15
2/7/2014 1 03. Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Vibrations 3.01 Single DOF Systems: Governing Equations Β§ 1 . Chapter Objectives β€’ Obtain the governing equation of motion for single degree-of- freedom (dof) translating and rotating systems by using force balance and moment balance methods β€’ Obtain the governing equation of motion for single dof translating and rotating systems by using Lagrange’s equations β€’ Determine the equivalent mass, equivalent stiffness, and equivalent damping of a single dof system β€’ Determine the natural frequency and damping factor of a system HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Vibrations 3.02 Single DOF Systems: Governing Equations Β§ 2 . Force - Balance and Moment - Balance Methods 1.Force Balance Method Newtonian principle of linear momentum βˆ’ =0 (3.1a) : the net external force vector acting on the system : the absolute linear momentum of the considered system For a system of constant mass whose center of mass is moving with absolute acceleration , the rate of change of linear momentum = βˆ’ =0 (3.1b) βˆ’ : inertial force ⟹The sum of the external forces and inertial forces acting on the system is zero; that is, the system is in equilibrium under the action of external and inertial forces Vibrations 3.03 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Β§ 2 . Force - Balance and Moment - Balance Methods Vertical Vibrations of a Spring-Mass-Damper System - Obtain an equation to describe the motions of the spring-mass- damper system in the vertical The position vector of the mass from the fixed point = = ( + + ) Force balance along the direction + βˆ’ + βˆ’ βˆ’ 2 2 =0 Vibrations 3.04 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Β§ 2 . Force - Balance and Moment - Balance Methods - Noting that and are constants, rearranging terms to get the following scalar differential equation 2 2 + + + = + Vibrations 3.05 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien Β§ 2 . Force - Balance and Moment - Balance Methods Static Equilibrium Position - The static-equilibrium position of a system is the position that corresponds to the system’s rest state; that is, a position with zero velocity and zero acceleration - The static-equilibrium position is the solution of + = - The static displacement = ⟹=0 is the static-equilibrium position of the system - The spring has an unstretched length , the static-equilibrium position measured from the origin is given by = = ( + ) Vibrations 3.06 Single DOF Systems: Governing Equations HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Ch.03 Single DOF Systems - Governing Equations

Embed Size (px)

Citation preview

Page 1: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

1

03. Single DOF Systems:

Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Vibrations 3.01 Single DOF Systems: Governing Equations

Β§1.Chapter Objectives

β€’ Obtain the governing equation of motion for single degree-of-

freedom (dof) translating and rotating systems by using force

balance and moment balance methods

β€’ Obtain the governing equation of motion for single dof

translating and rotating systems by using Lagrange’s

equations

β€’ Determine the equivalent mass, equivalent stiffness, and

equivalent damping of a single dof system

β€’ Determine the natural frequency and damping factor of a

system

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Vibrations 3.02 Single DOF Systems: Governing Equations

Β§2.Force-Balance and Moment-Balance Methods

1.Force Balance Method

Newtonian principle of linear momentum

𝐹 βˆ’ 𝑝 = 0 (3.1a)

𝐹 : the net external force vector acting on the system

𝑝 : the absolute linear momentum of the considered system

For a system of constant mass π‘š whose center of mass is

moving with absolute acceleration π‘Ž, the rate of change of

linear momentum 𝑝 = π‘š π‘Ž

𝐹 βˆ’ π‘š π‘Ž = 0 (3.1b)

βˆ’π‘š π‘Ž : inertial force

⟹The sum of the external forces and inertial forces acting on

the system is zero; that is, the system is in equilibrium

under the action of external and inertial forces

Vibrations 3.03 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

Vertical Vibrations of a Spring-Mass-Damper System

- Obtain an equation to describe the motions of the spring-mass-

damper system in the vertical

The position vector of

the mass from the fixed

point 𝑂 π‘Ÿ = π‘Ÿ 𝑗= (𝐿 + 𝛿𝑠𝑑 + π‘₯) 𝑗

Force balance along

the 𝑗 direction

𝑓 𝑑 𝑗 + π‘šπ‘” 𝑗 βˆ’ π‘˜π‘₯ + π‘˜π›Ώπ‘ π‘‘ 𝑗 βˆ’ π‘π‘‘π‘Ÿ

𝑑𝑑 𝑗 βˆ’ π‘š

𝑑2π‘Ÿ

𝑑𝑑2 𝑗 = 0

Vibrations 3.04 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

- Noting that 𝐿 and 𝛿𝑠𝑑 are constants, rearranging terms to get

the following scalar differential equation

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜ π‘₯ + 𝛿𝑠𝑑 = 𝑓 𝑑 + π‘šπ‘”

Vibrations 3.05 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

Static Equilibrium Position

- The static-equilibrium position of a system is the position that

corresponds to the system’s rest state; that is, a position with

zero velocity and zero acceleration

- The static-equilibrium position is the solution of

π‘˜ π‘₯ + 𝛿𝑠𝑑 = π‘šπ‘”

- The static displacement

𝛿𝑠𝑑 =π‘šπ‘”

π‘˜βŸΉ π‘₯ = 0 is the static-equilibrium position of the system

- The spring has an unstretched length 𝐿, the static-equilibrium

position measured from the origin 𝑂 is given by

π‘₯𝑠𝑑 = π‘₯𝑠𝑑 𝑗 = (𝐿 + 𝛿𝑠𝑑) 𝑗

Vibrations 3.06 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 2: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

2

Β§2.Force-Balance and Moment-Balance Methods

Equation of Motion for Oscillations about the Static-EquilibriumPosition

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜ π‘₯ + 𝛿𝑠𝑑 = 𝑓 𝑑 + π‘šπ‘”

𝛿𝑠𝑑 =π‘šπ‘”

π‘˜

⟹ π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑓 𝑑

Equation (3.8) is the governing equation of motion of a single

dof system for oscillations about the static-equilibrium position

β€’ The left-hand side: the forces from the components that

comprise a single dof system

β€’ The right-hand side: the external force acting on the mass

Vibrations 3.07 Single DOF Systems: Governing Equations

(3.8)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

Horizontal Vibrations of a Spring-Mass-Damper System

Consider a mass moving in a direction normal

to the direction of gravity

β€’ It is assumed that the mass moves without

friction

β€’ The unstretched length of the spring is 𝐿, and

a fixed point 𝑂 is located at the unstretched

position of the spring

β€’ The spring does not undergo any static

deflection and carrying out a force balance

along the 𝑖 direction

β€’ The static-equilibrium position π‘₯ = 0 coincides with the

position corresponding to the unstretched spring

Vibrations 3.08 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

Force Transmitted to Fixed Surface

The total reaction force due to the spring and

the damper on the fixed surface is the sum of

the static and dynamic forces

𝐹𝑅 = π‘˜π›Ώπ‘ π‘‘ + π‘˜π‘₯ + 𝑐𝑑π‘₯

𝑑𝑑

If considering only the dynamic part of the

reaction force-that is, only those forces created

by the motion π‘₯(𝑑) from its static equilibrium

position, then

𝐹𝑅𝑑 = π‘˜π‘₯ + 𝑐𝑑π‘₯

𝑑𝑑

Vibrations 3.09 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

- Ex.3.1 Wind-drivenOscillationsaboutaSystem’sStatic-EquilibriumPosition

The wind flow across civil structures typically generates a

excitation force 𝑓(𝑑) on the structure that consists of a steady-

state part and a fluctuating part

𝑓 𝑑 = 𝑓𝑠𝑠 + 𝑓𝑑(𝑑)

𝑓𝑠𝑠 : the time-independent steady-state force

𝑓𝑑(𝑑) : the fluctuating time-dependent portion of the force

A single dof model of the vibrating structure

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑓𝑠𝑠 + 𝑓𝑑 𝑑 ⟹ π‘₯ 𝑑 = π‘₯0 + π‘₯𝑑(𝑑)

π‘₯0 : the static equilibrium position, π‘₯0 = 𝑓𝑠𝑠/π‘˜

π‘₯𝑑(𝑑) : motions about the static position

⟹ π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑓𝑑 𝑑

Vibrations 3.10 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

- Ex.3.2 EardrumOscillations:NonlinearOscillatorandLinearizedSystems

Determine the static-equilibrium positions of this system and

illustrate how the governing nonlinear equation can be

linearized to study oscillations local to an equilibrium position

Solution

The governing nonlinear equation

π‘šπ‘‘2π‘₯

𝑑𝑑2 + π‘˜π‘₯ + π‘˜π‘₯2 = 0

The restoring force of the eardrum has a component with a

quadratic nonlinearity

Static-Equilibrium Positions

Equilibrium positions π‘₯ = π‘₯0 are solutions of the algebraic equation

π‘˜ π‘₯0 + π‘₯02 = 0 ⟹ π‘₯0 = 0, π‘₯0 = βˆ’1

Vibrations 3.11 Single DOF Systems: Governing Equations

(π‘Ž)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

Linearization

Equilibrium positions π‘₯ = π‘₯0 are solutions of the algebraic equation

π‘˜ π‘₯0 + π‘₯02 = 0 ⟹ π‘₯0 = 0, π‘₯0 = βˆ’1

Subtitute π‘₯ 𝑑 = π‘₯0 + π‘₯(𝑑) into (a) with note that

π‘₯2 𝑑 = π‘₯0 + π‘₯ 𝑑2

β‰ˆ π‘₯02 + 2π‘₯0 π‘₯ 𝑑 + β‹―

𝑑2π‘₯

𝑑𝑑2 =𝑑2 π‘₯0 + π‘₯ 𝑑

𝑑𝑑2 =𝑑2 π‘₯

𝑑𝑑2

⟹ π‘šπ‘‘2 π‘₯

𝑑𝑑2 + π‘˜ π‘₯0 + π‘₯(𝑑) + π‘˜ π‘₯02 + 2π‘₯0 π‘₯ 𝑑 = 0

π‘₯0 = 0 ⟹ π‘šπ‘‘2 π‘₯

𝑑𝑑2 + π‘˜ π‘₯(𝑑) = 0

π‘₯0 = βˆ’1 ⟹ π‘šπ‘‘2 π‘₯

𝑑𝑑2 βˆ’ π‘˜ π‘₯(𝑑) = 0

⟹ the equations have different stiffness terms

Vibrations 3.12 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 3: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

