123
1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof. at Center for Collaborative Research, and Institute of Industrial Science, University of Tokyo E-mail:[email protected] 1 1 Scaling and three crises 2 Power crisis 3 Interconnection crisis 4 Complexity crisis IDEC ’99/10

Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

  • Upload
    vothu

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

1

Challenges in VLSI DesignToward the New Millennium

Takayasu SakuraiProf. at Center for Collaborative Research, and

Institute of Industrial Science,University of Tokyo

E-mail:[email protected]

1

1 Scaling and three crises2 Power crisis3 Interconnection crisis4 Complexity crisis

IDEC ’99/10

Page 2: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Silicon Age

Info processing by LSI((((Si))))

Info transfer by fibers((((SiO2222))))

Year

Rel

ativ

e pr

oduc

tion

10000

1000

1960 199019801970

100

102000

Oil

Steel

Silicon

By Yoshio Nishimura

Memory

Processors

Sensors

Communicators

Page 3: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

World-wide Semiconductor Market

1980 1990 2000 201010

100

1000

((((Billion$))))

by Starc

SemiconductorSteel

Automobile

Electric

GNP

YearYearYearYear

10000

Page 4: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

World semiconductor market

Data : World semicon market statistics

000020202020404040406060606080808080100100100100120120120120140140140140160160160160180180180180200200200200

1986

1986

1986

1986

1987

1987

1987

1987

1988

1988

1988

1988

1989

1989

1989

1989

1990

1990

1990

1990

1991

1991

1991

1991

1992

1992

1992

1992

1993

1993

1993

1993

1994

1994

1994

1994

1995

1995

1995

1995

1996

1996

1996

1996

1997

1997

1997

1997

1998

1998

1998

1998

1999

1999

1999

1999

2000

2000

2000

2000

2001

2001

2001

2001

YearYearYearYear

Billion $

Billion $

Billion $

Billion $ MOS LogicMOS LogicMOS LogicMOS Logic

MOS uPMOS uPMOS uPMOS uP

MOS MemoryMOS MemoryMOS MemoryMOS Memory

Digital BipolarDigital BipolarDigital BipolarDigital Bipolar

AnalogAnalogAnalogAnalog

DiscreteDiscreteDiscreteDiscrete

Page 5: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Moore’s Law

10K

1M

100M

10G

1001970 1980 1990 2000

1M4M

16M64M

256M1G

2GD

evic

e co

unt p

er c

hip

Year

DRAMμμμμP

2010

Page 6: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

System LSI for Next Generation Games

Clock freq. 300MHz

    10M transistors

    Graphics synthesizer integrate

40M tr. With embedded DRAM

Memory bandwidth 3.2GB/s

Floating operation 6.2GFLOPS/sec

3D CG 6.6M polygon/sec

MPEG2 decode

Page 7: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Applications of System LSI’s

PCprintergamePDA

hard disk • CDROMdisplay

communicationLAN/WAN

mobile phonewireless network

Fax • modem

digital TVdigital cameradigital movie

car navigationDVD • CD • MD

Digital consumer

PC & peripherals

Communication / network

Page 8: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Limit of Miniturization

Conventional I-V curve at 0.04µm (Even down to 0.014µm)    

0.04µm MOSFET

0.0 0.4 0.8 1.2 1.6 2.00.00

0.21

0.42

0.63 Vg = 2.0 V

Vg = 1.6 V

Vg = 1.2 V

Vg = 0.8 V

Gate Length = 40 nm

Dra

in C

urre

nt[m

A/µ

m]

Drain Voltage [V]

0.04µm

M. Ono, M. Saito, T. Yoshitomi, C. Fiegna, T. Ohguro, and H. Iwai, "Sub-50nm gate Length N-MOSFETs with 10 nm Phosphorus Source and Drain Junctions", IEDM Technical Digest, pp. 119 -122, 1993.H. Kawaura, T. Sakamoto, Y. Ochiai, J. Fujita, and T. Baba, "Fabrication and Characterization of 14-nm-Gate-Length EJ-MOSFETs", Extended Abstracts of SSDM, pp.572-573, 1997.

Page 9: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Scaling law

T.Sakurai&A.Newton,"Alpha-power law MOSFET model and its application to CMOS inverter delay and other formulas",IEEE JSSC,vol25, no,2, pp.584-594, Apr. 1990.

Transistor Numbers are exponent to k (kn)

Voltage [V] -1Tr. size [x] -1Oxide thickness [t] -1Current [I~V1.3/t] - 0.3Tr. capacitance [Cg~x2/t] -1Tr. delay [Tg~CgV/I] -1.7Tr. power [Pg~CgV2/Tg] -1.3Tr. power density [p~Pg /x2] 0.7

Interconnection Local Middle Global VDD/VSS

Length [L] -1 - 0.5 0 0Width [W] -1 - 0.5 0 1Thickness [T] -1 - 0.5 0 1Height [H] -1 - 0.5 0 0Resistance [Rm~L/W/T] 1 0.5 0 -1Capacitance [Cm~LW/H] -1 - 0.5 0 1RC delay/Tr. delay[Tm~RmCm/Tg] 1.71.71.71.7 1.71.71.71.7 1.7 1.7 1.7 1.7 ----

Current density [[[[J ~J ~J ~J ~ pLWpLWpLWpLW/V/W/T]/V/W/T]/V/W/T]/V/W/T] ---- ---- ---- 0.70.70.70.7

