Ch12 Multiple Integrals

Embed Size (px)

Citation preview

  • 8/10/2019 Ch12 Multiple Integrals

    1/59

    ESSENTIAL

    CALCULUS

    CH12 Multipleintegrals

  • 8/10/2019 Ch12 Multiple Integrals

    2/59

    In this Chapter:

    12.1 Double Integrals over Rectangles

    12.2 Double Integrals over General Regions

    12.3 Double Integrals in Polar Coordinates

    12.4 Applications of Double Integrals

    12.5 Triple Integrals

    12.6 Triple Integrals in Cylindrical Coordinates

    12.7 Triple Integrals in Spherical Coordinates12.8 Change of Variables in Multiple Integrals

    Review

  • 8/10/2019 Ch12 Multiple Integrals

    3/59

    Chapter 12, 12.1, P665

    (See Figure 2.) Our goal is to find

    the volume of S.

    }),(),,(0),,{( 3 RyxyxfzRzyxs

  • 8/10/2019 Ch12 Multiple Integrals

    4/59

    Chapter 12, 12.1, P667

  • 8/10/2019 Ch12 Multiple Integrals

    5/59

    Chapter 12, 12.1, P667

  • 8/10/2019 Ch12 Multiple Integrals

    6/59

    Chapter 12, 12.1, P667

    5. DEFINITION The double integral of f overthe rectangle R is

    if this limit exists.

    ij

    m

    i

    n

    jRyx

    AjyijxifdAyxfii

    ),(lim),(

    1

    *

    1

    *

    0,m ax

  • 8/10/2019 Ch12 Multiple Integrals

    7/59

    Chapter 12, 12.1, P668

    AyxfdAyxfm

    i

    n

    j

    ji

    R

    nm

    ),(lim),(

    1 1

    ,

  • 8/10/2019 Ch12 Multiple Integrals

    8/59

    Chapter 12, 12.1, P668

    If f (x, y) 0, then the volume V of the solid thatlies above the rectangle R and below the surface

    z=f (x, y) is

    R

    dAyxfv ),(

  • 8/10/2019 Ch12 Multiple Integrals

    9/59

    Chapter 12, 12.1, P669

    MIDPOINT RULE FOR DOUBLE INTEGRALS

    wherexiis the midpoint of [xi-1,xi] and yjis the

    midpoint of [yj-1, yj].

    AyxfdAyxf ji

    m

    i

    n

    jR

    ),(),(1 1

  • 8/10/2019 Ch12 Multiple Integrals

    10/59

    Chapter 12, 12.1, P672

    10. FUBINIS THEOREM If f is continuous onthe rectangle R={(x, y} a x b, c y d} ,

    then

    More generally, this is true if we assume that fis bounded on R, is discontinuous only on afinite number of smooth curves, and theiterated integrals exist.

    b

    a

    d

    c

    d

    c

    b

    aR

    dxdyyxfdydxyxfdAyxf ),(),(),(

  • 8/10/2019 Ch12 Multiple Integrals

    11/59

    Chapter 12, 12.1, P673

    R

    b

    a

    d

    c dyyhdxxgdAyhxg )()()()( where R ],[],[ dcbaR

  • 8/10/2019 Ch12 Multiple Integrals

    12/59

    Chapter 12, 12.2, P676

  • 8/10/2019 Ch12 Multiple Integrals

    13/59

    Chapter 12, 12.2, P676

  • 8/10/2019 Ch12 Multiple Integrals

    14/59

    Chapter 12, 12.2, P677

  • 8/10/2019 Ch12 Multiple Integrals

    15/59

    Chapter 12, 12.2, P677

  • 8/10/2019 Ch12 Multiple Integrals

    16/59

    Chapter 12, 12.2, P677

    3.If f is continuous on a type I region D such that

    then

    )}()(,),{( 21 xgyxgbxayxD

    D

    b

    a

    xg

    xgdydxyxfdAyxf

    2

    1

    ),(),(

  • 8/10/2019 Ch12 Multiple Integrals

    17/59

    Chapter 12, 12.2, P678

  • 8/10/2019 Ch12 Multiple Integrals

    18/59

    Chapter 12, 12.2, P678

    D

    d

    c

    yh

    yhdxdyyxfdAyxf

    )(

    )(

    2

    1

    ),(),(

    where D is a type II region given by Equation 4.