3

Β§2.Force-Balance and Moment-Balance Methods

2. Moment-Balance Methods

For single dof systems that undergo rotational motion, the

moment balance method is useful in deriving the governing

equation

The angular momentum about the center of mass of the disc

𝐻 = 𝐽𝐺 πœƒπ‘˜

⟹ 𝑀 = 𝐽𝐺 πœƒπ‘˜

Vibrations 3.13 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

The governing equation of motion

𝑀 𝑑 π‘˜ βˆ’ π‘˜π‘‘ πœƒπ‘˜ βˆ’ 𝑐𝑑

π‘‘πœƒ

π‘‘π‘‘π‘˜ βˆ’ 𝐽𝐺

𝑑2πœƒ

𝑑𝑑2 = 0

⟹ 𝐽𝐺𝑑2πœƒ

𝑑𝑑2 + 𝑐𝑑

π‘‘πœƒ

𝑑𝑑+ π‘˜π‘‘πœƒ = 𝑀 𝑑

Vibrations 3.14 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

All linear single dof vibratory systems are governed by a linear

second-order ordinary differential equation with an inertia term,

a stiffness term, a damping term, and a term related to the

external forcing imposed on the system

β€’ Translational motion

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑓 𝑑

β€’ Rotational motion

𝐽𝐺𝑑2πœƒ

𝑑𝑑2 + 𝑐𝑑

π‘‘πœƒ

𝑑𝑑+ π‘˜π‘‘πœƒ = 𝑀 𝑑

Vibrations 3.15 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

Ex.3.3 Hand Biomechanics

The moment balance about

point 𝑂

𝑀 βˆ’ 𝐽0 πœƒπ‘˜ = 0

𝐽0: the rotary inertia of the

forearm and the object

held in the hand

The net moment 𝑀 acting

about the point 𝑂 due to gravity loading and the forces due to

the biceps and triceps

𝑀 = βˆ’π‘€π‘”π‘™π‘π‘œπ‘ πœƒπ‘˜ βˆ’ π‘šπ‘”π‘™

2π‘π‘œπ‘ πœƒπ‘˜ + πΉπ‘π‘Žπ‘˜ βˆ’ πΉπ‘‘π‘Žπ‘˜

⟹ βˆ’π‘€π‘”π‘™π‘π‘œπ‘ πœƒπ‘˜ βˆ’ π‘šπ‘”π‘™

2π‘π‘œπ‘ πœƒπ‘˜ + πΉπ‘π‘Žπ‘˜ βˆ’ 𝐽0 πœƒπ‘˜ = 0

Vibrations 3.16 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

βˆ’π‘€π‘”π‘™π‘π‘œπ‘ πœƒπ‘˜ βˆ’ π‘šπ‘”π‘™

2π‘π‘œπ‘ πœƒπ‘˜ + πΉπ‘π‘Žπ‘˜ βˆ’ 𝐽0 πœƒπ‘˜ = 0

Note that: 𝐹𝑏 = βˆ’π‘˜π‘πœƒ, 𝐹𝑑 = 𝐾𝑑𝑣 = πΎπ‘‘π‘Ž πœƒ, 𝐹0 = π‘šπ‘™2/3 + 𝑀𝑙2

⟹ 𝑀 +π‘š

3𝑙2 πœƒ + πΎπ‘‘π‘Ž

2 πœƒ + π‘˜π‘π‘Žπœƒ + 𝑀 +π‘š

2π‘”π‘™π‘π‘œπ‘ πœƒ = 0

Static-Equilibrium Position

The equilibrium position πœƒ = πœƒ0 is a solution of the

transcendental equation

π‘˜π‘π‘Žπœƒ0 + 𝑀 +π‘š

2π‘”π‘™π‘π‘œπ‘ πœƒ0 = 0

Vibrations 3.17 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§2.Force-Balance and Moment-Balance Methods

Linear System Governing β€œSmall” Oscillations about the Static-

Equilibrium Position

Consider oscillations about the static-equilibrium position and

expand the angular variable πœƒ 𝑑 = πœƒ0 + πœƒ 𝑑 with note that

π‘π‘œπ‘ πœƒ = cos πœƒ0 + πœƒ β‰ˆ π‘π‘œπ‘ πœƒ0 βˆ’ πœƒπ‘ π‘–π‘›πœƒ0 + β‹―

π‘‘πœƒ(𝑑)

𝑑𝑑=

𝑑(πœƒ0 + πœƒ)

𝑑𝑑= πœƒ(𝑑)

𝑑2πœƒ(𝑑)

𝑑𝑑2 =𝑑2(πœƒ0 + πœƒ)

𝑑𝑑2 = πœƒ(𝑑)

⟹ 𝑀 +π‘š

3𝑙2 πœƒ + πΎπ‘‘π‘Ž

2 πœƒ + π‘˜π‘’ πœƒ = 0

where

π‘˜π‘’ = π‘˜π‘π‘Ž βˆ’ 𝑀 +π‘š

2π‘”π‘™π‘ π‘–π‘›πœƒ0

Vibrations 3.18 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 4: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

4

Β§3.Natural Frequency and Damping Factor

1.Natural Frequency

Translation Vibrations: Natural Frequency

πœ”π‘› = 2πœ‹π‘“π‘› =π‘˜

π‘š(π‘Ÿπ‘Žπ‘‘/𝑠)

π‘˜ : the stiffness of the system, 𝑁/π‘š

π‘š : the system mass, π‘˜π‘”

𝑓𝑛 : the natural frequency, 𝐻𝑧

For the mass-damper-spring system

πœ”π‘› = 2πœ‹π‘“π‘› =𝑔

𝛿𝑠𝑑(π‘Ÿπ‘Žπ‘‘/𝑠)

𝛿𝑠𝑑: the static deflection of the system, π‘š

Vibrations 3.19 Single DOF Systems: Governing Equations

(3.15)

(3.14)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

Rotational Vibrations: Natural Frequency

πœ”π‘› = 2πœ‹π‘“π‘› =π‘˜π‘‘

𝐽(π‘Ÿπ‘Žπ‘‘/𝑠)

π‘˜π‘‘ : the torsion stiffness of the system, π‘π‘š/π‘Ÿπ‘Žπ‘‘

𝐽 : the system mass, π‘˜π‘”π‘š/𝑠2

𝑓𝑛 : the natural frequency, 𝐻𝑧

Period of Undamped Free Oscillations

For an unforced and undamped system, the period of free

oscillation of the system is given by

𝑇 =1

𝑓𝑛=

2πœ‹

πœ”π‘›

Vibrations 3.20 Single DOF Systems: Governing Equations

(3.16)

(3.17)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

πœ”π‘› = 2πœ‹π‘“π‘› =𝑔

𝛿𝑠𝑑(π‘Ÿπ‘Žπ‘‘/𝑠) (3.15)

Β§3.Natural Frequency and Damping Factor

Ex.3.4 Natural Frequency from Static Deflection of a Machine System

The static deflections of a machinery are found to be 0.1, 1,

10(π‘šπ‘š). Determine the natural frequency for vertical vibrations

Solution

𝑓𝑛1 =1

2πœ‹

𝑔

𝛿𝑠𝑑1=

1

2πœ‹

9.81

0.1 Γ— 10βˆ’3 = 49.85𝐻𝑧

𝑓𝑛2 =1

2πœ‹

𝑔

𝛿𝑠𝑑2=

1

2πœ‹

9.81

1 Γ— 10βˆ’3 = 15.76𝐻𝑧

𝑓𝑛3 =1

2πœ‹

𝑔

𝛿𝑠𝑑3=

1

2πœ‹

9.81

10 Γ— 10βˆ’3 = 4.98𝐻𝑧

Vibrations 3.21 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

- Ex.3.5 Static Deflection and Natural Frequency of the Tibia

Bone in a Human Leg

Consider a person of 100π‘˜π‘” mass standing upright. The tibia

has a length of 40π‘π‘š, and it is modeled as a hollow tube with an

inner diameter of 2.4π‘π‘š and an outer diameter of 3.4π‘π‘š. The

Young’s modulus of elasticity of the bone material is 2 Γ—1010𝑁/π‘š2. Determine the static deflection in the tibia bone and

an estimate of the natural frequency of axial vibrations

Solution

Assume that both legs support the weight of the person

equally, so that the weight supported by the tibia

π‘šπ‘” = 100/2 Γ— 9.81 = 490.5𝑁

Vibrations 3.22 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

πœ”π‘› = 2πœ‹π‘“π‘› =𝑔

𝛿𝑠𝑑(π‘Ÿπ‘Žπ‘‘/𝑠) (3.15)

Β§3.Natural Frequency and Damping Factor

The stiffness of the tibia

π‘˜ =𝐴𝐸

𝐿=

1 Γ— 1010 Γ—πœ‹4

3.4 Γ— 10βˆ’2 2 βˆ’ 2.4 Γ— 10βˆ’2 2

40 Γ— 10βˆ’2

= 22.78 Γ— 106𝑁/π‘š2

The static deflection

𝛿𝑠𝑑 =π‘šπ‘”

π‘˜=

490.5

22.78 Γ— 106 = 21.53 Γ— 10βˆ’6π‘š

The natural frequency

𝑓𝑛 =1

2πœ‹

𝑔

𝛿𝑠𝑑=

1

2πœ‹

9.81

21.53 Γ— 10βˆ’6 = 107.4𝐻𝑧

Vibrations 3.23 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

Ex.3.6 System with A Constant Natural Frequency

Examine how the spring-mounting system can be designed and

discuss a realization of this spring in practice

Solution

In order to realize the desired objective of constant natural

frequency regardless of the system weight, we need a

nonlinear spring whose equivalent spring constant is given by

π‘˜ = π΄π‘Š

𝐴: a constant, π‘Š = π‘šπ‘”: the weight, 𝑔: the gravitational constant

The natural frequency

𝑓𝑛 =1

2πœ‹

π‘˜

π‘š=

1

2πœ‹

π‘˜π‘”

π‘Š=

1

2πœ‹π΄π‘”π»π‘§

⟹ 𝑓𝑛 is constant irrespective of the weight of the mass

Vibrations 3.24 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 5: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