Dc Noise [SNdc~~~~JWLRJWLRJWLRJWLRmmmm////V]V]V]V] ---- ---- ---- 1.71.71.71.7

K=2K=2K=2K=2

~~~~ [Vαααα /t]Ids =(Vgs-Vt)

2µµµµεεεε Wtox L( )

αααα

αααα = 1.3

Tr. desity [n~ 1/x2] 2

Page 10: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Scaling Law

Drain Source

Gate

0.2micron

Drain SourceGate

0.2micronSize 1/2

Size x1/2Voltage x1/2Electric Field x1Speed x2Cost x1/4

Power x1.6RC delay/Tr. delay x3.2Current density x1.6Voltage noise x3.2Design complexity x4

Favorable effects Unfavorable effects

Page 11: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Three crises in VLSI designs

Power crisis

Interconnection crisis

Complexity crisis

Page 12: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Ever Increasing VLSI Power(Power consumption of processors published in ISSCC)

959085800.01

0.1

1

10

100

Year

Pow

er (W

)x4 / 3years

Page 13: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Year

Volta

ge [V

]

Pow

er p

er c

hip

[W]

VDD

cur

rent

[A]

VDD, Power and Current Trend

International Technology Roadmap forSemiconductors (1998)

1998 2002 2006 2010 20140

0.5

1

1.5

2

2.5

0 0

200 500

Current

Power

Voltage

Page 14: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Necessity for Low-Power Design

Power range Concerns

< 0.1W ・・・・ Battery life Portable・・・・ PDA・・・・ Communications

~ 1W Consumer・・・・ Set-Top-Box・・・・ Audio-Visual

・・・・ Inexpensive package limit ・・・・ System heat (10W / box)

> 10W ・・・・ Ceramic package limit・・・・ IR drop of power lines

Processor・・・・ High-end MPU's・・・・ Multimedia DSP's

Typical applications (All need high-perf.)

Page 15: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Trend in Computer

1950 1960 1970 1980 1990 2000 2010Year

Large scale$3M

Office / middle$300K

WS$30K

PC$3000

???$300

historical$3M

Pric

e of

mai

n-st

ream

com

pute

r Vac. tube

Transistor

IC

LSI

VLSI

System LSI

DOWNSIZINGis the keyword

$1M

$1K

Page 16: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Computer-Communication-ConsumerE-cashingE-tradingE-banking

Cell phoneTecketingReservation

Home automationGame on netEntertainment

InternetWeb brouseWeb TVE-mail

PDAScheduleAddress book

Computer centric →→→→Communication centric, Display centric

Page 17: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Performance Requirements for MultimediaRequired Performance (MOPS)

FAX/Modem

10 100 1000 10000

SoundSpeech recognition

TV conf. (H.324...)MPEG1 decoding

MPEG1 encoding

MPEG2 encoding

2D/3D graphics

100000

MPEG2 decoding

HDTV decoding

Future

HDTV encoding

Present

Page 18: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

What sets the technology trend?

NMOS CMOS

Bipolar CMOS

Cost up

Speed downNot cost nor speed but power set the technology trend.

Integration can achieve low cost and high speed as a system.

Page 19: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Expression for CMOS PowerP = αααα • CL • VS • VDD • fCLK Charging & discharging

+ αααα • ISC • ∆∆∆∆tSC • VDD • fCLK Crowbar current+ IDC • VDD Static current+ ILEAK • VDD Subthreshold leak current

Q=CLVS

Charge Discharge

VDD

CL • VS amount of charge loses VDD of potential-> CL • VDD • VS energy consumption per cycle

CL

αααα : Switching probabilityCL : Load capacitanceVS : Signal swingVDD : Supply voltageISC : Mean crowbar current∆∆∆∆tSC : Crowbar current durationfCLK : Clock frequencyIDC : DC current ILEAK : Subthreshold leak current

CL

VDD

Page 20: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Voltage waveform of CMOS inverter

CIN =10[pF] COUT= FO C IN

Target inverterID0P,ID0NI D0PIN,ID0NINvTHP

vTHN

t0 t1 tT

Inputvoltage

Outputvoltage

Short-circuit current

0 Time

N

THNDD

THNGSNDONDN

OUTOUT VV

VVIIdt

dVCα

−−

−=−≅

Page 21: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Short-circuit power dissipation formula

PTrPD

TPD

DDINPPDS

fovhFOvk

vgvVCfovkP

),()(2

),()(

0

0

220

αβα +=

22/

2/

)1()1()1(

)(1),( ++−−

−−+=NP

PN

TPTN

TPTNNT vv

vvf

vg αα

αα

ααα

evvvk PDPD

PD00

010

ln8.08.0

9.0)( +=

IN

OUT

CCFO =

PIND

PDP I

Ifo0

0=ND

PDr I

I

0

0=β

(Fanout)

K. Nose and T. Sakurai, "Closed-Form Expressions for Short-Circuit Power of Short-Channel CMOS Gates and Its Scaling Characteristics," ITC-CSCC (Korea), July 1998.

1)1()1()1(2),( +−−

−+=P

PP

TPTN

TPPT vv

vvh α

αα αα

Page 22: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Comparison between proposed formula and other formula

Verumu et al’s formula deviates from SPICE simulation fanout > 3 fanout is small

(diverge to infinity)

1 2 3 4 50

5

10

15

Fanout : FO

Shor

t-circ

uit p

ower

[pW

]

SPICEsimulation

Verumu formula

This work

ƒ=1[Hz]Tech. A

CIN=10[pF]

Page 23: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

The change of the short-circuit power dissipation with scaling

0 1 2 3 4 5

0.1

0.2 η ηηη

P=P S/

(PD+P

S)

VDD [V]

VTH/VDD=0

VTH/VDD=0.1

VTH/VDD=0.2

VTH/VDD=0.3

Fanout=1

Page 24: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Voltage dependent gate cap. effect

-2 -1 0 10

50

100

150

200G

ate

capa

cita

nce

[fF]

Gate voltage : VG [V]

VDS=0V (linear)VDS=1V (saturation)I(COX)

VG

VDS

W/L=100µµµµ/0.4µµµµ

VTH=0.3V

Page 25: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Voltage dependent gate cap. effect

-0.2 0 0.2 0.4 0.60

1

2

3

4

VTH / VDD

Ave

rage

gat

e cu

rren

t (A

vera

ge C

gate

)

VDD=1VVDD=0.5VI(COX) FO=5

VTH=0.2FO=5

VTH=VTHOUT

DelayLarge C

-0.4 0 0.4 0.8 1.20

0.5

1

1.5

2

2.5

VTHout / VDD

Del

ay [n

sec]

inverter

COX

VDD=0.5V

Page 26: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Power & Delay Dependence on VDD & VTH

Power : P = pt •fCLK •CL •VDD + I0 •10 •VDD 2

V thS

(αααα=1.3)

k ・・・・ CL ・・・・ VDD

(VDD - Vth)ααααDelay =

k•QI

=

12

34

-0.400.40.8

00.2

0.4

0.6

0.8

1x 10-4

Vth (V)

VDD(V)

Pow

er (W

)

A

B

12

34

-0.400.40.8

0

