Chap_1_Static Optimization_1.1_2014.ppt

Embed Size (px)

Citation preview

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    1/57

    OPTIMAL CONTROL

    Chapter_1 Static Optimization

    1.1 Optimization Without Constraints, 11.2 Optimization With Equality Constraints, 5

    1.3 Numerical Solution Methos, 21

    !asics " 2,3#$%lots

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    2/57

    The goals of this course are to epose the stu!ents to the mathematical tools ofparametric an! !"namic optimization an! their uses in !esigning optimall"#eha$ing !"namic s"stems% The nonlinear s"stems course co$ers the follo&ingtopics'1. Static Optimization

    2.& Optimal Control o' #iscrete$(ime Systems

    2.1 )inear *uaratic +eulator

    2.2 Steay$State Close$loop Control o' Su-$Optimal ee-ac/

    2.3 (he (rac/in %ro-lem

    2.0 +eulator ith unction o' inal State ie

    3.& Optimal Control o' Continuous$(ime Systems

    3.1 )inear *uaratic +eulator

    3.2 Steay$State Close$loop Control o' Su-$Optimal ee-ac/

    3.3 (he (rac/in %ro-lem3.0 +eulator ith unction o' inal State ie

    3.5 inal$(ime$ree %ro-lem

    3. Constraine 4nput %ro-lem

    0.& #ynamic %rorammin0.1 #iscrete$(ime

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    3/57

    4ntrouctionThe state fee!#ac( an! o#ser$er !esign approach is a fun!amental tool in thecontrol of state e)uation s"stems% *o&e$er+ it is not al&a"s the most usefulmetho!% Three o#$ious !ifficulties are'

    , The translation from !esign specifications -maimum !esire!o$er an! un!ershoot+ settling time+ etc%. to !esire! poles is notal&a"s !irect+ particularl" for comple s"stems/ &hat is the #estpole configuration for the gi$en specifications0, In MIMO s"stems the state fee!#ac( gains that achie$e a gi$enpole configuration is not uni)ue% hat is the #est 2 for a gi$enpole configuration0, The eigen$alues of the o#ser$er shoul! #e chosen faster than

    those of the close!3loop s"stem% Is there an" other criteriona$aila#le to help !eci!e one configuration o$er another0

    The metho!s that &e &ill no& intro!uce gi$e ans&ers to these

    )uestions% e &ill see ho& the state fee!#ac( an! o#ser$er gainscan #e 'oun in an optimal ay.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    4/57

    (he !asic Optimal Control %ro-lem

    hat !oes optimal mean0 Optimal means !oing a 4o# in the #estpossi#le &a"% *o&e$er+ #efore starting a search for an optimalsolution+

    , theo-must #e !efine!, a mathematical scale must #e esta#lishe! to )uantif" &hat

    &e mean #" -est, the possi-lealternati$es must #e spelle! out%

    5nless these )ualifiers are clear an! consistent+ a claim that as"stem is optimal is reall" meaningless%

    A cru!e+ inaccurate s"stem might #e consi!ere! optimal #ecauseit is inepensi$e+ is eas" to fa#ricate+ an! gi$es a!e)uateperformance%

    Con$ersel"+ a $er" precise an! elegant s"stem coul! #e re4ecte!as non3optimal #ecause it is too epensi$e or it is too hea$" or

    &oul! ta(e too long to !e$elop%

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    5/57

    6urther+ the control as &ell as the state $aria#les are generall"su#4ect to constraints+ &hich ma(e man" pro#lems in optimal

    control non3classical+ since pro#lems &ith path constraints canhar!l" #e han!le! in the classical calculus of $ariations%

    That is+ the pro#lem of optimal control can then #e state! as'7etermine the control signals that &ill cause a s"stem to satisf"the ph"sical constraints an!+ at the same time+ minimize -ormaimize. some performance criterion%%

    7espite its successes+ ho&e$er+ optimal control theor" is #" nomeans complete+ especiall" &hen it comes to the )uestion of&hether an optimal control eists for a gi$en pro#lems%