5

Β§3.Natural Frequency and Damping Factor

Nonlinear Spring Mounting

When the side walls of a rubber cylindrical tube are

compressed into the nonlinear region, the equivalent spring

stiffness of this system approximates the characteristic given

by π‘˜ = π΄π‘Š

For illustrative purposes, consider a spring that has the

general force-displacement relationship

𝐹 π‘₯ = π‘Žπ‘₯

𝑏

𝑐

π‘Ž, 𝑏: scale factors, 𝑐: shape factor

The static deflection

π‘₯0 = π‘π‘Š

π‘Ž

1/𝑐

Vibrations 3.25 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

For β€œsmall” amplitude vibrations about π‘₯0, the linear equivalent

stiffness of this spring is determined

π‘˜π‘’π‘ž = 𝑑𝐹(π‘₯)

𝑑π‘₯π‘₯=π‘₯0

=π‘Žπ‘

𝑏

π‘₯π‘œ

𝑏

π‘βˆ’1

=π‘Žπ‘

𝑏

π‘Š

𝑏

π‘βˆ’1𝑐

The natural frequency of this system

𝑓𝑛 =1

2πœ‹

π‘˜π‘’π‘ž

π‘Š/𝑔

=1

2πœ‹

𝑔𝑐

𝑏

π‘Š

π‘Ž

βˆ’1/𝑐

=1

2πœ‹

𝑔𝑐

𝑏

π‘Š

π‘Ž

βˆ’1/2𝑐

𝐻𝑧

Vibrations 3.26 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

Representative Spring Data

Consider the representative data of a

nonlinear spring shown in the figure

Using lsqcurvefit in Matlab to identify

π‘Ž = 2500𝑁, 𝑏 = 0.011π‘š, 𝑐 = 2.77

⟹ 𝑓𝑛 =1

2πœ‹

𝑔𝑐

𝑏

π‘Š

π‘Ž

βˆ’1/2𝑐

= 32.4747π‘Šβˆ’1/3.54𝐻𝑧

Plot 𝑓𝑛(π‘Š)

Vibrations 3.27 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

Representative Spring Data

From the figure of 𝑓𝑛(π‘Š)

β€’ over a sizable portion of the load

range, the natural frequency of the

system varies within the range of 8.8%

β€’ The natural frequency of a system with

a linear spring whose static

displacement ranges from 12 Γ· 5π‘šπ‘švaries approximately from 4.5 Γ· 7.0𝐻𝑧or approximately 22% about a

frequency of 5.8𝐻𝑧

1

2πœ‹

9.8

0.012β‰ˆ 4.5𝐻𝑧,

1

2πœ‹

9.8

0.005β‰ˆ 7𝐻𝑧

of 5.8 Hz

Vibrations 3.28 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

2.Damping Factor

Translation Vibrations: Damping Factor

For translating single dof systems, the damping factor or

damping ratio πœ‰ is defined as

πœ‰ =𝑐

2π‘šπœ”π‘›=

𝑐

2 π‘˜π‘š=

π‘πœ”π‘›

2π‘˜

𝑐: the system damping coefficient, 𝑁𝑠/π‘š

π‘˜: the system stiffness, 𝑁/π‘š

π‘š: the system mass, π‘˜π‘”

Critical Damping, Underdamping, and Overdamping

Defining the critical damping 𝑐𝑐

𝑐𝑐 = 2π‘šπœ”π‘› = 2 π‘˜π‘š, πœ‰ = 𝑐/𝑐𝑐 (3.19)

0 < πœ‰ < 1: underdamped,πœ‰ > 1: overdamped,πœ‰ = 1: criticallydamped

Vibrations 3.29 Single DOF Systems: Governing Equations

(3.18)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

Rotational Vibrations: Damping Factor

For rotating single dof systems, the damping factor or damping

ratio πœ‰ is defined as

πœ‰ =𝑐𝑑

2π½πœ”π‘›=

𝑐𝑑

2 π‘˜π‘‘π½

𝑐𝑑: the system damping coefficient, π‘π‘šπ‘ /π‘Ÿπ‘Žπ‘‘

π‘˜π‘‘: the system stiffness, π‘π‘š/π‘Ÿπ‘Žπ‘‘

𝐽: the system moment of inertia, π‘˜π‘”π‘š2

Vibrations 3.30 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 6: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

6

Β§3.Natural Frequency and Damping Factor

Governing Equation of Motion in Terms of Natural Frequency

and Damping Factor

Rewriting the equation of motion

𝑑2π‘₯

𝑑𝑑2 + 2πœ‰πœ”π‘›

𝑑π‘₯

𝑑𝑑+ πœ”π‘›

2π‘₯ =𝑓(𝑑)

π‘šIf we introduce the dimensionless time 𝜏 = πœ”π‘›π‘‘ , then the

equation can be written

𝑑2π‘₯

π‘‘πœ2 + 2πœ‰π‘‘π‘₯

π‘‘πœ+ π‘₯ =

𝑓(𝜏)

π‘˜

Vibrations 3.31 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

- Ex.3.7 Effect of Mass on the Damping Factor

A system is initially designed to be critically damped - that is,

with a damping factor of πœ‰ = 1. Due to a design change, the

mass of the system is increased 20% - that is, from π‘š to 1.2π‘š.

Will the system still be critically damped if the stiffness and the

damping coefficient of the system are kept the same?

Solution

The damping factor of the system after the design change

πœ‰π‘›π‘’π‘€ =𝑐

2 π‘˜(1.2π‘š)= 0.91

𝑐

2 π‘˜π‘š= 0.91

𝑐

𝑐𝑐= 0.91

⟹ The system with the increased mass is no longer critically

damped; rather, it is now underdamped

Vibrations 3.32 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

- Ex.3.8 Effects of System Parameters on the Damping Ratio

An engineer finds that a single dof system with mass π‘š ,

damping 𝑐, and spring constant π‘˜ has too much static deflection

𝛿𝑠𝑑. The engineer would like to decrease 𝛿𝑠𝑑 by a factor of 2,

while keeping the damping ratio constant. Determine the

different options

Solution

The problem involves vertical vibrations

𝛿𝑠𝑑 =π‘šπ‘”

π‘˜

2πœ‰ =𝑐

π‘š

𝛿𝑠𝑑

𝑔= 𝑐

𝛿𝑠𝑑

π‘”π‘š2 =1

π‘š

𝑐2𝛿𝑠𝑑

𝑔

⟹ there are three ways that one can achieve the goal

Vibrations 3.33 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

First choice

Let 𝑐 remain constant, reduce 𝛿𝑠𝑑 by one-half

𝛿𝑠𝑑 =π‘šπ‘”

π‘˜

𝛿𝑠𝑑′ =

𝛿𝑠𝑑

2=

π‘šπ‘”

2π‘˜=

π‘šβ€²π‘”

π‘˜β€²Comparing (a) and (b)

π‘šβ€²π‘”

π‘˜β€²=

π‘šπ‘”

2π‘˜=

π‘š/ 2 𝑔

π‘˜ 2⟹ π‘š β†’ π‘šβ€² =

π‘š

2, π‘˜ β†’ π‘˜β€² = π‘˜ 2

Check the damping ratio

2πœ‰β€² = 𝑐𝛿′

𝑠𝑑

π‘”π‘šβ€²2 = 𝑐𝛿𝑠𝑑

2𝑔 π‘š/ 22 = 𝑐

𝛿𝑠𝑑

π‘”π‘š2 = 2πœ‰

Vibrations 3.34 Single DOF Systems: Governing Equations

Before (a)

After (b)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

Second choice

Let π‘š remain constant, reduce 𝛿𝑠𝑑 by one-half

2πœ‰ = 𝑐𝛿𝑠𝑑

π‘”π‘š2 =1

π‘š

𝑐2𝛿𝑠𝑑

𝑔

2πœ‰β€² =1

π‘š

𝑐′2𝛿𝑠𝑑′

𝑔=

1

π‘š

𝑐′2𝛿𝑠𝑑

2𝑔

Comparing (c) and (d)

𝑐′2

2= 𝑐2 ⟹ 𝑐 β†’ 𝑐′ = 𝑐 2

The static deflection

𝛿𝑠𝑑′ =

π‘šπ‘”

π‘˜β€²=

𝛿𝑠𝑑

2=

π‘šπ‘”

2π‘˜βŸΉ π‘˜ β†’ π‘˜β€² = 2π‘˜

Vibrations 3.35 Single DOF Systems: Governing Equations

Before (c)

After (d)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§3.Natural Frequency and Damping Factor

Third choice

Let π‘˜ remain constant, reduce 𝛿𝑠𝑑 by one-half

𝛿𝑠𝑑 =π‘šπ‘”

π‘˜

𝛿𝑠𝑑′ =

𝛿𝑠𝑑

2=

π‘šπ‘”

2π‘˜=

π‘šβ€²π‘”

π‘˜Comparing (e) and (f)

π‘šβ€² =π‘š

2⟹ π‘š β†’ π‘šβ€² =

π‘š

2The constant damping ratio

2πœ‰β€² = 𝑐′𝛿′

𝑠𝑑

π‘”π‘šβ€²2 = 𝑐′𝛿𝑠𝑑

2𝑔 π‘š/2 2 = 𝑐′2𝛿𝑠𝑑

π‘”π‘š2 = 𝑐𝛿𝑠𝑑

π‘”π‘š2 = 2πœ‰

⟹ 𝑐 β†’ 𝑐′ = 𝑐 2

Vibrations 3.36 Single DOF Systems: Governing Equations

Before (e)

After (f)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 7: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

7

𝐹 π‘₯ = πœ‡π‘šπ‘”π‘ π‘”π‘›( π‘₯) (2.52)

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑓 𝑑 (3.8)

Β§4.Governing Equations for Different Type of Damping

The governing equations of motion for systems with different

types of damping are obtained by replacing the term

corresponding to the force due to viscous damping with the force

due to either the fluid, structural, or dry friction type damping

Coulomb or Dry Friction Damping

Using Eq. (2.52) and Eq. (3.8), the governing equation of motion

takes the form

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ πœ‡π‘šπ‘”π‘ π‘”π‘›( π‘₯) = 𝑓(𝑑)

which is a nonlinear equation because the damping

characteristic is piecewise linear

Vibrations 3.37 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

π‘›π‘œπ‘›π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ π‘‘π‘Ÿπ‘¦ π‘“π‘Ÿπ‘–π‘π‘‘π‘–π‘œπ‘› π‘“π‘œπ‘Ÿπ‘π‘’