1

2

3

4

5x 10

-10

Del

ay (s

)

Vth (V)VDD(V)

A B

Page 27: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Lowering Only Internal VDD (Example)3V

VDDINT

SwitchingDC-DC

Converter

>95%VDDEXT

VDDINT<=50%

0~3V

0~1.5V

1.5V 3Vleak

Swing Conv. 1 Swing Conv. 2

Leve

lcon

v. 2

Leve

lcon

v. 1

0~1.5V

0~3V

DC-DC Conv.

Inpu

t3V O

utpu

t 3V

DC-DC Conv.

EfficiencyEfficiency

VDDEXT

3V

1.5V

Internal VDD1.5V

Page 28: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Standby Power Reduction (SPR) CircuitISSCC'95 pp.318-31

VDD (2V)

VSS (0V)

VPBB (-2V)

VNWELL (2 or 4V)VNBB (4V)

Level ShifterVoltage Switch

V1 CW

M3 M4M5

CW

M2M1

V2V3

V4 VPWELL (0 or -2V)

St'by

St'by

are added to ensure reliability

• In standby mode and in IDDQ test, substrate bias is applied to increase VTH, which reduces leakage.

• In active mode, substrate bias is not applied to lower VTH, which ensures high speed.

Page 29: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Self-Adjusting Threshold-voltage Scheme(SATS)

CICC'94, pp.271-274

VBBN

Self-Sub-Bias

Circuit (SSB)

Leakage Sensor

leak

VGN1 Pwell

ON/OFF

low Vth →→→→ large leakage →→→→ SSB ON →→→→ deepVBB →→→→ high Vth

high Vth→→→→ little leakage →→→→ SSB OFF →→→→ shallow VBB →→→→ low Vth• control Vth to adjust leakage current• compensate Vth fluctuation

Page 30: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

T=27

-0.1 0 0.1 0.2 0.3 0.4 0.5(|VTH .p|+VTH.n)/2 as processed (V)

VTCMOS in active mode

VTCMOS in standby mode

Conv. CMOS

I DD

.leak

(A)

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

I DD

.leak

(A)

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

-0.1 0 0.1 0.2 0.3 0.4 0.5

T=70

(|VTH .p|+VTH.n)/2 as processed (V)

Measured Ileak in SAT+SPR

Page 31: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Multi-Threshold CMOS Circuit

CMOS logic

Low-VTHD Q

Hi-VTH Hi-VTHHi-VTH

Low-VTH

St'bySt'by

MTCMOS logic MTCMOS latch

In active mode, low-VTH MOSFET’s achieve high speed. In standby mode when St'by signal is high, high-VTHMOSFET’s in series to normal logic circuits cut off leakage current.

Page 32: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

VTCMOS / MTCMOS

p-well

VDDL

GND

n-well

Low-Vth

VDD

Low-Vth

GNDHi-Vth

VTCMOS MTCMOS

Threshold control with sub-bias On-off control of internal VDD/VSS

Principle

Merit/Demerit

VT control

St'by

o Low leakage in standby o Low leakage in standby- Needs circuit development + Conceptually easier+ Compensate Vth fluctuation - Compensate Vth fluctuation+ IDDQ test - IDDQ test+ No serial MOSFET - Large serial MOSFET

slower, larger, lower yield...o Conventional design tools o Conventional design tools+ Reuse of existing design - Special F/F's- Triple well is desirable - Two VTH's

Page 33: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Concept of Super Cut-off CMOS(SCCMOS)

St'by: VDD+0.4VActive: VSS

Low-VTH cut-off MOSFET

Low-VTH logic circuitVirtual VDD

VDD (0.5 - 0.8V)

pMOS insertion case

H.Kawaguchi and K.Nose, T.Sakurai, "A CMOS Scheme for 0.5V Supply Voltage with pico-Ampere Standby Current," 1998 ISSCC, Digest of Tech. Papers, pp.192-193, Feb. 1998.

Page 34: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

NORNORNORNORNANDNANDNANDNANDInverterInverterInverterInverter

Pulse generator (EX-OR)Pulse generator (EX-OR)Pulse generator (EX-OR)Pulse generator (EX-OR)Flip-flop oscillatorFlip-flop oscillatorFlip-flop oscillatorFlip-flop oscillator

Cut-off Cut-off Cut-off Cut-off pMOSpMOSpMOSpMOS

Gate bias generatorGate bias generatorGate bias generatorGate bias generator

0.3µm, triple-metal CMOS processVTH=0.2V 100x100µm2

pumping freq=10kHz0.1µA (@VDD=0.5V)

Super Cut-off CMOS Scheme (SCCMOS)

Page 35: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Delay characteristics (inverter & NAND)

0 0.5 1 1.50

1

2

Tpd

[ns]

SCCMOSMTCMOS

Conventional

Measurement

Inverter 2-NAND

F.O.=3

VDD [V]

SCCMOS0.2V VTH circuit with 0.2V VTHcut-off MOSFET

MTCMOS0.2V VTH circuit with 0.6V VTHcut-off MOSFET

ConventionalAll 0.6V circuitNo cut-off MOSFET

Page 36: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Dynamic Leakage Cut-off

VDD

2VDD

-VDD

VSS t

VNWELL

VWL

VPWELL

Select Disselect

VNWELLDriver

Addr

ess

deco

der

VPWELLDriver

VBLm-1 VBLm-1

VDD

VSS

VNWELL

VPWELL

VBL0 VBL0

VWL

VWL+1

# of selected bit at a time

Page 37: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Leakage Reduction of DLC SRAM

VTH [V]0 0.1 0.2 0.3 0.410-8

10-710-610-510-410-310-210-11

I LEAK

[A]Memory capacity: 1MBit

VTH=0.25V

VDD=1V

w/o DLC

Total subthreshold leak of 1Mbit SRAM. At 1V VDD, VTH of the dormant cell is 0.25V while that of the active cell is 0V, keeping the total leakage power at 0.9mW.

Page 38: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Dynamic Leakage Cut-off (DLC) SRAM

Addressdecoder MCs

Wellbiasdriver

H.Kawaguchi and T.Sakurai, "A Reduced Clock-Swing Flip-Flop (RCSFF) for 63% Power Reduction," IEEE J. of Solid-State Circuits, pp.807-811, May 1998.

Page 39: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Area Overhead of DLC SRAM

16 32 64 1280

0.1

0.2

0.3

0.4

0.5

# of selected bit at a time

Are

a O

verh

ead

Memory capacity: 1MBit

Page 40: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Clustered Voltage Scaling for Multiple VDD’s

Lower VDD portion is shown as shaded

CVS StructureConventional Design

Critical Path

Level-Shifting F/F

Critical Path

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

M.Takahashi et al., “A 60mW MPEG4 Video Codec Using Clustered Voltage Scaling with Variable Supply-Voltage Scheme,” ISSCC, pp.36-37, Feb.1998.

Once VL is applied to a logic gate, VL is applied to subsequent logic gates until F/F’s to eliminate DC current paths. F/F’s restore VH.

Page 41: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Slave-Latch Level-Conversion F/F

CK

CK

CKCLK CK

D

