96
Chap.10 Population Dynamics 鄭鄭鄭 (Ayo) 鄭鄭 鄭鄭鄭鄭鄭鄭 鄭鄭鄭鄭鄭鄭鄭 鄭鄭鄭鄭鄭鄭鄭鄭鄭 鄭鄭鄭鄭鄭鄭鄭 + 鄭鄭鄭鄭鄭鄭鄭

Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Embed Size (px)

Citation preview

Page 1: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Chap.10 Population Dynamics

鄭先祐 (Ayo) 教授國立台南大學 環境與生態學院

生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Page 2: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

2

Chap.10 Population Dynamics

Case Study: A Sea in Trouble1.Patterns of Population Growth2.Delayed Density Dependence3.Population Extinction4.MetapopulationsCase Study RevisitedConnections in Nature: From Bottom to

Top, and Back Again

Ayo 2011 Ecology

Page 3: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study: A Sea in Trouble

The comb jelly Mnemiopsis leidyi was introduced accidentally into the Black Sea in the 1980s, most likely by the discharge of ballast water from cargo ships. Figure 10.1 A Potent Invader

Ayo 2011 Ecology3

Page 4: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study: A Sea in Trouble

The Black Sea ecosystem was already in trouble—nutrients inputs had caused eutrophication.

Phytoplankton abundance increased, water clarity decreased, oxygen concentrations dropped, and fish populations experienced massive die-offs.

Ayo 2011 Ecology4

Page 5: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study: A Sea in Trouble

Mnemiopsis is a voracious predator of zooplankton, fish eggs, and young fish.

It continues to feed even when completely full, causing it to regurgitate large quantities of prey stuck in balls of mucus.

An individual Mnemiopsis can produce up to 8,000 offspring just 13 days after its own birth.

Ayo 2011 Ecology5

Page 6: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study: A Sea in Trouble

In 1989, Mnemiopsis populations exploded: The total biomass of Mnemiopsis in the Black Sea was estimated at 800 million tons (live weight).

Feeding by Mnemiopsis caused zooplankton populations to crash, which caused phytoplankton populations to increase even more.

Ayo 2011 Ecology6

Page 7: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.2 Changes in the Black Sea EcosystemAyo 2011 Ecology7

Page 8: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study: A Sea in Trouble

The large numbers of phytoplankton and Mnemiopsis that died provided food for bacterial decomposers, which use oxygen.

As bacterial activity increased, oxygen levels decreased, harming some fish populations.

Mnemiopsis also devoured the food supplies (zooplankton), eggs, and young of important commercial fishes such as anchovies, and led to a rapid decline in fish catches.

Ayo 2011 Ecology8

Page 9: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study: A Sea in Trouble

Native predators and parasites had failed to regulate Mnemiopsis populations.

Fortunately, today, Mnemiopsis populations have decreased, and the Black Sea ecosystem is recovering.

How did this happen?

9

Page 10: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Introduction

Populations can change in size as a result of four processes: Birth, death, immigration, and emigration.

Nt = Population size at time tB = Number of birthsD = Number of deathsI = Number of immigrantsE = Number of emigrants

EIDBNN tt 1

10

Page 11: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Introduction

Populations are open and dynamic entities.

Individuals can move from one population to another, and population size can change from one time period to the next.

Population dynamics refers to the ways in which populations change in abundance over time.

11

Page 12: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

These four patterns of population growth are not mutually exclusive, and a single population can experience each of them at different points in time.

Concept 10.1: Populations exhibit a wide range of growth patterns, including exponential growth, logistic growth, fluctuations, and regular cycles.

12

Page 13: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Exponential Growth A population increases by a constant

proportion at each point in time. When conditions are favorable, a

population can increase exponentially for a limited time.

13

Page 14: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Exponential growth can also occur when a species reaches a new geographic area.

If conditions are favorable in the new area, the population may grow exponentially until density-dependent factors regulate its numbers.

14

Page 15: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.3 Colonizing the New World15

Page 16: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Species such as the cattle egret typically colonize new geographic regions by long-distance or jump dispersal events.

Then, local populations expand by short-distance dispersal events.

16

Page 17: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Logistic GrowthSome population reach a stable size

that changes little over time.Such populations first increase in size,

then fluctuate by a small amount around what appears to be the carrying capacity.