𝐹 π‘₯ = 𝑐𝑑 π‘₯2𝑠𝑔𝑛 π‘₯ = 𝑐𝑑| π‘₯| π‘₯ (2.54)

𝐹 = π‘˜πœ‹π›½β„Žπ‘ π‘”π‘› π‘₯ |π‘₯| (2.57)

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑓 𝑑 (3.8)

Β§4.Governing Equations for Different Type of Damping

Fluid Damping

Using Eq. (2.54) and Eq. (3.8), the governing equation of motion

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑| π‘₯| π‘₯ + π‘˜π‘₯ = 𝑓(𝑑)

which is a nonlinear equation due to the nature of the damping

Structural Damping

Using Eq. (2.57) and Eq. (3.8), the governing equation of motion

π‘šπ‘‘2π‘₯

𝑑𝑑2 + π‘˜πœ‹π›½β„Žπ‘ π‘”π‘› π‘₯ |π‘₯| + π‘˜π‘₯ = 𝑓(𝑑)

Vibrations 3.38 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

π‘›π‘œπ‘›π‘™π‘–π‘›π‘’π‘Žπ‘Ÿ 𝑓𝑙𝑒𝑖𝑑 π‘‘π‘Žπ‘šπ‘π‘–π‘›π‘” π‘“π‘œπ‘Ÿπ‘π‘’

Β§5.Governing Equations for Different Type of Applied Forces

1.System with Base excitation

- The base-excitation model is a prototype that is useful for studying

β€’ buildings subjected to earthquakes

β€’ packaging during transportation

β€’ vehicle response, and

β€’ designing accelerometers

- The physical system of interest is represented by a single dof

system whose base is subjected to a displacement

disturbance 𝑦(𝑑), and an equation governing the motion of

this system is sought to determine the response of the

system π‘₯(𝑑)

Vibrations 3.39 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§5.Governing Equations for Different Type of Applied Forces

- A prototype of a single dof system subjected to a base excitation

β€’ The vehicle provides the base excitation 𝑦(𝑑) to the

instrumentation package modeled as a single dof

β€’ The displacement response π‘₯(𝑑) is measured from the

system’s static-equilibrium position

Assume that no external force is applied directly to the mass;

that is, 𝑓 𝑑 = 0

Vibrations 3.40 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§5.Governing Equations for Different Type of Applied Forces

- The following governing equation of motion

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑐

𝑑𝑦

𝑑𝑑+ π‘˜π‘¦

⟹ π‘šπ‘‘2π‘₯

𝑑𝑑2 + 2πœ‰πœ”π‘›

𝑑π‘₯

𝑑𝑑+ πœ”π‘›

2π‘₯ = 2πœ‰πœ”π‘›

𝑑𝑦

𝑑𝑑+ πœ”π‘›

2𝑦

𝑦(𝑑) and π‘₯(𝑑) are measured from a fixed point 𝑂 located in an

inertial reference frame and a fixed point located at the

system’s static equilibrium position, respectively

Vibrations 3.41 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§5.Governing Equations for Different Type of Applied Forces

- If the relative displacement is desired, the governing equation

of motion

π‘šπ‘‘2𝑧

𝑑𝑑2 + 𝑐𝑑𝑧

𝑑𝑑+ π‘˜π‘§ = βˆ’π‘š

𝑑2𝑦

𝑑𝑑2

with 𝑧 𝑑 ≑ π‘₯ 𝑑 βˆ’ 𝑦(𝑑)

βŸΉπ‘‘2𝑧

𝑑𝑑2 + 2πœ‰πœ”π‘›

𝑑𝑧

𝑑𝑑+ πœ”π‘›

2𝑧 = βˆ’π‘‘2𝑦

𝑑𝑑2

Vibrations 3.42 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 8: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

8

Β§5.Governing Equations for Different Type of Applied Forces

2.System with Unbalanced Rotating Mass

- Assume that the unbalance generates a force that acts on the

system’s mass. This force, in turn, is transmitted through the

spring and damper to the fixed base

- The unbalance is modeled as a mass π‘š0 that rotates with an

angular speed πœ”, and this mass is located a fixed distance 𝑒from the center of rotation

Vibrations 3.43 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§5.Governing Equations for Different Type of Applied Forces

- From the free-body diagram (FBD) of the unbalanced mass π‘š0

𝑁π‘₯ = βˆ’π‘š0( π‘₯ βˆ’ πœ–πœ”2π‘ π‘–π‘›πœ”π‘‘)

𝑁𝑦 = π‘š0πœ–πœ”2π‘π‘œπ‘ πœ”π‘‘

- From the FBD of mas 𝑀

𝑀𝑑2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑁π‘₯

⟹ (𝑀 + π‘š0)𝑑2π‘₯

𝑑𝑑2 + 𝑐𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = π‘š0πœ–πœ”

2π‘ π‘–π‘›πœ”π‘‘

βŸΉπ‘‘2π‘₯

𝑑𝑑2 + 2πœ‰πœ”π‘›

𝑑π‘₯

𝑑𝑑+ πœ”π‘›

2π‘₯ =𝐹(πœ”)

π‘šπ‘ π‘–π‘›πœ”π‘‘

where π‘š = 𝑀 + π‘š0, πœ”π‘› = π‘˜/π‘š, 𝐹 πœ” = π‘š0πœ–πœ”2

- The static displacement of the spring

𝛿𝑠𝑑 =𝑀 + π‘š0 𝑔

π‘˜=

π‘šπ‘”

π‘˜

Vibrations 3.44 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§5.Governing Equations for Different Type of Applied Forces

3.System with Added Mass Due to a Fluid

- The equation of motion of the system

π‘šπ‘‘2π‘₯

𝑑𝑑2 + π‘˜π‘₯ = 𝑓 𝑑 + 𝑓1(𝑑)

π‘₯(𝑑) : measured from the unstretched position of the spring

𝑓(𝑑) : the externally applied force

𝑓1(𝑑) : the force exerted by the fluid on the mass due to the

motion of the mass

Vibrations 3.45 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§5.Governing Equations for Different Type of Applied Forces

- The force generated by the fluid on the rigid body

𝑓1 𝑑 = βˆ’πΎ0𝑀𝑑2π‘₯

𝑑𝑑2 βˆ’ 𝐢𝑓

𝑑π‘₯

𝑑𝑑

𝑀 : the mass of the fluid displaced by the body

𝐾0 : an added mass coefficient

𝐢𝑓 : a positive fluid damping coefficient

- The governing equation of motion

π‘š + 𝐾0𝑀𝑑2π‘₯

𝑑𝑑2 + 𝐢𝑓

𝑑π‘₯

𝑑𝑑+ π‘˜π‘₯ = 𝑓 𝑑

𝐾0𝑀 : the added mass due to the fluid

Vibrations 3.46 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

Consider a system with 𝑁 degrees of freedom that is described

by a set of 𝑁 generalized coordinates π‘žπ‘– , 𝑖 = 1,2,…𝑁. In terms

of the chosen generalized coordinates, Lagrange’s equations

have the form

𝑑

𝑑𝑑

πœ•π‘‡

πœ• π‘žπ‘—βˆ’

πœ•π‘‡

πœ•π‘žπ‘—+

πœ•π·

πœ• π‘žπ‘—+

πœ•π‘‰

πœ•π‘žπ‘—= 𝑄𝑗 , 𝑗 = 1,2,… , 𝑁

π‘žπ‘— : generalized coordinate

π‘žπ‘— : generalized velocity

𝑇 : the kinetic energy of the system

𝑉 : the potential energy of the system

𝐷 : the Rayleigh dissipation function

𝑄𝑗 : the generalized force that appears in the π‘—π‘‘β„Ž equation

Vibrations 3.47 Single DOF Systems: Governing Equations

(3.41)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

The generalized force 𝑄𝑗 that appears in the π‘—π‘‘β„Ž equation

𝑄𝑗 =

𝑙

𝐹𝑙

πœ• π‘Ÿπ‘™πœ•π‘žπ‘—

+

𝑙

𝑀𝑙

πœ•πœ”π‘™

πœ• π‘žπ‘—

𝐹𝑙, 𝑀𝑙 : the vector representations of the externally

applied forces and moments on the π‘™π‘‘β„Ž body

π‘Ÿπ‘™ : the position vector to the location where the force

𝐹𝑙 is applied

πœ”π‘™ : the π‘™π‘‘β„Ž body’s angular velocity about the axis

along which the considered moment is applied

Vibrations 3.48 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 9: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

9

Β§6.Lagrange’s Equations

Linear Vibratory Systems

For vibratory systems with linear characteristics

𝑇 =1

2

𝑗=1

𝑁

𝑛=1

𝑁

π‘šπ‘—π‘› π‘žπ‘— π‘žπ‘›

𝑉 =1

2

𝑗=1

𝑁

𝑛=1

𝑁

π‘˜π‘—π‘›π‘žπ‘—π‘žπ‘›

𝐷 =1

2

𝑗=1

𝑁

𝑛=1

𝑁

𝑐𝑗𝑛 π‘žπ‘— π‘žπ‘›

π‘šπ‘—π‘› : the inertia coefficients

π‘˜π‘—π‘› : the stiffness coefficients

𝑐𝑗𝑛 : the damping coefficients

Vibrations 3.49 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

Single Degree-Of-Freedom

The case of a single degree-of-freedom system, 𝑁 = 1, the

Lagrange’s equation

𝑑

𝑑𝑑

πœ•π‘‡

πœ• π‘ž1βˆ’

πœ•π‘‡

πœ•π‘ž1+

πœ•π·

πœ• π‘ž1+

πœ•π‘‰

πœ•π‘ž1= 𝑄1

where the generalized force is obtained from

𝑄1 =

𝑙

𝐹𝑙

πœ• π‘Ÿπ‘™πœ•π‘ž1

+

𝑙

𝑀𝑙

πœ•πœ”π‘™

πœ• π‘ž1

Vibrations 3.50 Single DOF Systems: Governing Equations

(3.44)