VL

CK

Q

CK

VH

M1 M2

CK

Page 42: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Dual-VS Scheme

VH

Combi-national Logic

(VL-cell)

Combi-national Logic

(VH-cell)

Inpu

t Pad

s

Out

put P

ads

VL

VDD

DQ

CLKD

Q

VSH critical path

replica (VH-cells)CLK

DC-DC

VSLcritical path

replica (VL-cells)

DC-DC CLK

clock tree Level-Conversion Flip-Flop

Page 43: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Power Reduction vs. VL/VH

Optimum VL/VH is between 0.6~0.7for any kinds of path-delay distribution functions.

t

p(t)

1.0

0.8

0.6

0.4

0.2

00 0.2 0.4 0.6 0.8 1.0

Pow

er re

duct

ion

ratio

VL /VH

t

p(t)

t

p(t) t

p(t) t

p(t)

Page 44: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Path-delay Distribution in Dual-VS

MEF (1527 cells)

MCB (1366 cells)

VLD (3812 cells)

DMA (1493 cells)

DCT (5466 cells)

RISC (5645 cells)

before

after

t

MEC (2912 cells)

p(t)

IDCT (6227 cells)

VLC (3462 cells)

Page 45: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Clustered Voltage Scaling Technique

M.Takahashi et al., “A 60mW MPEG4 Video Codec Using Clustered Voltage Scaling with Variable Supply-Voltage Scheme,” ISSCC, pp.36-37, Feb.1998.

Pow

er d

issi

patio

n (m

W)

1009080706050

403020100

3.3VConventional

2.5VVS &

VTCMOS

2.5V & 1.75VDual-VS & VTCMOS

LogicF/FClock

Memory

-43%

-43%

-43%

-43%

-30%

-37%-51%±0%

Measured

Measured

Page 46: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Dynamic Voltage Scaling Loop

A.Chandrakasan & J.Rabaey in “Low-Power High-Speed LSI Circuits & Technology,” Realize-sha, 1998.

Page 47: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Temperature effects on IDS- VGS

Zero Temperature Coefficient(ZTC) point around VGS=1.0V

VZTC ≈≈≈≈ 1V

0 1 20.0

0.1

0.2

0.3

0.4

VGS [V]

I DS

[mA

]

NMOS

PMOS

Temperature increases

0ºC120ºC

VZTC

• Temp. coeff < 0

• Temp. coeff > 0

when VDD > VZTC

when VDD > VZTC

Measured

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai,"Design Impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's",CICC99, pp.563-566, May 1999.

Page 48: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Cause of positive temp. dependence of IDS

IDS ∝∝∝∝ µµµµ(T) ( VDD - VTH(T) )αααα

• αααα-power law model

µµµµ(T) = µµµµ(T0)(T / T0)-m

VTH(T) =VTH(T0) - κκκκ( T - T0 )

T T

Typical Value : αααα=1.5, m=1.5, κκκκ=2.5[mV/T]

(T = Temp. µµµµ= Mobility)

Effects of VTH and µµµµ on IDS when temp. goes up 100[K]

µµµµ effectVTH effectVDD=2.5V, VTH=0.5VVDD=1.0V, VTH=0.2V

10%55%

35% 35%

Page 49: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Measurement of 32bit full adder

Photograph of 32bit FA0.3µµµµm CMOS

0 0.5 1 1.5 20

1

2

3

4

Norm

aliz

ed t

pd

VDD [V]

90ºC

50ºC

20ºC Measured

Page 50: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Transient response of chip temperature

0 10 20 30 40 5020

60

100

140

180

Time [sec]

Tem

pera

ture

[ºC

]

VDD =0.5V, VTH = 0.2V

VDD = 3.3V, VTH = 0.5V

• Same package• Same power at room temp.

Better package is needed to avoid thermal runaway in low voltage.

K.Kanda, K.Nose, H.Kawaguchi, and T.Sakurai,"Design Impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's",CICC99, pp.563-566, May 1999.

Page 51: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Careful temperature design for low-voltage

IDS and gate speed shows positive temperature dependence in VDD < 1V region.This will change the design validation process for worst conditions.

In low-VDD, low-Vth designs, temperature goes up much more than the high-VDD, high-VTH design, even if power consumption at room temperature and package are the same.

Page 52: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

D-type CMOS

K~1 (K=0.91 in this case)

D-type leakage can not be neglected in the range VTH<-0.2V.

)()( NLEAKP

DDL

NOFFPON

DDLLH II

VCKII

VCKt−

=−

=0

)()( PLEAKN

DDL

POFFNON

DDLHL II

VCKII

VCKt−

=−

=0

2HLLH

dttt +

=

SPICEK CLVDD/IONK CLVDD/(ION -IOFF)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.30

0.1

0.2

0.3

0.4 10-4

10-5

10-6

10-7

10-8

10-9

10-10

Threshold voltage : VTH [V]

Del

ay [n

s]

Leak

age

pow

er d

issi

patio

n [W

]

VDD=0.5V

VTH

VTH

Page 53: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Power Distribution in CMOS LSI's

Clock

ASSP1

LogicMemory

I/O

ASSP2

Clock

Logic

MemoryI/O

MPU1 Clock

Logic

MemoryI/O

MPU2Clock

Logic

Memory

I/O

Page 54: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Power Distribution in Processor

High-end µP

ClockDatapath

Memory

I/O &Synthesized

Logic

Courtesy: Dr. Vivek Tiwari, Intel

o Synthesis for low-power is not so effective.

o Clock system is the key. In this respect, gated clock is one of the most efficient way to reduce the power in current processors.

o Gated clock is useful in reducing average power but not that effective in reducing peak power.

o Circuit / device level is important.

Page 55: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Reduced Clock Swing Flip-Flop

(a) RCSFFVoltage swing of CLK is reduced toVclk down to 1V.

(b) Conventional F/F

H.Kawaguchi and T.Sakurai, "A Reduced Clock-Swing Flip-Flop (RCSFF) for 63%Clock Power Reduction ," in Symp. on VLSI Circuits '97, June,1997.

2.5 2.5

5.0 5.0 5.0

2.5

5.0 5.02.5 2.5 5.0

5.02.5 2.5

5.0 5.02.5 2.5

CLK

D

Q5.02.5 Q

5.02.5

5.02.5

CLK

D

Wclk

D

Q

Q

CLK

CLK

VWELL

0.5 0.5

0.5 0.5

2.5

2.52.50.5

2.5

3.5 3.5

3.5 3.5

3.5 3.53.5 3.5

P1 P2

N1

(3.3V~6V)

PP

φφφφφφφφ

φφφφφφφφ

φφφφ φφφφ

φφφφ

φφφφ

φφφφ

φφφφ

Page 56: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Layout Example

CK D

24µm

15µm

20µm

15µm

(b) Conventional F/F(a) RCSFF

Page 57: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Delay and power comparison

1 1.5 2 2.5 30

0.5

1

Vclk [V]

Clo

ck-to

-Q D

elay

[ns]

Conv.

Wclk=6.5µm

10µm

20µm

1 1.5 2 2.5 30

50

100

150

Vclk [V]

