13: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 3

• . Dibuje el diagrama de un transformador seco monofásico que reduce de 480 V a 240 V con derivación central. Al transformador deben llegar tres hilos, dos no puestos a tierra y uno de puesta a tierra de equipos. El interruptor del secundario es de 20 A dos polos. El transformador se utiliza para alimentar un equipo de aire acondicionado de ventana y la canalización que lleva la alimentación es metálica. Se dispone de un electrodo local en la estructura metálica del edificio. El gabinete del transformador y del dispositivo de protección contra sobrecorriente es el mismo. Los equipos cuentan con puesta a tierra de equipos; pero el sistema no está puesto a tierra.

SOLUCIÓN: La filmina siguiente muestra el diagrama de conexiones con las características descritas. Esta configuración no satisface los requerimientos de la NOM, ya que el sistema debe estar puesto a tierra según el artículo 250-5 (b) (1).

Page 14: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

+

-

240 V

+

-

480 V

aire acondicionado de ventana

20 A

gabinete de transformador y dispositivo de protección contra sobrecorriente

conduit

Puesta a tierra de equipos en un sistema flotado

Page 15: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 4

• En el sistema de 240 V de CA de la filmina antertior. ¿Qué valor de voltaje existe de la terminal rotulada + a tierra? ¿Qué problemas podrían presentarse debido a esta situación?

SOLUCIÓN: En estado estable podría ser del orden de 120 V; pero debido a que el sistema no está puesto a tierra puede tomar cualquier valor. Esa situación podría originar una falla en el aislamiento de los conductores o del motor.

Page 16: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 5

• Dibuje el diagrama de un transformador seco monofásico que reduce de 480 V a 240 V con derivación central. Al transformador llegan dos hilos no puestos a tierra. El interruptor del secundario es de 20 A dos polos. El transformador se utiliza para alimentar un equipo de aire acondicionado de ventana y la canalización que lleva la alimentación es plástico (poliducto) embebido en concreto. Se dispone de un electrodo local en la estructura metálica del edificio. La derivación central se une al electrodo. Al equipo de aire acondicionado sólo llegan dos conductores no puestos a tierra con 120 V nominales de cada uno de ellos a tierra y 240 V entre ellos mismos.

SOLUCIÓN: La filmina siguiente muestra el diagrama de conexiones con las características descritas anteriormente. Esta configuración no satisface los requerimientos de la NOM-001, ya que no cuenta con puesta a tierra de equipos de acuerdo con lo requerido por los artículos 250-42, 250-43 y 250-45

Page 17: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

+

-

240 V

+

-

480 V

Aire acondicionado de ventana

20 A

Sistema aterrizado sin puesta a tierra de equipos

Page 18: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 6.

• En el sistema de 240 V de CA de la filmina anterior ¿Qué valor de voltaje existe del gabinete del equipo de aire acondicionado a tierra? ¿Qué problemas podría presentarse debido a esta situación?

SOLUCIÓN: En estado estable el voltaje es cero o cercano a cero; pero debido a que no cuenta con el conductor de puesta a tierra de equipos puede adquirir cualquier valor, y en caso de contacto accidental con alguno de los conductores no puestos a tierra podría presentar 120 V a tierra. El problema o riesgo que se presenta ante esta situación es el de choque eléctrico si alguien toca el gabinete y hace contacto además con el terreno.

Page 19: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 7• Dibuje el diagrama de un transformador

seco monofásico que reduce de 480 V a 240 V con derivación central. Al transformador llegan dos hilos no puestos a tierra y un tercer hilo de puesta a tierra. El interruptor del secundario es de 20 A dos polos. El transformador se utiliza para alimentar un equipo de aire acondicionado de ventana y la canalización que contiene el cableado de alimentación es metálica. Se dispone de un electrodo local en la estructura metálica del edificio. El gabinete del transformador y del dispositivo de protección contra sobrecorriente es el mismo y contiene una barra de neutros y otra de tierras. El sistema está puesto a tierra y cuenta con puesta a tierra de equipos en todas las partes metálicas no portadoras de corriente.

SOLUCIÓN: La filmina siguiente corresponde al diagrama solicitado. Nótese que para garantizar una baja impedancia en caso de falla a tierra, el conductor de puesta a tierra de equipos debe estar dentro de la misma canalización.

Page 20: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

+

-

240 V

+

-

480 V

20 A

Puesta a tierra y conductores del circuito en la misma canalización

Sistema aterrizado y con puesta a tierra de equipos

Page 21: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Sistema derivado separadamente

SISTEMA de alambrado de una propiedad, cuya energía procede de una batería, o de un sistema fotoeléctrico solar, o de un generador, transformador o de los devanados de un convertidor y que no tiene conexión eléctrica directa incluyendo al conductor del circuito sólidamente puesto a tierra, con los conductores de suministro que provengan de otro sistema.