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

Linear Single Degree-Of-Freedom Systems

The expressions for the system kinetic energy, the system

potential energy, and the system dissipation function reduce to

𝑇 =1

2

𝑗=1

1

𝑛=1

1

π‘šπ‘—π‘› π‘žπ‘— π‘žπ‘› =1

2π‘š11 π‘ž1

2 ≑1

2π‘šπ‘’ π‘ž1

2

𝑉 =1

2

𝑗=1

1

𝑛=1

1

π‘˜π‘—π‘›π‘žπ‘—π‘žπ‘› =1

2π‘˜11π‘ž1

2 ≑1

2π‘˜π‘’π‘ž1

2

𝐷 =1

2

𝑗=1

1

𝑛=1

1

𝑐𝑗𝑛 π‘žπ‘— π‘žπ‘› =1

2𝑐11 π‘ž1

2 ≑1

2𝑐𝑒 π‘ž1

2

π‘šπ‘’, π‘˜π‘’, 𝑐𝑒 : the equivalent mass, stiffness, and damping

From Lagrange’s equation

π‘šπ‘’ π‘ž1 + 𝑐𝑒 π‘ž1 + π‘˜π‘’π‘ž1 = 𝑄1

Vibrations 3.51 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

(3.46)

Β§6.Lagrange’s Equations

To obtain the governing equation of motion of a linear vibrating

system with viscous damping

β€’ Obtains expressions for the system kinetic energy 𝑇 ,

system potential energy 𝑉, and system dissipation function 𝐷

β€’ Identify the equivalent mass π‘šπ‘’, equivalent stiffness π‘˜π‘’,

and equivalent damping 𝑐𝑒

β€’ Determine the generalized force

β€’ Apply the governing equation

π‘šπ‘’ π‘ž1 + 𝑐𝑒 π‘ž1 + π‘˜π‘’π‘ž1 = 𝑄1

β€’ Determine the system natural frequency

πœ”π‘› =π‘˜π‘’

π‘šπ‘’, πœ‰ =

𝑐𝑒

2π‘šπ‘’πœ”π‘›=

𝑐𝑒

2 π‘˜π‘’π‘šπ‘’

Vibrations 3.52 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.9 Motion of A Linear Single Degree-Of-Freedom System

Obtain the governing equation for the mass-damper-spring

system

Solution

Identify the following

π‘ž1 = π‘₯, 𝐹𝑙 = 𝑓(𝑑) 𝑗, π‘Ÿπ‘™ = π‘₯ 𝑗, 𝑀𝑙 = 0

Determine the generalized force

𝑄1 =

𝑙

𝐹𝑙

πœ• π‘Ÿπ‘™πœ•π‘ž1

+ 0 = 𝑓 𝑑 π‘—πœ•π‘₯ 𝑗

πœ•π‘₯= 𝑓(𝑑)

The system kinetic energy 𝑇, system potential energy 𝑉, and

system dissipation function 𝐷

𝑇 =1

2π‘š π‘₯2, 𝑉 =

1

2π‘˜π‘₯2, 𝐷 =

1

2𝑐 π‘₯2

Vibrations 3.53 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

Identify the following

π‘ž1 = π‘₯, 𝐹𝑙 = 𝑓(𝑑) 𝑗, π‘Ÿπ‘™ = π‘₯ 𝑗, 𝑀𝑙 = 0

Determine the generalized force

𝑄1 =

𝑙

𝐹𝑙

πœ• π‘Ÿπ‘™πœ•π‘ž1

+ 0 = 𝑓 𝑑 π‘—πœ•π‘₯ 𝑗

πœ•π‘₯= 𝑓(𝑑)

The system kinetic energy 𝑇, system potential energy

𝑉, and system dissipation function 𝐷

𝑇 =1

2π‘š π‘₯2, 𝑉 =

1

2π‘˜π‘₯2, 𝐷 =

1

2𝑐 π‘₯2

⟹ π‘šπ‘’ = π‘š, π‘˜π‘’ = π‘˜, 𝑐𝑒 = 𝑐

The governing equation

π‘šπ‘‘2π‘₯

𝑑𝑑2 + 𝑐𝑑𝑦

𝑑𝑑+ π‘˜π‘₯ = 𝑓(𝑑)

Vibrations 3.54 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 10: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

10

Β§6.Lagrange’s Equations

- Ex.3.10 Motion of A System that Translates and Rotates

Obtain the governing equation of motion for β€œsmall” oscillations

about the upright position

Solution

Choose the generalized coordinate

π‘ž1 = πœƒ, 𝐹𝑙 = 0, 𝑀𝑙 = 𝑀 𝑑 π‘˜, πœ”π‘™ = πœƒπ‘˜

The generalized force

𝑄1 =

𝑙

𝑀𝑙 βˆ™πœ•πœ”π‘™

πœ• π‘ž1= 𝑀 𝑑 π‘˜ βˆ™

πœ• πœƒπ‘˜

πœ• πœƒ= 𝑀(𝑑)

Vibrations 3.55 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

𝐽𝐺 =1

2π‘šπ‘Ÿ2

Β§6.Lagrange’s Equations

The potential energy

𝑉 =1

2π‘˜π‘₯2 =

1

2π‘˜(π‘Ÿπœƒ)2=

1

2π‘˜π‘Ÿ2πœƒ2

⟹ the equivalent stiffness

The kinetic energy of the system

𝑇 =1

2π‘š π‘₯2 +

1

2𝐽𝐺 πœƒ2

⟹ 𝑇 =1

2π‘šπ‘Ÿ2 + 𝐽𝐺 πœƒ2 =

1

2

3

2π‘šπ‘Ÿ2 πœƒ2

⟹ the equivalent mass of the system

Vibrations 3.56 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

π‘Ÿπ‘œπ‘‘π‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™π‘˜π‘–π‘›π‘’π‘‘π‘–π‘ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦

π‘‘π‘Ÿπ‘Žπ‘›π‘ π‘™π‘Žπ‘‘π‘–π‘œπ‘›π‘˜π‘–π‘›π‘’π‘‘π‘–π‘ π‘’π‘›π‘’π‘Ÿπ‘”π‘¦

π‘˜π‘’ = π‘˜π‘Ÿ2

π‘šπ‘’ =3

2π‘šπ‘Ÿ2

Β§6.Lagrange’s Equations

The dissipation function

𝐷 =1

2𝑐 π‘₯2 =

1

2𝑐(π‘Ÿ πœƒ)2=

1

2(π‘π‘Ÿ2) πœƒ2

⟹ the equivalent damping coefficient

𝑐𝑒 = π‘π‘Ÿ2

The governing equation of motion3

2π‘šπ‘Ÿ2 πœƒ + π‘π‘Ÿ2 πœƒ + π‘˜π‘Ÿ2πœƒ = 𝑀(𝑑)

Natural frequency and damping factor

πœ”π‘› =π‘˜π‘’

π‘šπ‘’=

π‘˜π‘Ÿ2

3π‘šπ‘Ÿ2/2=

2π‘˜

3π‘š

πœ‰ =𝑐𝑒

2π‘šπ‘’πœ”π‘›=

π‘π‘Ÿ2

2(3π‘šπ‘Ÿ2/2) 2π‘˜/3π‘š=

6

6π‘˜π‘š

Vibrations 3.57 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.11 Inverted Pendulum

Obtain the governing equation of motion for β€œsmall” oscillations

about the upright position

Solution

The total rotary inertia of the system

𝐽𝑂 = 𝐽𝑂1+ 𝐽𝑂2

𝐽𝑂1: mass momentof inertia of π‘š1 about point𝑂

𝐽𝑂2: massmomentof inertiaof thebaraboutpoint𝑂

𝐽𝑂1=

2

5π‘š1π‘Ÿ

2 + π‘š1𝐿12

𝐽𝑂2=

1

12π‘š2𝐿2

2 + π‘š2

𝐿2

2

2

=1

3π‘š2𝐿2

2

Vibrations 3.58 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

Choosing π‘ž1 = πœƒ as the generalized coordinate, the system

kinetic energy takes the form

𝑇 =1

2𝐽𝑂 πœƒ2 =

1

2𝐽𝑂1

+ 𝐽𝑂2 πœƒ2

=1

2

2

5π‘š1π‘Ÿ

2 + π‘š1𝐿12 +

1

3π‘š2𝐿2

2 πœƒ2

For small πœƒ ⟹ π‘₯1 β‰ˆ 𝐿1πœƒ

The system potential energy

𝑉 =1

2π‘˜π‘₯1

2 βˆ’1

2π‘š1𝑔𝐿1πœƒ

2 βˆ’1

2π‘š2𝑔

𝐿2

2πœƒ2

=1

2π‘˜πΏ1

2 βˆ’ π‘š1𝑔𝐿1 βˆ’ π‘š2𝑔𝐿2

2πœƒ2

𝐷 =1

2𝑐 π‘₯1

2 =1

2𝑐𝐿1

2 πœƒ2

Vibrations 3.59 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

The dissipation function

Β§6.Lagrange’s Equations

The equivalent inertia, the equivalent stiffness, and the

equivalent damping properties of the system

𝑇 =1

2

2

5π‘š1π‘Ÿ

2 +π‘š1𝐿12 +

1

3π‘š2𝐿2

2 πœƒ2

𝑉 =1

2π‘˜πΏ1

2 βˆ’ π‘š1𝑔𝐿1 βˆ’ π‘š2𝑔𝐿2

2πœƒ2

𝐷 =1

2𝑐 π‘₯1

2 =1

2𝑐𝐿1

2 πœƒ2

The governing equation of motion π‘šπ‘’ πœƒ + 𝑐𝑒

πœƒ + π‘˜π‘’πœƒ = 0

Natural frequency

πœ”π‘› =π‘˜π‘’