Pow

er p

er F

/F [µ

W]

Conv.

Type A driver

Type B driver

VWELL=3.3V

VWELL=6V

Wclk=10µm

CLK

CLK

CLK

Vclk

VDD

VDD

Type A1

Type B

Type An

Type A

Page 58: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Modified Sense Amplifier-Based F/F

B.Nikolic et al., “Sense Amplifier-Based Flip-Flop,” ISSCC, pp.282-283, Feb.1999.

This can be used with RCSFF scheme.

Page 59: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Ultra Low-Voltage Operation

inverter (T=300K)

2nand(T=300K)

inverter (T=77K)

Vin (V)

Vout

(V)

50mV

25mV

100mV360mV

140mV

J.Burr&J.Shott,"A 200mV Self-Testing Encoder/Decoder using Stanford Ultra-Low-Power CMOS",ISSCC94, pp.84-85.

(Stanford Univ.)

Page 60: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Ultra Low-Voltage Operation

Page 61: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Vth, Leff, tox Optimized Low-Power MOS

M.Kakumu et al.,"Low-Voltage and Power CMOS Technology", SSDM, 1995, pp.213-

Page 62: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

SOI Processors in ISSCC’99Paper# WP25.1 WP25.3 WP25.7 WP25.4Company IBM (East Fishkill) IBM (Essex & Austin) IBM (Rochester) SamsungTarget PowerPC 604e PowerPC 750 PowerPC Alpha

32b for Apple 64b 64bPD/FD PD PD (SIMOX) PD (SIMOX) FD (SIMOX/Unibond no dep.)Rule 0.25um 0.2um (Leff=0.12um) 0.25umInterconnect 5 Al + W local Cu 6 Cu 4 AlArea 49mm2 139mm2 209mm2# of Tr's 6.5M 34M 9.7MFreq. 500MHz 580MHz@85C, fast proc. 550MHz 600MHzVDD 1.7V 2V 1.8V 1.5V (2V I/O)Power 5.1W @2V,400MHz 24W 40WSpeed gain ov25-30% 20% 20% 30%@1.2V, 20%@1.5V SRAM

22% Ctotal reduction 12% by Cj 15-20% simple gates10-15% more Ids 15-25% by less body-bias25-40% complex gates

Page 63: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Hi-Speed is Low-Power

From URL: www.erniefernandez.com/html/soi.html

Page 64: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Advantage of SOI over Bulk CMOSo Lower CJ and CGROUND achieves 20% lower CTOTAL. Good

for hi-speed & low-power. (For interconnection limiting cases, less effective)

o 10-15% higher IDS due to lower VTH in turning-on and parasitic bipolar current (Effects reduced in VDD=0.6V)

o Lower negative body-bias effect in pass-gates and series-connected MOS’s as in NAND’s achieves higher IDS and hence hi-speed.

o s of 60mV/dec is achievable in FD and DTMOS. Lower VTH is possible with the same off-leak. (Less effective in lower VTH like 0.1V)

o Lower SER (Normal dynamic gates )

o 25-30% higher speed in total for 0.25um generation

Page 65: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Design Issues of PD-SOI

o History dependent delay (3-8% fluctuation)

o Pass-gate leakage by parasitic bipolar current (pull-down internal nodes)

o Lowered noise immunity in dynamic circuits (several techniques)

o Self-heating (only for circuits with DC current path. 4

o ESD protection (process/device & circuits remedies)

o Redesign efforts (higher for PD, lower for FD)

o Higher wafer cost

Page 66: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Dynamic Threshold MOSFET (DTMOS)

F.Assaderaghi et al.,"A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation", ED Letters, vol.15, no.12, Dec. 1994.T.Fuse, et al. "A 0.5V 200MHz 1-Stage 32b ALU Using a Body Bias Controlled SOI Pass-Gate Logic," in ISSCC Dig. Tech. Papers, pp. 286-287, Feb., 1997.

Page 67: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Pass Transistor Logic with SOI

C C

A

B

A,A

B,B

C,C

OutOut

Pass tr. NMOS networkwith DTMOS

T.Fuse, et al. "A 0.5V 200MHz 1-Stage 32b ALU Using a Body Bias Controlled SOI Pass-Gate Logic," in ISSCC Dig. Tech. Papers, pp. 286-287, Feb., 1997.

For NMOS with VDD=0.5VGate is 0.5V → Body bias=0.5V → Vth= -0.05VGate is 0V → Body bias=0V → Vth= 0.15V

Page 68: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Pass Transistor Logic with SOI

0 1 2 3 4Supply Voltage (V)

0.1

1

10

100

10001000

800

600

400

200

0

Bulk Pass-gate

FrequencyPower

DTMOSPass-gate

Act

ive

Pow

er (m

W)

T.Fuse, et al. "A 0.5V 200MHz 1-Stage 32b ALU Using a Body Bias Controlled SOI Pass-Gate Logic," in ISSCC Dig. Tech. Papers, pp. 286-287, Feb., 1997.

Page 69: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

DTMOS vs. Normal SOIDTMOS SOI

• Suppose DTMOS ≈≈≈≈ front gate + back gate• IDS/CG of back gate device < IDS/CG of front gate device.

• DTMOS needs body contact area. FD SOI can use larger W.

• Both can achieve s=60mV/dec.

• With the same leakage and area, which is really faster?

• DTMOS is good in driving large CLOAD.

• Pass transistor will show better performance with DTMOS.

Page 70: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

CMOS Static vs. Pass-Transistor Logic

Reduced number of transistors leads to low-power, high-speed and reduced area.

CMOS static logicTr. count : 40

Full adder

Pass-tr. LogicTr. count: 28

CC

AAA AB BB B

AAA AB

BBB

C C

Sum

AA BB

AB

AB

B A

C

AB

CoutA

CC

Sum

BB

A

Sum

A

B

CoutCout

CC

A

B

Page 71: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

History of Pass-Transistor Logic

CVSL(IBM, 1984)

DSL(Philips,

1985)CPL(HItachi, 1993)

PMOSCross

CMOSinverter

CMOSlatch

None

Logic

Load

NMOSlogic

PassTransistor

Logic

DPL(HItachi, 1993)

SRPL(Toshiba, 1994)

DCVSPG(IBM, 1993)

load

logic

Pass variable orVDD/VSS

(drain input)

Com

plem

enta

ry in

put

(gat

e in

put)

Complementaryoutput

ZZ

Sense-Amp.

SAPL(Toshiba, 1994)

Page 72: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Various Pass-Transistor Logic Circuits

BB

A A

BB

AA

AA

B B

A•BA•BA•BA•BA•B A•B

CPL SRPLDCVSPG

0.4µm device (full adder)

CMOS staticCPL

Tr.Count

Delay Power P•D( ns ) (Normalized)

4028

0.820.44

0.520.42

1.00 1.000.43 0.23

DCVSPG 24 0.53 0.30 0.37 0.24SRPL 28 0.48 0.19 0.21 0.13

CircuitItems

(mW/100MHz) (Normalized)E•D

Page 73: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Pass-Tr. Logic Synthesis with BDDBDD: Binary Decision Diagram