17

Page 18: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.4 Population Growth Can Resemble a Logistic Curve18

When sheep were first introduced to Tasmania, the population increased rapidly.

Later, population numbers fluctuated above and below a maximum population size.

Page 19: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Plots of real populations rarely match the logistic curve exactly.

“Logistic growth” is used broadly to indicate any population that increases initially, then levels off at the carrying capacity.

19

Page 20: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

In the logistic equation

K is assumed to be constant. K is the population size for which birth and death rates are equal.

K

NrN

dt

dN1

20

Page 21: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

For K to be a constant, birth rates and death rates must be constant over time at any given density.

This rarely happens in nature. Birth and death rates do vary over

time, thus we expect carrying capacity to fluctuate.

21

Page 22: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.5 Why We Expect Carrying Capacity to Fluctuate22

Page 23: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Population Fluctuation A rise and fall in population size over

time. Fluctuations can occur as deviations from

a population growth pattern, such as the Tasmanian sheep population.

23

Page 24: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

In some populations, fluctuations occur as increases or decreases in abundance from an overall mean value.

Changes in phytoplankton abundance in Lake Erie could reflect changes in a wide range of environmental factors, including nutrient supplies, temperature, and predator abundance.

24

Page 25: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.6 Population Fluctuations of phytoplankton abundance in water

25

Phytoplankton abundance sometimes increased or decreased precipitously (陡峭地 ) in just a few days.

Page 26: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

For some populations, fluctuations can be large.

Populations may explode, causing a population outbreak.

Biomass of the comb jelly Mnemiopsis increased more than a thousandfold during a 2-year outbreak in the Black Sea.

26

Page 27: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.7 Populations Can Explode in Numbers (cockroaches)27

Page 28: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Population Cycles Some populations have alternating

periods of high and low abundance at regular intervals.

Populations of small rodents such as lemmings and voles typically reach a peak every 3–5 years.

28

Page 29: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.8 A Population Cycle of lemming

29

In northern Greenland, collared lemming abundance tends to rise and fall every 4 years. In this location, the population cycle appears to be driven by predators, the most important of which is the stoat(鼬 ). In other regions, lemming cycles may be driven by food supply.

Page 30: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

Different factors may drive population cycles in rodents.

For collared lemmings in Greenland, Gilg et al. (2003) used field observations and mathematical models to argue that their 4-year cycle is driven by predators, such as the stoat (鼬 ).

30

Page 31: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Patterns of Population Growth

In other studies, predator removal had no effect on population cycles.

Factors that drive population cycles may vary from place to place, and with different species.

31

Page 32: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

The effects of population density often have a lag time or delay.

Commonly, the number of individuals born in a given time period is influenced by population densities that were present several time periods ago.

Concept 10.2: Delayed density dependence can cause populations to fluctuate in size.

32

Page 33: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

Delayed density dependence: Delays in the effect that density has on population size.

Delayed density dependence can contribute to population fluctuations.

33

Page 34: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

Example: When a predator reproduces more slowly than its prey. If predator population is small initially, the

prey population may increase, and as a result the predator population increases, but with a time lag.

Large numbers of predators may decrease the prey population, then the predator population deceases again.

34

Page 35: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

The logistic equation can be modified to include time lags:

N(t-τ) = population size at time t-τ in the past.

K

tNrN

dt

dN )(1

35

Page 36: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

The occurrence of fluctuations depends on the values of r and τ. Robert May (1976) found that when rτ is

small (0 < rτ < 0.368), no fluctuation results.

At intermediate levels, (0.368 < rτ < 1.57), damped oscillations result.

When rτ is large (rτ > 1.57), the population fluctuates indefinitely about the carrying capacity. This pattern is called a stable limit cycle.

36

Page 37: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.9 Logistic Growth Curves with Delayed Density Dependence37

When r is small, the population exhibits logistic growth.

At intermediate values of r , the population exhibits damped oscillations.

When r is large, the population exhibits a stable limit cycle.

Page 38: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

A. J. Nicholson studied density dependence in sheep blowflies in laboratory experiments.

In the first experiment, adults were provided with unlimited food, but the larvae were restricted to 50 g liver per day.