π‘šπ‘’=

π‘˜πΏ12 βˆ’ π‘š1𝑔𝐿1 βˆ’ π‘š2𝑔𝐿2/2

𝐽𝑂1+ 𝐽𝑂2

π‘˜π‘’ can be negative, which affects the stability of the system

Vibrations 3.60 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

βŸΉπ‘šπ‘’ =2

5π‘š1π‘Ÿ

2 +π‘š1𝐿12 +

1

3π‘š2𝐿2

2

βŸΉπ‘˜π‘’ =π‘˜πΏ12 βˆ’π‘š1𝑔𝐿1 βˆ’π‘š2𝑔

𝐿2

2

⟹ 𝑐𝑒 = 𝑐𝐿12

Page 11: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

11

Β§6.Lagrange’s Equations

β€’ Natural Frequency of Pendulum System

Now locate the pivot point 𝑂 on the top, the

equivalent stiffness of this system

π‘˜π‘’ = π‘˜πΏ12 + π‘š1𝑔𝐿1 + π‘š2𝑔

𝐿2

2and the natural frequency of this system

πœ”π‘› =π‘˜π‘’

π‘šπ‘’=

π‘˜πΏ12 + π‘š1𝑔𝐿1 + π‘š2𝑔𝐿2/2

𝐽𝑂1+ 𝐽𝑂2

If π‘š2 β‰ͺ π‘š1, π‘Ÿ β‰ͺ 𝐿1, and π‘˜ = 0, then

πœ”π‘› =π‘š1𝑔𝐿1 1 + π‘š2𝐿2/π‘š1𝐿1

π‘š1𝐿12 1 + 2π‘Ÿ2/5𝐿1

2 →𝑔

𝐿

β†’ the natural frequency of a pendulum composed of a rigid,

weightless rod carrying a mass a distance 𝐿1 from its pivot

Vibrations 3.61 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.12 Motion of A Disk Segment

Derive the governing equation of motion of a disk segment

Solution

The position vector from the fixed point 𝑂 to the

center of mass 𝐺

π‘Ÿ = βˆ’π‘…πœƒ + π‘π‘ π‘–π‘›πœƒ 𝑖 + (𝑅 βˆ’ π‘π‘π‘œπ‘ πœƒ) 𝑗

The absolute velocity of the center of mass π‘Ÿ = βˆ’ 𝑅 βˆ’ π‘π‘π‘œπ‘ πœƒ πœƒ 𝑖 + π‘π‘ π‘–π‘›πœƒ πœƒ 𝑗

Selecting the generalized coordinate π‘ž1 = πœƒ ,

the system kinetic energy

𝑇 =1

2𝐽𝐺 πœƒ2 +

1

2π‘š π‘Ÿ βˆ™ π‘Ÿ

⟹ 𝑇 =1

2𝐽𝐺 πœƒ2 +

1

2π‘š 𝑅2 + 𝑏2 βˆ’ 2π‘π‘…π‘π‘œπ‘ πœƒ πœƒ2

Vibrations 3.62 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Taylor series expansion

π‘π‘œπ‘ πœƒ = π‘π‘œπ‘  πœƒ0 + πœƒ β‰ˆ π‘π‘œπ‘ πœƒ0 βˆ’ πœƒπ‘ π‘–π‘›πœƒ0 βˆ’1

2 πœƒ2π‘π‘œπ‘ πœƒ0 + β‹―

π‘ π‘–π‘›πœƒ = 𝑠𝑖𝑛 πœƒ0 + πœƒ β‰ˆ π‘ π‘–π‘›πœƒ0 βˆ’ πœƒπ‘π‘œπ‘ πœƒ0 βˆ’1

2 πœƒ2π‘ π‘–π‘›πœƒ0 + β‹―

Β§6.Lagrange’s Equations

Choosing the fixed ground as the datum, the system potential

energy

𝑉 = π‘šπ‘” 𝑅 βˆ’ π‘π‘π‘œπ‘ πœƒ

Small Oscillations about the Upright Position

Express the angular displacement as

πœƒ(𝑑) = πœƒ0 + πœƒ(𝑑)

Since πœƒ0 = 0 , and small πœƒ , using π‘ π‘–π‘›πœƒ β‰ˆ πœƒ ,

π‘π‘œπ‘ πœƒ β‰ˆ 1 βˆ’1

2 πœƒ2, rewrite the energy functions

𝑇 β‰ˆ1

2𝐽𝐺 + π‘š 𝑅 βˆ’ 𝑏 2 πœƒ2, 𝑉 β‰ˆ π‘šπ‘” 𝑅 βˆ’ 𝑏 +

1

2π‘šπ‘”π‘ πœƒ2

Vibrations 3.63 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

The equivalent inertia of the system

𝑇 β‰ˆ1

2𝐽𝐺 + π‘š 𝑅 βˆ’ 𝑏 2 πœƒ2

The potential energy is not in standard form because of the

constant term π‘šπ‘” 𝑅 βˆ’ 𝑏

𝑉 β‰ˆ π‘šπ‘” 𝑅 βˆ’ 𝑏 +1

2π‘šπ‘”π‘ πœƒ2

However, since the datum for the potential energy is not

unique, we can shift the datum for the potential energy from

the fixed ground to a distance (𝑅 βˆ’ 𝑏) above the ground

𝑉 =1

2π‘šπ‘”π‘ πœƒ2

Then, the equivalent stiffness can be defined

π‘˜π‘’ = π‘šπ‘”π‘

Vibrations 3.64 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

⟹ π‘šπ‘’ = 𝐽𝐺 + π‘š 𝑅 βˆ’ 𝑏 2

Β§6.Lagrange’s Equations

The governing equation

𝐽𝐺 + π‘š 𝑅 βˆ’ 𝑏 2 πœƒ + π‘šπ‘”π‘ πœƒ = 0

Natural Frequency

πœ”π‘› =π‘˜π‘’

π‘šπ‘’

=π‘šπ‘”π‘

𝐽𝐺 + π‘š 𝑅 βˆ’ 𝑏 2

=𝑔

𝐽𝐺 + π‘š 𝑅 βˆ’ 𝑏 2

π‘šπ‘

Vibrations 3.65 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.13 Translating System with a Pre-tensioned/compressedSpring

Derive the governing equation of motion for vertical

translations π‘₯ of the mass about the static

equilibrium position of the system

Solution

The equation of motion will be derived for

β€œsmall” amplitude vertical oscillations; that is,

π‘₯/𝐿 β‰ͺ 1

The horizontal spring is pretensioned with a tension, which is

produced by an initial extension of the spring by an amount 𝛿0

𝑇1 = π‘˜1𝛿0

The kinetic energy of the system

𝑇 =1

2π‘š π‘₯2

Vibrations 3.66 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 12: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

12

Binomial expansion 1 + π‘₯ 𝑛 = 1 + 𝑛π‘₯ +1

2𝑛(𝑛 βˆ’ 1)π‘₯2 + β‹―

Β§6.Lagrange’s Equations

The potential energy of the system

𝑉 =1

2π‘˜1 𝛿0 + βˆ†πΏ 2

π‘“π‘œπ‘Ÿ π‘ π‘π‘Ÿπ‘–π‘›π‘” π‘˜1

+1

2π‘˜2π‘₯

2

π‘“π‘œπ‘Ÿ π‘ π‘π‘Ÿπ‘–π‘›π‘” π‘˜2

βˆ†πΏ : the change in the length of the spring with

stiffness π‘˜1 due to the motion π‘₯ of the mass

βˆ†πΏ = 𝐿2 + π‘₯2 βˆ’ 𝐿 = 𝐿 1 + (π‘₯/𝐿)2βˆ’ 𝐿

Assume that |π‘₯/𝐿| β‰ͺ 1, using binomial expansion

1+(π‘₯/𝐿)2= 1+(π‘₯/𝐿)2 1/2 = 1+1

2(π‘₯/𝐿)2+

1

8(π‘₯/𝐿)4+β‹―

⟹ βˆ†πΏ β‰ˆ 𝐿 1+(π‘₯/𝐿)2/2 βˆ’ 𝐿 = 𝐿(π‘₯/𝐿)2/2

⟹ 𝑉 =1

2π‘˜1 𝛿0 +

𝐿

2

π‘₯

𝐿

2 2

+1

2π‘˜2π‘₯

2

Vibrations 3.67 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

𝑑

𝑑𝑑

πœ•π‘‡

πœ• π‘ž1βˆ’

πœ•π‘‡

πœ•π‘ž1+

πœ•π·

πœ• π‘ž1+

πœ•π‘‰

πœ•π‘ž1= 𝑄1 (3.44)

Β§6.Lagrange’s Equations

Chose the generalize coordinate π‘ž1 = π‘₯

𝑇 =1

2π‘š π‘₯2

βŸΉπ‘‘

𝑑𝑑

πœ•π‘‡

πœ• π‘₯=

𝑑

π‘‘π‘‘π‘š π‘₯ = π‘š π‘₯

πœ•π‘‡

πœ•π‘₯= 0,

πœ•π·

πœ• π‘₯= 0, 𝑄 = 0

𝑉 =1

2π‘˜1 𝛿0 +

𝐿

2

π‘₯

𝐿

2 2

+1

2π‘˜2π‘₯

2

βŸΉπœ•π‘‰

πœ•π‘₯=π‘˜1 𝛿0 +

𝐿

2

π‘₯

𝐿

2 2π‘₯

𝐿+π‘˜2π‘₯= π‘˜1 +

π‘˜1𝛿0

𝐿π‘₯+

π‘˜1

2

π‘₯3

𝐿2β‰ˆ π‘˜2 +

𝑇1𝐿

π‘₯

Vibrations 3.68 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

The governing equation of motion

π‘š π‘₯ + π‘˜2 +𝑇1

𝐿π‘₯ = 0

The natural frequency

πœ”π‘› = π‘˜π‘’/π‘šπ‘’ = π‘˜2 + 𝑇1/𝐿 /π‘š

If the spring of constant π‘˜1 is compressed instead of being in

tension, then we can replace 𝑇1 by βˆ’π‘‡1 , and the natural

frequency

πœ”π‘› = π‘˜π‘’/π‘šπ‘’ = π‘˜2 βˆ’ 𝑇1/𝐿 /π‘š

The natural frequency πœ”π‘› can be made very low by adjusting

the compression of the spring with stiffness π‘˜1. At the same

time, the spring with stiffness π‘˜2 can be made stiff enough so

that the static displacement of the system is not excessive

Vibrations 3.69 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.14 Equation of Motion for a Disk with An Extended Mass