T.Sakurai and A.R.Newton, "Multiple-Output Shared Transistor Logic (MOSTL) Family Synthesized Using Binary Decision Diagram," Dept. EECS, Univ. of Calif., Berkeley, ERL Memo M90/21, Mar. 1990.

c00001111

1 0 0 1 00 1 1

a

0 1 1 0 11 0 0

 

f

a a a a a a a a

b b b bb

c

fcc

aaaaaaa

bbb

cb fa0 0 00 1 11 0 11 1 00 0 10 1 01 0 01 1 1

10010110

BDD for function f BDD for function f

SumSum

Truth table forf & f

f

Page 74: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

x

BDD Reduction Rules

Rule 1

Collapse two nodes A1 and A2 whose right and left branch each point to the same node.

Rule 2

Eliminate a node A whose right and left branch point to the same node.

x

y y

B B

BDD

    A

BDD

y y

BBDD

xA1

BDD

x x xA2

C B C

x xA

z z

Page 75: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

BDD Reduction Example

1

c ccc

bb

f f

b bbb b

b

a a a a0

1 0

f fc c cc

b b b b bbbb

aa aa aa a

aa

a a a a a aa

1 0

ff

c c

b b

a a

c c

b b

a a

Reducing & by Rule 1

Reducing & by Rule 1

Page 76: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Mapping BDD to MOS Circuit

1 0

ff

c c

b b

a a

c c

b b

a a

VSSVDD

f ffff

c c

c c

b b

bb

a aa a

Mapping toMOS circuit

Introducingpass variables

f f

c c

c c

b bbb

a a

1111 →→→→ VDD

→→→→ VSS0000

x branch to VDD x branch to VSS x branch to VSS x branch to VDD

pass variable x

pass variable x

→→→→

→→→→

Page 77: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Approach to low-power LSI

Example of MPEG2 decodingProcessor (software)~~~~25W

DSP~~~~4W

Dedicated sytem LSI (SW/HW)~~~~0.7W

Low

-pow

er

Hig

h fle

xibi

lity

Page 78: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Power * Area vs. Performance

0

1

2

3

4

10 100 1000 10000Power * Area (W mm2)16

bit p

erfo

rman

ce (G

OPS

)µP + Multimedia extensionMediaprocessor for PCMediaprocessor for AV

Page 79: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Homogeneous vs. Heterogeneous

SpecialEngine

Homogeneous Architecture

(High flexibility)

Heterogeneous Architecture(System LSI)

(Low-power, more efficient)

MPUMPUMPUMPU

Memory

I/F, Analog

MPUMPUMPUMPU

I/F, Analog

MPUDSP

Memory

Page 80: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

DRAM Embedding

DRAM Processor System LSI

Two orders of magnitude improvement in bandwidth and power

K.Sawada, T.Sakurai, et al, "A 72K CMOS Channelless Gate Array with Embedded 1Mbit Dynamic RAM," in Proc. CICC'88, pp.20.3.1-20.3.4, May 1988.

Page 81: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Neural chip

3 orders of magnitude smaller power consumption for recognition compared to software implementation

SynapesSynapesSynapesSynapesCellsCellsCellsCells

ThresholdThresholdThresholdThresholdCellsCellsCellsCellsSense AmpSense AmpSense AmpSense Amp

Word DriverWord DriverWord DriverWord Driver

WTAWTAWTAWTA

IOIOIOIO

Read WordRead WordRead WordRead Word

Write WordWrite WordWrite WordWrite Word

Read BitRead BitRead BitRead Bit________________________________Read BitRead BitRead BitRead BitWrite BitWrite BitWrite BitWrite Bit

________________________________Write BitWrite BitWrite BitWrite Bit

standard SRAMstandard SRAMstandard SRAMstandard SRAM output buffer output buffer output buffer output buffer(for Neuran (for Neuran (for Neuran (for Neuran Networking)Networking)Networking)Networking)

S.Takeuchi &T.Sakurai, ICCD’98, Oct.1998.

Page 82: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Energy of various operationIntegration (system LSI) is the key to low-power

Operation Energy/Op (pJ)

Add 73-2 Add 2Multiply 40Latch 1.8Internal read 36Internal write 71I/O 80External memory 16000

B.M.Gordon, E.Tsern, T.Meng,"Design of a Low Power Video Decompression Chip Set for Portable Applications," J. of VLSI Signal Processing Systems 13, pp.125-142, 1996

Page 83: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Software-Hardware cooperation

A.Chandrakasan, R.Amirtharajah, S.H.Cho, J.Coodman, G.Konduri, J.Kurik, W.Rabiner and A.Wong, ”Design Considerations for Distributed Microsensor systems," CICC99, pp.279-286, May 1999.

StrongArm-1100

(Clock frequency control instruction equipped, an encryption algorithm)

o Code optimization for power -> factor of 5 power reduction

o Adaptive VDD control together with frequency control -> factor of 3 further power reduction

Page 84: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Important technologies for low-power

Low-voltage• VTH control, multi-VTH, SOI, leakage control• VDD control, multi-VDD , DC-DC conv.• Ultra low voltage circuit (PLL, analog)• Software controlLow-swing• Bus, clockLow-C• Less # of Tr’s, fused digital-analog, pass-transistor• Low-k (air isolation) • System on a chip, memory embeddingLow- αααα ƒ• Locally synch.-globally asynch., gated clock• Low transition coding

P = αααα ƒ C Vs VDD + leak power

Page 85: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Lorentz Force MOS (LMOS)

Electrons deflected by By. Voltage difference between Vo1 and Vo2

Powersupply line

Gate DrainSourceN+ N+

B

e-

IP

vx

FVo1

Vo2N+

N+By

WP

K.Nose and T.Sakurai,”Micro IDDQ Test using Lorentz Force MOSFET's,” Symp. On VLSI Circuits, June 1999.

Page 86: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Microphotograph of LMOS

10 parallel connection

Wp : 10µµµµm 8µµµµm 5µµµµm 2µµµµm

Page 87: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Measured ∆∆∆∆VD dependence on IP

0 5 10

1

2

3

4

Power supply current [mA]

∆ ∆∆∆V D

[µ µµµV]

WP=8µµµµm

VDDT=VGT=2V

∆∆∆∆VD is proportional to IP.

Page 88: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Circuit for micro IDDQ test

It is possible to measure the current of thousands LMOS.

Shift registers are used to control the gate of LMOS.

D Q D Q D Q

CLK

VSTART

Shiftregister

VDDT Pad

Macro1

Macro2

Macro3

VDD

Pad

VD