38

Page 39: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

Because of abundant food, females were able to lay enormous numbers of eggs.

But when the eggs hatched, most larvae died because of lack of food.

This resulted in an adult population size that fluctuated dramatically.

39

Page 40: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.10 A Nicholson’s Blowflies

40

When adult densities were high......

.... few eggs survived to produce adults, leading to population fluctuations.

Page 41: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Delayed Density Dependence

In the second experiment, both adults and larvae were provided with unlimited food.

The adult population size no longer showed repeated fluctuations.

41

Page 42: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.10 B Nicholson’s Blowflies42

When food for adults was limited, the

fluctuations in the adult population

were reduced.

Page 43: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Many factors can drive populations to extinction:

Predictable (deterministic) factors, as well as fluctuation in population growth rate, population size, and chance events.

Concept 10.3: The risk of extinction increases greatly in small populations.

43

Page 44: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Consider a version of the geometric growth equation that includes random variation in the finite rate of increase, (λ).

If random variation in environmental conditions causes λ to change considerably from year to year, the population will fluctuate in size.

44

Page 45: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Computer simulations of geometric growth for three populations allowed λ to fluctuate at random.

Two of the populations recovered from low numbers, but one went extinct.

Fluctuations increase the risk of extinction.

45

Page 46: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.11 Fluctuations Can Drive Small Populations Extinct

46

Two of the simulated populations recovered from low numbers and survived

The third population went extinct in the 54th year of the simulation.

Page 47: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Variation in λ in the simulations was determined by the standard deviation (σ) of the growth rate, which was set to 0.4.

In 10,000 simulations (initial population size = 10), when σ = 0.2, only 0.3% of the populations went extinct in 70 years.

When σ was increased to 0.4, 17% of the populations went extinct in 70 years.

When σ was increased 0.8, 53% of the populations went extinct.

47

Page 48: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

When variable environmental conditions result in large fluctuations in a population’s growth rate, the risk of extinction of the population increases.

Small populations are at greatest risk.

48

Page 49: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

If the 10,000 simulations are repeated starting with population size = 100, and σ = 0.8, 29% of populations went extinct in 70 years.

If initial population size is increased to 1,000 or 10,000, populations going extinct drops to 14% and 6%, respectively.

49

Page 50: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

These patterns have been observed in real populations.

Studies of bird populations on the Channel Islands in California showed that 39% of populations with fewer than 10 breeding pairs went extinct.

No extinctions occurred in populations with over 1,000 breeding pairs (Jones and Diamond 1976).

50

Page 51: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.12 Extinction in Small Populations (Part 1)51

Page 52: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.12 Extinction in Small Populations (Part 2)

52

A large percentage of population that had fewer than 10 breeding pairs went extinct.

None of the populations that had more than 1,000 breeding pairs went extinct.

Page 53: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Chance events can influence fluctuations in population growth rates over time.

Chance genetic, demographic, and environmental events can play a role in making small populations vulnerable to extinction.

53

Page 54: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Genetic drift —chance events influence which alleles are passed on to the next generation.

This can cause allele frequencies to change at random from one generation to the next in small populations.

Drift reduces the genetic variation of small populations, but has little effect on large populations.

54

Page 55: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Small populations are vulnerable to the effects of genetic drift for three reasons:

1. Loss of genetic variability reduces the ability of a population to respond to future environmental change.

2. Genetic drift can cause harmful alleles to occur at high frequencies.

3. Small populations show a high frequency of inbreeding.

55

Page 56: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Genetic drift and inbreeding appear to have reduced the fertility of male lions in a crater in Tanzania.

In 1962 the population was reduced to a few males. Population size has since increased, but testing shows all individuals are descended from 15 lions.

The population has a high frequency of sperm abnormalities.

56

Page 57: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.13 A Plague of Flies57

In 1962, the population of lions in the 260km2 Ngorongoro Crater of Tanzania was nearly driven to extinction by a catastrophic outbreak of biting flies similar to those of the face of this male. Lions became covered with infected sores and eventually could not hunt, causing many to die, in the population that descended from the few survivors, genetic drift and inbreeding have led to frequent sperm abnormalities, such as this "two-headed" sperm.

Page 58: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Demographic stochasticity —chance events related to the survival and reproduction of individuals.