Determine the governing equation of motion

and the natural frequency for the system

Solution

The velocity of π‘š

π‘£π‘š =𝑑 π‘Ÿπ‘šπ‘‘π‘‘

=𝑑

𝑑𝑑π‘₯ + πΏπ‘ π‘–π‘›πœƒ 𝑖 + 𝐿 βˆ’ πΏπ‘π‘œπ‘ πœƒ 𝑗

= βˆ’π‘… πœƒ + 𝐿 πœƒπ‘π‘œπ‘ πœƒ 𝑖 + 𝐿 πœƒπ‘ π‘–π‘›πœƒ 𝑗

Vibrations 3.70 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

The kinetic energy of the system 𝑇 = 𝑇𝑑 + 𝑇𝑝

𝑇𝑑 =1

2π‘šπ‘‘ π‘₯2 +

1

2𝐽𝐺 πœƒ2

=1

2π‘šπ‘‘π‘…2 πœƒ2 +

1

2𝐽𝐺 πœƒ2

𝑇𝑝 =1

2π‘šπ‘£π‘š

2

=1

2π‘š βˆ’π‘… πœƒ + 𝐿 πœƒπ‘π‘œπ‘ πœƒ 𝑖 + 𝐿 πœƒπ‘ π‘–π‘›πœƒ 𝑗

2

=1

2π‘š(𝑅2 + 𝐿2 βˆ’ 2πΏπ‘…π‘π‘œπ‘ πœƒ) πœƒ2

β‰ˆ1

2π‘š 𝐿 βˆ’ 𝑅 2 πœƒ2

⟹ 𝑇 = 𝑇𝑑 + 𝑇𝑝 =1

2π‘š 𝐿 βˆ’ 𝑅 2 + π‘šπ‘‘π‘…2 + 𝐽𝐺 πœƒ2 ≑

1

2π‘šπ‘’

πœƒ2

Vibrations 3.71 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

The potential energy of the system

𝑉 =1

2π‘˜π‘₯2 + π‘šπ‘”(𝐿 βˆ’ πΏπ‘π‘œπ‘ πœƒ)

=1

2π‘˜π‘…2πœƒ2 + π‘šπ‘”πΏ 1 βˆ’ π‘π‘œπ‘ πœƒ

⟹ 𝑉 =1

2π‘˜π‘…2πœƒ2 +

1

2π‘šπ‘”πΏπœƒ2 π‘π‘œπ‘ πœƒ β‰ˆ 1 βˆ’

πœƒ2

2

=1

2π‘˜π‘…2 + π‘šπ‘”πΏ πœƒ2 ≑

1

2π‘˜π‘’πœƒ

2

The dissipation function

𝐷 =1

2𝑐 π‘₯2 =

1

2𝑐𝑅2 πœƒ2 ≑

1

2𝑐𝑒

πœƒ2

π‘šπ‘’ πœƒ + 𝑐𝑒

πœƒ + π‘˜π‘’πœƒ = 0,πœ”π‘› =π‘˜π‘’

π‘šπ‘’=

π‘˜π‘…2 + π‘šπ‘”πΏ

π‘š(𝐿 βˆ’ 𝑅)2+π‘šπ‘‘π‘…2 + 𝐽𝐺

Vibrations 3.72 Single DOF Systems: Governing Equations

The governing equation

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 13: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

13

Β§6.Lagrange’s Equations

- Ex.3.15 Micro-Electromechanical System

Determine the governing equation of motion and the natural

frequency for the micro-electromechanical system

Solution

The potential energy

𝑉 =1

2π‘˜π‘‘πœ‘

2 +1

2π‘˜ π‘₯0 𝑑 βˆ’π‘₯1

2 +1

4π‘š2𝑔(𝐿2 βˆ’πΏ1)πœ‘

2

=1

2π‘˜π‘‘πœ‘

2 +1

2π‘˜ π‘₯0 𝑑 βˆ’πΏ2πœ‘

2 +1

4π‘š2𝑔(𝐿2 βˆ’πΏ1)πœ‘

2

The kinetic energy

𝑇 =1

2𝐽0 πœ‘2 +

1

2π‘š1 π‘₯1

2 =1

2𝐽0 +π‘š1𝐿2

2 πœ‘2 ≑1

2π‘šπ‘’ πœ‘2

Dissipation function

Vibrations 3.73 Single DOF Systems: Governing Equations

𝐷 =1

2𝑐 π‘₯2

2 =1

2𝑐𝐿1

2 πœ‘2 ≑1

2𝑐𝑒 πœ‘2

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

𝑉 =1

2π‘˜π‘‘πœ‘

2 +1

2π‘˜ π‘₯0 𝑑 βˆ’ 𝐿2πœ‘

2 +1

4π‘š2𝑔(𝐿2 βˆ’ 𝐿1)πœ‘

2

The potential energy is not in the standard form ⟹ the

governing equation must be derived from Lagrange’s equationπœ•π‘‰

πœ•πœ‘= π‘˜π‘‘ + π‘˜πΏ2

2 +1

2π‘š2𝑔(𝐿2 βˆ’ 𝐿1) πœ‘ βˆ’ π‘˜πΏ2π‘₯0 𝑑

= π‘˜π‘’πœ‘ βˆ’ π‘˜πΏ2π‘₯0 𝑑

The governing equation of motion

π‘šπ‘’ πœ‘ + 𝑐𝑒 πœ‘ + π‘˜π‘’πœ‘ = π‘˜πΏ2π‘₯0(𝑑)

The natural frequency

πœ”π‘› =π‘˜π‘’

π‘šπ‘’=

π‘˜π‘‘ + π‘˜πΏ22 + π‘š2𝑔(𝐿2 βˆ’ 𝐿1)/2

𝐽0 + π‘š1𝐿22

Vibrations 3.74 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

Ex.3.16 Slider Mechanism

Obtain the equation of motion of the slider mechanism

Solution

The geometric constraints on the motion

π‘Ÿ2 πœ‘ = π‘Ž2 + 𝑏2 βˆ’ 2π‘Žπ‘π‘π‘œπ‘ πœ‘ (a)

⟹ π‘Ÿ πœ‘ =π‘Žπ‘

π‘Ÿ(πœ‘) πœ‘π‘ π‘–π‘›πœ‘

π‘Ÿ πœ‘ 𝑠𝑖𝑛𝛽 = π‘π‘ π‘–π‘›πœ‘ (b)

π‘Ž = π‘Ÿ πœ‘ π‘π‘œπ‘ π›½ + π‘π‘π‘œπ‘ πœ‘ (c)

⟹ π‘Ÿ πœ‘ π‘π‘œπ‘ π›½ βˆ’ π‘Ÿ πœ‘ 𝛽𝑠𝑖𝑛𝛽 βˆ’ 𝑏 πœ‘π‘ π‘–π‘›πœ‘ = 0

⟹ 𝛽 = π‘Ÿ πœ‘ π‘π‘œπ‘ π›½ βˆ’ 𝑏 πœ‘π‘ π‘–π‘›πœ‘

π‘Ÿ(πœ‘)𝑠𝑖𝑛𝛽=

πœ‘

π‘Ÿ2(πœ‘)π‘Žπ‘π‘π‘œπ‘ πœ‘ βˆ’ 𝑏2

Vibrations 3.75 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

System Kinetic Energy

𝑇 =1

2π½π‘šπ‘ +π½π‘šπ‘’ πœ‘2 +

1

2π½π‘šπ‘™

𝛽2 +1

2π‘šπ‘  π‘Ÿ2 +

1

2π‘šπ‘ π‘Ÿ

2 𝛽2

π½π‘šπ‘ =1

3π‘šπ‘π‘

2

π½π‘šπ‘’ =1

3π‘šπ‘’π‘’

2

π½π‘šπ‘™ =1

3π‘šπ‘™π‘™

2

π‘š πœ‘ ≑ π½π‘šπ‘ + π½π‘šπ‘’ + π½π‘šπ‘™ + π‘šπ‘ π‘Ÿ2

π‘Žπ‘π‘π‘œπ‘ πœ‘ βˆ’ 𝑏2

π‘Ÿ2(πœ‘)

2

+ π‘šπ‘ 

π‘Žπ‘π‘ π‘–π‘›πœ‘

π‘Ÿ(πœ‘)

2

⟹ 𝑇 =1

2π‘š(πœ‘) πœ‘2

Vibrations 3.76 Single DOF Systems: Governing Equations

where

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

𝑑

𝑑𝑑

πœ•π‘‡

πœ• π‘ž1βˆ’

πœ•π‘‡

πœ•π‘ž1+

πœ•π·

πœ• π‘ž1+

πœ•π‘‰

πœ•π‘ž1= 𝑄1 (3.44)

Β§6.Lagrange’s Equations

System Kinetic Energy

𝑇 =1

2π‘š(πœ‘) πœ‘2

System Potential Energy

𝑉 =1

2π‘˜π‘Ÿ2(πœ‘) +

1

2π‘˜π‘‘ 𝑑 𝑑 βˆ’ π‘’πœ‘ 2

Equation of motion

𝑑

𝑑𝑑

πœ•π‘‡

πœ• πœ‘=

𝑑

π‘‘π‘‘π‘š(πœ‘) πœ‘ = π‘š(πœ‘) πœ‘,

πœ•π‘‡

πœ•πœ‘= π‘šβ€² πœ‘ πœ‘2

πœ•π‘‰

πœ•πœ‘= π‘˜π‘Ÿ πœ‘ π‘Ÿβ€² πœ‘ + π‘˜π‘‘π‘’2πœ‘ βˆ’ π‘˜π‘‘π‘’2𝑑(𝑑)

⟹ π‘š πœ‘ πœ‘ +1

2π‘šβ€² πœ‘ πœ‘2 + π‘˜π‘Ÿ πœ‘ π‘Ÿβ€² πœ‘ + π‘˜π‘‘π‘’2πœ‘ = π‘˜π‘‘π‘’2𝑑(𝑑)

Vibrations 3.77 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.17 Oscillations of A Crankshaft