Page 89: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Low-Power CMOS LSI Circuit Techniques

Low VDD

General

Bus

Data Path

Random Logic

Memory

I / O

CLpt

• gated clock

Glitch Suppress

VS VDD f CLK I SC I DC I LEAKCareful Design• design verif. by CAD

• DC-DC conv. 1)

Clock

Small Signal

• 0.25V Q-Rail 2)

• device scaling

Charge Recycling• C stacking 4)

• floorplan to reduce wire length • F/F sizing

• C stacking 6)• 1/2 swing 4)• 1/4 swing 6)• 3-state-buffer

activated after data fix 5) • exclusive bus

• latch insertion to deskew data-in 7)

Tr. Reduction• pass-transistor (CPL,SRPL,SAPL,DPL,DCVSPG )

• pass-tr. (SAPL) 8)

• parallel-ism

CAD •permutation of series-connected tr. order 9)

• library & CAD for pass-tr. logic 10)• tr. sizing 11,12)

• current switch logic

(MCML) 13)

• memory hierarchy

• reduced swing WL, BL

• MCM 17)• area pad 17)

• reduced swing I/O 18) (GTL, LVDS)

• phase modula-tion 19)

Cut Current• latch S/A 15)• dynamic termina-tion 20)

Sleep Mode• 2 typeVTH (MT-CMOS) 14)• switched source-impedance

16)

• ∆∆∆∆VTH control 3) • High VTH for standby 21)

•VTCMOS 24-27)

Page 90: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Reference for low-power design & System LSI

Low-power high-speed LSI design & technology

「「「「低消費電力、高速低消費電力、高速低消費電力、高速低消費電力、高速LSI技術」技術」技術」技術」

Realize publishing company, ¥56,000

Phone: +81-3-3815-8511, Fax: +81-3-3815-8529

System LSI – Applications and Technology

「「「「システムLSIーアプリケーションと技術」システムLSIーアプリケーションと技術」システムLSIーアプリケーションと技術」システムLSIーアプリケーションと技術」

Science Forum publishing, ¥48,000

Phone: +81-3-5689-5611, Fax: +81-3-5689-5622

Page 91: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Three crises in VLSI designs

Power crisis

Interconnection crisis

Complexity crisis

Page 92: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Complex interconnect

Page 93: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Advances in interconnection technology

Interconnection in 1985 Interconnection in 1998

Page 94: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Interconnect determines cost & perf.

P: Power, D: Delay, A: Area, T:Turn-around

0

20

40

60

80

100

Pow

er [%

]

Ctransistor

6

7

8

9

'95 2000 '5 '10

# of

int.

laye

rs

Year

(SIA'97)

0

20

40

60

80

100

Del

ay [%

]

(F.O.=3, Al=1mm)

0

20

40

60

80

100

Proc

ess

step

s [%

]

'95 2000 '5 '10Year

'95 2000 '5 '10Year

'95 2000 '5 '10Year

# of layers

Cint

RC delay

Int.

Tr's

Cgate

Page 95: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Interconnect parameters trend

0

1

2

3

4

1996 2000 2004 2008 2012Year

εεεε r

ρρρρ[Ω・ cm]

Aspect ratio

Width [x0.1μm]

Al Cu

Semiconductor Industry Association roadmaphttp://notes.sematech.org/1997pub.htm

Page 96: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

RC delay and gate delay

1996 2000 2004 2008 201210-12

10-11

10-10

10-9

10-8

Year

Clock period

Gate delay

3mm

1mm

100µm

50µm

Del

ay (s

ec)

Page 97: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Repeaters

Interconnect length (cm)0.1 1 10

0.1

1

10

100a) Without repeaters

b) With repeaters

WithRepeaters

WithoutRepeaters

1000

Inte

rcon

nect

Del

ay (n

s)

Page 98: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Tradeoff between power and delay

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

2.5

3 DelayPowerPower•Delay

linerepeater PP

D,P

D (

A.U

.) Delay optimizationP: Power consumed by

repeaters (Prepeater) is 0.6 times the power consumed by interconnect (Pline)

Power • Delay optimizationD: 9% increase from opt.P: Prepeater / Pline is 26%PD: 24% decrease from

delay opt. case

Page 99: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

The further, the lessLSI World

group

block

unitcompany

Local memoriesHierarchy

Page 100: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Locality in space & time

1st cache

CPU

2nd cache Main mem. Ext. mem.Latency

3ns 20ns 100ns 10msThroughput

3ns 10ns 30ns 100ns

Use of local memories

Page 101: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Capacitive Coupling Noise

1996 2000 2004 2008 2012Year

0

1

2

3

4

C20

C12C12

C12/C20

peak couple noise / signal voltage

ratio

Page 102: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Coupling noise in RC bus

0 1 20

1

Time : t / RC

Volta

ge :

V / E

1

Vp

Vp ≈ Cc/C1+ 2Cc/C

0 1 2Time : t / RC

0

1Vo

ltage

: V

/ E1

Vp

V1

V2

V1

V2

Cc / C = 1Cc / C = 1

E10 t=0

RC

CRCc

V1

V2

RC

CRCc

V1

V2Cc

E10 t=0

E10 t=0

RC

CRCc

V1

V2

RC

CRCc

V1

V2Cc

E10 t=0

Vp = 1+ 4Cc/C -1√√√√1+ 4Cc/C +1√√√√Vp ≈ 2Cc/C

2+ 3Cc/C

(Cc/C < 2)(Bus)

(Three lines)H.Kawaguchi and T.Sakurai, "Delay and Noise Formulas for Capacitively Coupled Distributed RC Lines," ASPDAC, Digest of Tech. Papers, pp.35-43, Feb. 1998.

Page 103: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Differential

Noise on signal lines

Noise on power supply lines

Single-ended Differential

RI

'0' is higher

• Smaller margin in single-ended circuits • Erronous discharge in diynamic circuits• In-phase noise in differential circuits (no change in margin)

Page 104: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Air Isolation

Before ashing

Spt. SiO2 (50 nm) InterconnectCarbon

After 450C, 2H furnace ashing

Spt. SiO2 (50 nm) InterconnectGas

Page 105: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Air Isolation

200

250

300

350

400

450

26.7%41.7%

20%

49.5%

Del

ay (p

s/st

age)

Isolation material

SiOF(k=3.7)

HSQ(k=2.2)

Parylene-N(k=2.7)

Gas Gas (Wire-wire) (All)

Page 106: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Coupling among Interconnection

Difficulty in checking setup and hold time.

00

0.2

0.4

0.6

0.8

1

0.1µm spaceLength 3mm

0→→→→1 0→→→→1 0→→→→10→→→→0 0→→→→1 0→→→→01→→→→0 0→→→→1 1→→→→0

Time (ns)

Volta

ge (A

.U.)

5 10

In-phase

Out-phase

Page 107: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Sense-amplified RC line