For example, in a population of 10 individuals, if a storm wipes out 6, the 40% survival rate may be much lower than the rate predicted on average for that species.

When the population size is large, there is little risk of extinction from demographic stochasticity because of the laws of probability.

58

Page 59: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Allee effects —population growth rate decreases as population density decreases; individuals have difficulty finding mates at low population densities.

In small populations, Allee effects can cause the population growth rate to drop, which causes the population size to decrease even further.

59

Page 60: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.14 Allee Effects Can Threaten Small Populations60

(A) flour beetle

(B) bluefin tuna

(C) fig trees

(D) fruit flies

Page 61: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Environmental stochasticity —unpredictable changes in the environment.

Environmental variation that results in population fluctuation is more likely to cause extinction when the population size is small.

61

Page 62: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.15 Environmental Stochasticity and Population Size

62

The Yellowstone grizzlies are predicted to face a high risk of extinction within 50 years if their population drops below 30 females.

Page 63: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Environmental stochasticity —changes in the average birth or death rates that occur from year to year because of random changes in environmental conditions.

Demographic stochasticity —population-level birth and death rates are constant within a given year, but the actual fates of individuals differ.

63

Page 64: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Natural catastrophes, such as floods, fires, severe windstorms, or outbreaks of disease or natural enemies can eliminate or greatly reduce populations.

A species can be vulnerable to extinction when all are members of one population.

64

Page 65: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Population Extinction

Heath hen populations were reduced by hunting and habitat loss to one population of 50 on Martha’s Vineyard, Massachusetts.

A reserve was established, and population size increased, but then a series of bad weather, fires, diseases, and predators decreased the population to extinction.

65

Page 66: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

For many species, areas of suitable habitat exist as a series of favorable sites that are spatially isolated from one another.

Concept 10.4: Many species have a metapopulation structure in which sets of spatially isolated populations are linked by dispersal.

66

Page 67: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Metapopulations —spatially isolated populations that are linked by the dispersal of individuals or gametes.

Metapopulations are characterized by repeated extinctions and colonization.

67

Page 68: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.16 The Metapopulation Concept68

Members of the species occasionally disperse from one patch of suitable habitat to another.

Page 69: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Populations of some species are prone to extinction for two reasons:

1. The landscapes they live in are patchy (making dispersal between populations difficult).

2. Environmental conditions often change in a rapid and unpredictable manner.

69

Page 70: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

But the species persists because the metapopulation includes populations that are going extinct and new populations established by colonization.

70

Page 71: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Extinction and colonization of habitat patches can be described by the following equation:

p = Proportion of habitat patches that are occupied at time tc = Patch colonization ratee = Patch extinction rate

eppcpdt

dp 1

71

Page 72: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

The equation was derived by Richard Levins (1969, 1970), who made several assumptions:

1. There is an infinite number of identical habitat patches.

2. All patches have an equal chance of receiving colonists.

72

Page 73: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

3. All patches have an equal chance of extinction.

4. Once a patch is colonized, its population increases to its carrying capacity more rapidly than the rates of colonization and extinction (allows population dynamics within patches to be ignored).

73

Page 74: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

This leads to a fundamental insight: For a metapopulation to persist for a long time, the ratio e/c must be less than 1.

Some patches will be occupied as long as the colonization rate is greater than the extinction rate; otherwise, the metapopulation will collapse and all populations in it will become extinct.

74

Page 75: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

It led to research on key issues: How to estimate factors that influence

patch colonization and extinction. Importance of the spatial arrangement of

suitable patches. Extent to which the landscape between

habitat patches affects dispersal. How to determine whether empty patches

are suitable habitat or not.

75

Page 76: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Habitat fragmentation —large tracts of habitat are converted to spatially isolated habitat fragments by human activities, resulting in a metapopulation structure.

Patches may become ever smaller and more isolated, reducing colonization rate and increasing extinction rate. The e/c ratio increases.

76

Page 77: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

If too much habitat is removed, e/c may shift to >1, and the metapopulation may go extinct, even if some suitable habitat remains.

77

Page 78: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

In studies of the northern spotted owl in old-growth forests in the Pacific Northwest, Lande (1988) estimated that the entire metapopulation would collapse if logging were to reduce the fraction of suitable patches to less than 20%.