  • 8/10/2019 Ch12 Multiple Integrals

    19/59

    Chapter 12, 12.2, P681

  • 8/10/2019 Ch12 Multiple Integrals

    20/59

    Chapter 12, 12.2, P681

    D D D

    dAyxgdAyxfdAyxgyxf ),(),()],(),([

    D D

    dAyxfcdAyxcf ),(),(

    D g

    dAyxgdAyxf ),(),(

    6.

    7.

    If f (x, y) g (x, y) for all (x, y) in D, then8.

    If D=D1U D2, where D1 and D2dont overlap

    except perhaps on their boundaries (see Figure17), then

    D D D

    dAyxfdAyxfdAyxf

    1 2

    ),(),(),(

  • 8/10/2019 Ch12 Multiple Integrals

    21/59

    D

    DAdA )(1

    Chapter 12, 12.2, P682

  • 8/10/2019 Ch12 Multiple Integrals

    22/59

    Chapter 12, 12.2, P682

    11. If m f (x, y) M for all (x ,y) in D, then

    D

    DMAdAyxfDmA )(),()(

  • 8/10/2019 Ch12 Multiple Integrals

    23/59

    Chapter 12, 12.3, P684

  • 8/10/2019 Ch12 Multiple Integrals

    24/59

  • 8/10/2019 Ch12 Multiple Integrals

    25/59

    Chapter 12, 12.3, P684

  • 8/10/2019 Ch12 Multiple Integrals

    26/59

    Chapter 12, 12.3, P684

    r2=x2+y2 x=r cos y=r sin

  • 8/10/2019 Ch12 Multiple Integrals

    27/59

    Chapter 12, 12.3, P685

  • 8/10/2019 Ch12 Multiple Integrals

    28/59

    Chapter 12, 12.3, P686

    2. CHANGE TO POLAR COORDINATES IN ADOUBLE INTEGRAL If f is continuous on a

    polar rectangle R given by 0arb, a,where 0-2 , then

    R

    b

    a

    rdrdrrfdAyxf

    )sin,cos(),(

  • 8/10/2019 Ch12 Multiple Integrals

    29/59

    Chapter 12, 12.3, P687

    3. If f is continuous on a polar region of the form

    then

    )()(,),{( 21 hrhrD

    Dh

    h rdrdrrfdAyxf

    )(

    )(

    2

    1 )sin,cos(),(

  • 8/10/2019 Ch12 Multiple Integrals

    30/59

    Chapter 12, 12.5, P696

    3. DEFINITION The triple integral of f overthe box B is

    if this limit exists.