• secundario de un transformador (no autotransformador)

• un generador de emergencia con interruptor de transferencia de cuatro polos,

• un UPS con “bypass” a través de transformador,• un transformador ferroresonante.

Page 22: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Ejemplos de sistemas derivados separadamente en transformadores

a) transformador trifásico delta - estrella

delta Y

x0

x3

x2

x1

c) transformador monofásico de tres hilos

x0

x1

x2x0

x1

d) transformador monofásico

b) transformador trifásico delta - delta

delta delta

x3

x2

x1

Page 23: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 8• A continuación se presenta un ejemplo de un sistema no derivado separadamente. La

filmina siguiente muestra el secundario Y de un transformador. El punto central de esta estrella llega a barra de neutros y ésta se une a barra de tierras mediante el puente de unión principal y así se realiza la puesta a tierra del sistema. La alimentación principal hacia la carga es el secundario del transformador. La alimentación secundaria o de respaldo es el generador. La posición normal de los contactores en el tablero de la transferencia automática es la mostrada en la Figura, i.e. la carga se alimenta normalmente del secundario del transformador. Debido a que la transferencia es de tres polos el conductor puesto a tierra de la alimentación principal se une al punto central de la Y del generador, pasando por la barra de neutros de la transferencia y de allí salen los neutros hacia las cargas. Nótese que al unir la barra N con la barra G en el generador se estaría uniendo el neutro a tierra en un punto más allá del equipo de desconexión principal, hacia el lado de la carga, contraviniendo lo establecido en el artículo 250-23 de la NOM.

Page 24: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Generador

Tablero del interruptor automático de transferencia de tres polos

A la carga

Conductores de fase no aterrizados

3

3

Conductores de puesta a tierra de equipo

Canalización

barra de neutros

N

G

Transformador y equipo de desconexión principal

3

3

N

G

Conductor puesto a tierra

Conductores de fase no aterrizados

El generador no es un sistema derivado separadamente

Page 25: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Mediatensión

Baja tensión

Medidor (kWh) Equipo de desconexión principal

conductor no puesto a tierra

conductor puesto a tierra

conductor de puesta a tierra de equipos

conductor del electrodo

electrodo

Sistema monofásico de dos hilos

Page 26: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Medidor kWh Caja cuchilla y fusible

Tablero con dos unidades térmicasCircuito

derivado para

tomacorrientes

Circuito

derivado para

alumbrado

Sistema monofásico de dos hilos sin puesta a tierra de equipos

Page 27: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

Baja tensión

Medidor (kWh) Equipo de desconexión principal

conductor no puesto a tierra

conductor puesto a tierra

conductor de puesta a tierra de equipos

conductor no puesto a tierra

ITESM

ITESM

ACEE

Sistema monofásico de tres hilos simplificado

Page 28: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

EJEMPLO 9• . Realizar el diagrama de conexiones a partir del equipo de desconexión principal,

incluyendo un tablero de circuitos derivados que alimente a las dos cargas de 120 V y a la de 240 V.

Equipo de desconexión

principal

ITE

SMIT

ESM

AC

EE

Tablero de circuitos derivados

Barra de neutros (aislada del gabinete)

Barra de tierras (unida al gabinete)

Baja tensión

Medidor (kWh) Equipo de desconexión principal

conductor no puesto a tierra

conductor puesto a tierra

conductor de puesta a tierra de equipos

conductor no puesto a tierra

ITESM

ITESM

ACEE

Page 29: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

fase a

fase b

fase c

delta Ytransformador

puente de unión principal

conductorpuesto a tierra Ia

Ic

Ib

Sistema trifásico de cuatro hilos

Page 30: Centro de Estudios de Energía -all Bibliografía. Centro de Estudios de Energía -all Libro de texto 1- Conceptos Fundamentales Tierras eléctricas, Armando

Centro de Estudios de Energía -all

delta Y

Transformador y equipo de

desconexión principal

N

G

N

G

Motor

inducción

M

M

M

M

M OL

STOPSTART

Canalización Centro de control de motores

EJEMPLO 10• Modifique el diagrama trifilar de la filmina anterior, para que en lugar de alimentar

cargas monofásicas se alimente a un centro de control de motores. Suponga que el voltaje nominal entre líneas es 208 V y que el control requiere 120 V.

• SOLUCIÓN: El neutro se une a tierra en el equipo de desconexión principal y no se une el centro de control de motores. El centro de control de motores requiere el neutro para el control; pero no para el motor.

Los tres conductores de fase y el de puesta a tierra de equipos en la misma canalización