78

Page 79: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.17 The Northern Spotted Owl

79

The northern spotted owl thrives in old-growth forests of the Pacific north-west, such forests include those that have never been cut, or have not been cut for 200 years or more.

Page 80: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Real metapopulations often violate the assumptions of the Levins model.

Patches may vary in population size and ease of colonization; extinction and colonization rates can vary greatly among patches.

These rates can also be influenced by nonrandom environmental factors.

80

Page 81: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Research on the skipper butterfly in grazed calcareous grasslands in the U.K. highlighted two important features of many metapopulations: Isolation by distance. The effect of patch area (or population

size—small patches tend to have small population sizes).

81

Page 82: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Isolation by distance—patches that are located far from occupied patches are less like to be colonized than near patches.

Patch area: Small patches may be harder to find, and also have higher extinction rates.

82

Page 83: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.18 Colonization in a Butterfly Metapopulation83

Patches that had the largest area and were closes to occupied patches were most likely to be colonized.

Page 84: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Isolation by distance can affect chance of extinction—a patch that is near an occupied patch may receive immigrants repeatedly, making extinction less likely.

High rates of immigration to protect a population from extinction is known as the rescue effect.

84

Page 85: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

The pool frog is found in about 60 ponds along the Baltic coast in Sweden.

Research to determine why pool frogs are not found in all ponds within its range included measurement of several environmental variables.

85

Page 86: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.19 A Frog Metapopulation (Part 1)86

Within the geographic range of the pool frog, different ponds are occupied by the species at different times. This map shows the results of three survey, in 1962, 1983, and 1987.

Page 87: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.19 A Frog Metapopulation (Part 2)87

Page 88: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Several factors influenced the metapopulation: Ponds far away from occupied ponds

experienced low colonization rates and high extinction rates.

Pond temperature—warmer ponds were more likely to be colonized successfully because breeding success was greater in them.

88

Page 89: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Metapopulations

Spatial patterns suggested long-term environmental changes are important. Uplifting of the land surface following

deglaciation results in new land areas emerging from the sea, and small bays become ponds.

Over time, the small ponds gradually fill in and disappear.

89

Page 90: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.20 Uplifting Shapes the Pool Frog Metapopulation90

The elevation of Sweden's Baltic coast is rising at a rate of about 60-80 cm per century.

As new areas of land emerge from the sea, ponds form in low-lying areas and are colonized by pool frogs.

Over time, the smallest and shallow ponds disappear as they fill with silt and are colonized by land plants. The frog populations in those ponds go extinct.

The remaining ponds become more isolated, and the frog populations in those ponds go extinct.

Page 91: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study Revisited: A Sea in Trouble

Recovery of the Black Sea ecosystem was underway by 1999.

Nutrient inputs were being reduced by national and international efforts: Phosphate concentration decreased, phytoplankton biomass decreased, water clarity increased.

91

Page 92: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study Revisited: A Sea in Trouble

Mnemiopsis was still a problem, but in 1997 another comb jelly arrived, Beroe, which feeds almost exclusively on Mnemiopsis.

Within 2 years of Beroe’s arrival, Mnemiopsis numbers plummeted.

92

Page 93: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Figure 10.21 Invader versus Invader

93

Another invasive comb jelly species, the predator Beroe, brought Mnemiopsis under control, thus contributing to the recovery of the Black Sea ecosystem.

Page 94: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Case Study Revisited: A Sea in Trouble

The Mnemiopsis decline led to a rebound in zooplankton abundance and increases in the population sizes of several native jellyfish species.

There was also an increase in the anchovy catch and field counts of anchovy egg densities.

94

Page 95: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Connections in Nature: From Bottom to Top, and Back Again

The fall and rise of the Black Sea ecosystem illustrates two important types of causation in ecological communities: Bottom-up control —increased nutrient

inputs caused eutrophication and increased phytoplankton biomass, decreased oxygen, fish die-offs, etc.

Top-down control—the top predators Mnemiopsis and Beroe altered key features of the ecosystem.

95

Page 96: Chap.10 Population Dynamics 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態研究所 + 生態旅遊研究所

Ayo NUTN website:http://myweb.nutn.edu.tw/~hycheng/

問題與討論