Nor

mal

ized

Vol

tage

: V(

l,t) /

ER

C

-0.20

0.20.40.60.81

0 2 4 6 8 10Normalized Time : t/RC

CLK

SA-F/F

Q

Q

D

DS

S

R

C

A

A

T.Sakurai, H.Kawaguchi and T.Kuroda, "Low-Power CMOS Design through VTH COntrol and Low-Swing Circuits," invited, 1997 International Symp. on Low-Power Electronics and Design, pp.1-6, Aug.1997.

Page 108: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

SA-F/F (Sense-Amplifying Flip-Flop) circuits

CLK

SA-F/F

Q

Q

D

D

fP

fP

fP

fP

DVin

A

A

B

B S

S

CLK

NMOS Dynamic Differential Logic

CLK

XOR Gate

Page 109: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Skin Effects for Signal Lines

108 109 101010-8

10-7

10-6

10-5

Frequency (Hz)

Skin depth

Hi-end clock freq.

Cu wire

Low-end clock freq.

Skin

dep

th, i

nter

conn

ect w

idth

[m]

Page 110: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Skin Depth and R Increase

a/D1 10 1001

10

100

0

Da

D: skin depth

/ R0

: Inc

reas

ed R

by

skin

effe

ct

Page 111: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Inductance?

・ Now RC effects surmounts LC effects because R > |jωωωωL|.

・ In the future, both of R and ωωωωLincrease (R increases more rapid?).

・ Exception in low-R lines

・ Inductive effects in wide clock lines in a fast processor are claimed to be observed in simulation.

・ Clock lines are placed on power plane to reduce inductive effects.

[1] D.A.Priore, "Inductance on Silicon for Sub-micron CMOS VLSI," Symp. on VLSI Circuits, 1993.

W / H

L : S

elf-i

nduc

tanc

e (n

H/ c

m)

L = 2 ln 6H0.8W + T

100

10

10.001 0.01 0.1 0.5

0.1

0.01

0.001T/H=

Page 112: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Inductive Effects

10-2

10-1

100

101

102

1996 2000 2004 2008 2012Year

ω ωωωL

/ R

Min. width (scaled)

W=1μm

W=10μm

W=100μm

Page 113: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Inductive Effects in Clock Lines

Board design practice is imported in LSI.

P.J.Restle & A Deutsch, “Designing the Best Clock Distribution Network,” VLSI circuits symp., pp.2-3, May 1998.

Page 114: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Interconnect Cross-Section and Noise

Unscaled / anti-scaled・ Clock・ Long bus・ Power supply

Scaled interconnect・ Signal

1V 15W -> 15A current5% noise -> 0.05V noise -> 3mΩΩΩΩ sheet R -> 10µm thick AlArea pad + package, or thick layer on board is needed.

Page 115: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Possible solutions for interconnect issuesArchitecture

• Hierarchical architecture, local memories (10~)

Circuit• Repeater (5)• Line width sizing (10)• Sense amplifier (5)• Interconnection pipelining (10)• Differential circuit (10)

Device / Process• Low-r (Cu 1.3 (10 for EM)), Low-ε (F 1.1, polymer 2, air 4)• Multi-layer interconnection (un/anti-scaled layers 100)• Area pads + thick package / board layers (10)

CAD• R, C extraction, fast simulation (1000)• Optimization (repeater insertion...)

Page 116: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Three crises in VLSI designs

Power crisis

Interconnection crisis

Complexity crisis

Page 117: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

VLSI Design in 2010

Designing a map of 10m wide roadsfor a world atlas

Page 118: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Complexity vs. Productivity

System LSI design complexity increases faster than productivity. (http://notes.sematech.org/97melec.htm)

2000 2002 2004 2006 2008 2010 20121

10

100

1000Design complexity

Productivity improved with lots of development

Productivity improved with current rate

Page 119: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Coping with complexity crisis

MPU Core

Cache

ROMRAM

MPEG CoreUSB Core

ProprietaryLogic

IP (A inc.)IP (B univ.)IP (C inst.)IP (D semi.)

IP ; CPU, DSP, memories, analog, I/O, logic..HW/FW/SW

• Re-use and sharing of IP’s• Design at high abstraction

Page 120: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Hot design topics initiates CAD tools

S/W, H/W Co-design

Behavioral

RTL

Logic

Circuit

Physical (deep submicron)

New dimensions• LSI/package/board• Power• RC delay• Signal integrity• Interconnect reliability• Noise• IR drop• Distribution of parameters• Memory embedding• Analog-digital mix...

New dimensions• LSI/package/board• Power• RC delay• Signal integrity• Interconnect reliability• Noise• IR drop• Distribution of parameters• Memory embedding• Analog-digital mix...

Total system design

Page 121: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

LSI in 2014

Year Unit 1999 2014 FactorDesign rule µm 0.18 0.035 0.2Tr. Density /cm2 6.2M 390M 30Chip size mm2 340 900 2.6Tr. Count per chip (µP) 21M 3.6G 170DRAM capacity 1G 1T 256Local clock on a chip Hz 1.2G 17G 14Global clock on a chip Hz 1.2G 3.7G 3.1Power W 90 183 2.0Supply voltage V 1.5 0.37 0.2Current A 60 494.6 8Interconnection levels 6 10 1.7Mask count 22 28 1.3Cost / tr. (packaged) µcents 1735 22 0.01Chip to board clock Hz 500M 1.5G 3.0# of package pins 810 2700 3.3Package cost cents/pin 1.61 0.75 0.5

Page 122: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Chip in 2014

Sensors

Micro-actuators (for display)

• Sensors/actutors on chip

• 0.035µm 3.6G Si FET’s with VTH & VDD control

• Locally synchronous 17GHz clock, globally asynchronous

• Chip / Package / Board system co-design

Lots of IP’s(µP, memAnalog, ...)

ProgrammableArray ofMacros

Page 123: Challenges in VLSI Design Toward the New Millenniumlowpower.iis.u-tokyo.ac.jp/SPN/1999/19990231.pdf · 1 Challenges in VLSI Design Toward the New Millennium Takayasu Sakurai Prof

T.Sakurai

Summary

Scaling law indicates power, interconnection and complexity crises.

Low-voltage + threshold control and less-waste design for low-power

Process, design guidelines and local memory for interconnection issues

Design reuse and sharing + software programmability for complexity