    B

    l

    i

    m

    j

    ijkijkijk

    n

    k

    ijkzyx

    VzyxfdVzyxfkii 1 1

    **

    1

    *

    0,,m ax),,(lim),,(

  • 8/10/2019 Ch12 Multiple Integrals

    31/59

    Chapter 12, 12.5, P696

    B

    l

    i

    m

    j

    kj

    n

    k

    inml

    VzyxfdVzyxf1 1 1

    ,,),,(lim),,(

  • 8/10/2019 Ch12 Multiple Integrals

    32/59

    Chapter 12, 12.5, P696

    4. FUBINIS THEOREM FOR TRIPLEINTEGRALS If f is continuous on therectangular box B=[a, b][c, d ][r, s], then

    B

    s

    r

    d

    c

    b

    adxdydzzyxfdVzyxf ),,(),,(

  • 8/10/2019 Ch12 Multiple Integrals

    33/59

    Chapter 12, 12.5, P697

    dAdzzyxfdVzyxfE D

    yxu

    yxu

    ),(

    ),(

    2

    1

    ),,(),,(

  • 8/10/2019 Ch12 Multiple Integrals

    34/59

    Chapter 12, 12.5, P697

    b

    a

    xg

    xg

    yxu

    yxuE

    dzdydxzyxfdVzyxf)(

    )(

    ),(

    ),(

    2

    1

    2

    1

    ),,(),,(

  • 8/10/2019 Ch12 Multiple Integrals

    35/59

    Chapter 12, 12.5, P698

    d

    c

    xh

    xh

    yxu

    yxuE

    dzdxdyzyxfdVzyxf)(

    )(

    ),(

    ),(

    2

    1

    2

    1

    ),,(),,(

  • 8/10/2019 Ch12 Multiple Integrals

    36/59

    Chapter 12, 12.5, P698

    dAdxzyxfdVzyxfE D

    yxu

    yxu

    ),(

    ),(

    2

    1

    ),,(),,(

  • 8/10/2019 Ch12 Multiple Integrals

    37/59

    Chapter 12, 12.5, P699

    dAdyzyxfdVzyxfE D

    yxu

    yxu

    ),(

    ),(

    2

    1

    ),,(),,(

  • 8/10/2019 Ch12 Multiple Integrals

    38/59

    Chapter 12, 12.5, P700

    E dVEV )(

  • 8/10/2019 Ch12 Multiple Integrals

    39/59

    Chapter 12, 12.6, P705

  • 8/10/2019 Ch12 Multiple Integrals

    40/59

    Chapter 12, 12.6, P705

    To convert from cylindrical to rectangularcoordinates, we use the equations

    1 x=r cos y=r sin z=z

    whereas to convert from rectangular to cylindrical

    coordinates, we use

    2. r2=x2+y2 tan = z=zx

    y

  • 8/10/2019 Ch12 Multiple Integrals

    41/59

    Chapter 12, 12.6, P706

  • 8/10/2019 Ch12 Multiple Integrals

    42/59

    Chapter 12, 12.6, P706

  • 8/10/2019 Ch12 Multiple Integrals

    43/59

    Chapter 12, 12.6, P706

  • 8/10/2019 Ch12 Multiple Integrals

    44/59

  • 8/10/2019 Ch12 Multiple Integrals

    45/59

    Chapter 12, 12.7, P709

    0p 0

  • 8/10/2019 Ch12 Multiple Integrals

    46/59

    Chapter 12, 12.7, P709

  • 8/10/2019 Ch12 Multiple Integrals

    47/59

    Chapter 12, 12.7, P709

  • 8/10/2019 Ch12 Multiple Integrals

    48/59

    Chapter 12, 12.7, P709

  • 8/10/2019 Ch12 Multiple Integrals

    49/59

    Chapter 12, 12.7, P710

  • 8/10/2019 Ch12 Multiple Integrals

    50/59

    Chapter 12, 12.7, P710

    cossinpx sinsinpy cospz

  • 8/10/2019 Ch12 Multiple Integrals

    51/59

  • 8/10/2019 Ch12 Multiple Integrals

    52/59

  • 8/10/2019 Ch12 Multiple Integrals

    53/59

    Chapter 12, 12.7, P711

    where E is a spherical wedge given by

    E

    dVzyxf ),,(

    d

    c

    b

    addpdppsomppf

    sin)cos,sin,cossin( 2

    },,),,{( dcbpapE

    Formula for triple integration in sphericalcoordinates

  • 8/10/2019 Ch12 Multiple Integrals

    54/59

    Chapter 12, 12.8, P716

  • 8/10/2019 Ch12 Multiple Integrals

    55/59

    Chapter 12, 12.8, P717

  • 8/10/2019 Ch12 Multiple Integrals

    56/59

    9 CHANGE OF VARIABLES IN A DOUBLE

  • 8/10/2019 Ch12 Multiple Integrals

    57/59

    Chapter 12, 12.8, P719

    9. CHANGE OF VARIABLES IN A DOUBLEINTEGRAL Suppose that T is a C1

    transformation whose Jacobian is nonzero and

    that maps a region S in the uv-plane onto aregion R in the xy-plane. Suppose that f iscontinuous on R and that R and S are type I ortype II plane regions. Suppose also that T is

    one-to-one, except perhaps on the boundary of .S. Then

    R S dudvvu

    yx

    vuyvuxfdAyxf ),(

    ),(

    )),(),,((),(

  • 8/10/2019 Ch12 Multiple Integrals

    58/59

  • 8/10/2019 Ch12 Multiple Integrals

    59/59