Obtain the equation of motion of the crankshaft

Solution

β€’ Kinematics

The position vector of the

slider mass π‘šπ‘

π‘Ÿπ‘ƒ = π‘Ÿπ‘π‘œπ‘ πœƒ + π‘™π‘π‘œπ‘ π›Ύ 𝑖 + 𝑑 𝑗

The position vector of the center of mass 𝐺 of the crank

π‘ŸπΊ = π‘Ÿπ‘π‘œπ‘ πœƒ + π‘Žπ‘π‘œπ‘ π›Ύ 𝑖 + π‘Ÿπ‘ π‘–π‘›πœƒ + π‘Žπ‘ π‘–π‘›π›Ύ 𝑗

From geometry

π‘Ÿπ‘ π‘–π‘›πœƒ = 𝑑 + 𝑙𝑠𝑖𝑛𝛾

The slider velocity

𝑣𝑃 = π‘Ÿπ‘ƒ = βˆ’π‘Ÿ πœƒπ‘ π‘–π‘›πœƒ βˆ’ 𝑙 𝛾𝑠𝑖𝑛𝛾 𝑖 = βˆ’π‘Ÿ πœƒ π‘ π‘–π‘›πœƒ +π‘‘π‘Žπ‘›π›Ύπ‘π‘œπ‘ πœƒ 𝑖

Vibrations 3.78 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

⟹ π‘Ÿ πœƒπ‘π‘œπ‘ πœƒ = 𝑙 π›Ύπ‘π‘œπ‘ π›Ύ ⟹ 𝛾 =π‘Ÿ

𝑙

π‘π‘œπ‘ πœƒ

π‘π‘œπ‘ π›Ύ πœƒ

Page 14: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

14

Β§6.Lagrange’s Equations

The velocity of the center of mass 𝐺 of the crank

𝑣𝐺 = βˆ’π‘Ÿ πœƒπ‘ π‘–π‘›πœƒ βˆ’ π‘Ž 𝛾𝑠𝑖𝑛𝛾 𝑖 + π‘Ÿ πœƒπ‘π‘œπ‘ πœƒ βˆ’ π‘Ž π›Ύπ‘π‘œπ‘ π›Ύ 𝑗

⟹ 𝑣𝐺 = βˆ’ π‘ π‘–π‘›πœƒ +π‘Ž

π‘™π‘‘π‘Žπ‘›π›Ύπ‘π‘œπ‘ πœƒ π‘Ÿ πœƒ 𝑖 +

𝑏

π‘™π‘π‘œπ‘ πœƒ π‘Ÿ πœƒ 𝑗

β€’ System Kinetic Energy

The total kinetic energy of the system

𝑇 =1

2𝐽𝑑 πœƒ2 +

1

2π‘šπΊπ‘£πΊ

2 +1

2𝐽𝐺 𝛾2 +

1

2π‘šπ‘ƒπ‘£π‘ƒ

2 ≑1

2𝐽(πœƒ) πœƒ2

𝐽 πœƒ = 𝐽𝑑 + π‘Ÿ2π‘šπΊ π‘ π‘–π‘›πœƒ +π‘Ž

π‘™π‘‘π‘Žπ‘›π›Ύπ‘π‘œπ‘ πœƒ

2

+𝑏

π‘™π‘π‘œπ‘ πœƒ

2

+π½πΊπ‘Ÿ

𝑙

π‘π‘œπ‘ πœƒ

π‘π‘œπ‘ π›Ύ

2

+ π‘Ÿ2π‘šπ‘ƒ π‘ π‘–π‘›πœƒ + π‘‘π‘Žπ‘›π›Ύπ‘π‘œπ‘ πœƒ 2

Vibrations 3.79 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

where,

𝛾 = π‘ π‘–π‘›βˆ’1π‘Ÿ

π‘™π‘ π‘–π‘›πœƒ βˆ’

𝑑

𝑙

Β§6.Lagrange’s Equations

β€’ Equation of Motion

The governing equation of motion has the form

𝑑

𝑑𝑑

πœ•π‘‡

πœ• πœƒβˆ’

πœ•π‘‡

πœ•πœƒ= βˆ’π‘€(𝑑)

After performing the differentiation operations

𝐽 πœƒ πœƒ +1

2

πœ•π½(πœƒ)

πœ•πœƒ πœƒ2 = βˆ’π‘€(𝑑)

The angle πœƒ can be expressed

πœƒ 𝑑 = πœ”π‘‘ + πœ™(𝑑)

Then

𝐽 πœƒ πœ™ +1

2

πœ•π½(πœƒ)

πœ•πœƒπœ” + πœ™

2= βˆ’π‘€(𝑑)

Vibrations 3.80 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.18 Vibration of A Centrifugal Governor

Derive the equation of motion of

governor by usingLagrange’sequation

Solution

The velocity vector relative to point

𝑂 of the left hand mass

π‘‰π‘š = βˆ’πΏ πœ‘π‘π‘œπ‘ πœ‘ 𝑖 + 𝐿 πœ‘π‘ π‘–π‘›πœ‘ 𝑗

+(π‘Ÿ + πΏπ‘ π‘–π‘›πœ‘)πœ”π‘˜

The kinetic energy

𝑇 πœ‘, πœ‘ = 21

2π‘š π‘‰π‘šπ‘‰π‘š

= π‘š βˆ’πΏ πœ‘π‘π‘œπ‘ πœ‘ 2 + 𝐿 πœ‘π‘ π‘–π‘›πœ‘ 2 + π‘Ÿ + πΏπ‘ π‘–π‘›πœ‘ πœ” 2

= π‘šπœ”2 π‘Ÿ + πΏπ‘ π‘–π‘›πœ‘ 2 + π‘š πœ‘2𝐿2

Vibrations 3.81 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

The potential energy with respect to the static equilibrium position

𝑉 πœ‘ =1

2π‘˜ 2𝐿 1βˆ’π‘π‘œπ‘ πœ‘ 2 βˆ’2π‘šπ‘”πΏπ‘π‘œπ‘ πœ‘

Using equation (3.44) with

π‘ž1 = πœ‘

𝐷 = 0

𝑄1 = 0

and performing the required

operations, to obtain the following

governing equation

π‘šπΏ2 πœ‘ βˆ’ π‘šπ‘ŸπΏπœ”2π‘π‘œπ‘ πœ‘ βˆ’ π‘šπœ”2 + 2π‘˜ 𝐿2π‘ π‘–π‘›πœ‘π‘π‘œπ‘ πœ‘

+𝐿 π‘šπ‘” + 2π‘˜πΏ π‘ π‘–π‘›πœ‘ = 0

Vibrations 3.82 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

𝑑

𝑑𝑑

πœ•π‘‡

πœ• π‘ž1βˆ’

πœ•π‘‡

πœ•π‘ž1+

πœ•π·

πœ• π‘ž1+

πœ•π‘‰

πœ•π‘ž1= 𝑄1 (3.44)

Β§6.Lagrange’s Equations

π‘šπΏ2 πœ‘ βˆ’ π‘šπ‘ŸπΏπœ”2π‘π‘œπ‘ πœ‘ βˆ’ π‘šπœ”2 + 2π‘˜ 𝐿2π‘ π‘–π‘›πœ‘π‘π‘œπ‘ πœ‘

+𝐿 π‘šπ‘” + 2π‘˜πΏ π‘ π‘–π‘›πœ‘ = 0

Introducing the quantities

𝛾 β‰‘π‘Ÿ

𝐿, πœ”π‘

2 ≑𝑔

𝐿, πœ”π‘›

2 ≑2π‘˜

π‘šRewrite the equation

πœ‘ βˆ’ π›Ύπœ”2π‘π‘œπ‘ πœ‘

βˆ’ πœ”2 + πœ”π‘›2 π‘ π‘–π‘›πœ‘π‘π‘œπ‘ πœ‘

+ πœ”π‘2 + πœ”π‘›

2 π‘ π‘–π‘›πœ‘ = 0

Assume that the oscillation πœ‘ about πœ‘ = 0 are small (π‘π‘œπ‘ πœ‘ β‰ˆ 1,π‘ π‘–π‘›πœ‘ β‰ˆ πœ‘) to get the final equation

πœ‘ + πœ”π‘2 βˆ’ πœ”2 πœ‘ = π›Ύπœ”2

Vibrations 3.83 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Β§6.Lagrange’s Equations

- Ex.3.19 Oscillations of A Rotating System

Determine the change in the equilibrium position of

the wheel and the natural frequency of the system

about this equilibrium position

Solution

The spring force = the centrifugal force

π‘˜π›Ώ = π‘š(𝑅 + 𝛿)Ξ©2 ⟹ 𝛿 =𝑅

πœ”1𝑛2

Ξ©2 βˆ’ 1

, πœ”1𝑛2 =

π‘˜

π‘š

For small angles of rotation, the kinetic energy

𝑇 =1

2

1

2π‘šπ‘Ÿ2

π‘₯

π‘Ÿ

2

+1

2π‘š π‘₯2 =

1

2

3

2π‘š π‘₯2

The potential energy for oscillations about the equilibrium

position

Vibrations 3.84 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Page 15: Ch.03 Single DOF Systems - Governing Equations

2/7/2014

15

Β§6.Lagrange’s Equations

The potential energy for oscillations about the equilibrium position

𝑉 =1

2π‘˜π‘₯2

The Lagrange equation for this undamped system

𝑑

𝑑𝑑

πœ•π‘‡

πœ• π‘₯βˆ’

πœ•π‘‡

πœ•π‘₯+

πœ•π·

πœ• π‘₯+

πœ•π‘‰

πœ•π‘₯= 𝑄π‘₯ = π‘šπ‘₯Ξ©2

where the centrifugal force π‘šπ‘₯Ξ©2 is treated as an external force

The governing equation

3

2π‘š π‘₯ + π‘˜ βˆ’ π‘šΞ©2 π‘₯ = 0

The natural frequency

πœ”π‘› =π‘˜

π‘š=

2

3πœ”1𝑛

2 βˆ’ Ξ©2

Vibrations 3.85 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien

Excercises

Vibrations 3.86 Single DOF Systems: Governing Equations

HCM City Univ. of Technology, Faculty of Mechanical Engineering Nguyen Tan Tien