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    6/57

    S(6(4C 7E+S8S #9N6M4C O%(4M4:6(4ON;

    Optimization < is the process o' minimizin ormaimizing the costs8#enefits of some action%

    Static Optimization < re'ers to the process o'

    minimizing or maimizing the costs8#enefits of some o#4ecti$efunction for one instant in time onl"%

    #ynamic Optimization < re'ers to the process o'

    minimizing or maimizing the costs8#enefits of some o#4ecti$e

    function o$er a perio! of time% Sometimes calle! optimal control%

    In #oth cases e)ualit" an! ine)ualit" constraints can #e enforce!%

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    7/57

    1% Static Optimization is concerne! &ith controlling a plantun!er stea!" state con!itions+ i%e%+ the s"stem $aria#les are not

    changing &ith respect to time% The plant is then !escri#e! #"alge#raic e)uations% Techni)ues use! are or!inar" calculus+Lagrange multipliers+ linear an! nonlinear programming%

    9% 7"namic Optimization concerns &ith the optimal control ofplants un!er !"namic con!itions+ i%e%+ the s"stem $aria#les arechanging &ith respect to time an! thus the time is in$ol$e! ins"stem !escription% Then the plant is !escri#e! #" !ifferential -or!ifference. e)uations% Techni)ues use! are search techni)ues+!"namic programming an! $ariational calculus%

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    8/57

    Static Optimization #ynamic Optimization

    Optimal state+ :+ an! control

    +u:+ are fie!+ i%e%+ the" !o notchange o$er time -for oneinstant in time onl".

    ; Optimal state an! control $ar"

    o$er time -o$er a perio! oftime.% Some times calle!optimal control%

    ,

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    9/57

    1.1 Optimization Without Constraint

    , Pro#lem' ; A scalarperformance index L-u. is gi$en that is afunction of a control or decision vector u; e &ant to'

    Min )>u?

    , Solution' L-u du . = L-u. dL (increment)

    3Ta"lor epansion to 9nd or!er in !u

    &ith gra!ient $ector Luan! cur$ature matri Luu

    3Stationar" point u:0

    dL = B to1st or!er term for ar#itrar" du

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    10/57

    The eponential function -in #lue.+ an! the sum of thefirst n1 terms of its Ta"lor series at B -in re!.%

    (aylor seriesis a representation of afunction as an infinite

    sum of terms calculate!from the $alues of its!eri$ati$es at a singlepoint%

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    11/57

    (aylor series

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    12/57

    Plot of f-x. = sin-9x. from 8D to E8D/ note fFs secon! !eri$ati$eis f-x. = ;Dsin-9x.% Tangent is #lue &here cur$e is conca$e up-a#o$e its o&n tangent.+ green &here conca$e !o&n -#elo& itstangent.+ an! re!at inflection points' B+ 89 an!

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    13/57

    http://mathforum.org/mathimages/index.php/Image:Taylor_Main.gif
  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    14/57

    G

    !t!

    http://mathforum.org/mathimages/index.php/Image:TwoApproximations.gifhttp://mathforum.org/mathimages/index.php/Image:TwoApproximations.gifhttp://mathforum.org/mathimages/index.php/Image:TwoApproximations.gifhttp://mathforum.org/mathimages/index.php/Image:Taylor_Main.gifhttp://en.wikipedia.org/wiki/File:Animated_illustration_of_inflection_point.gif
  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    15/57

    , Hraphical Interpretation of solution

    http://en.wikipedia.org/wiki/File:Animated_illustration_of_inflection_point.gifhttp://en.wikipedia.org/wiki/File:Animated_illustration_of_inflection_point.gif
  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    16/57

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    17/57

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    18/57

    A !iti f : t # i i f J- :. B ll !

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    19/57

    , A necessar" con!ition for : to #e a maimum is f J-:. = B+ calle!such an : a critical point%

    , A sufficient con!itionfor : to #e a maimum is that it is a critical

    point an! f JJ-:. K B %

    That is+ if : satisfies #oth e)uations+ then it must #e a maimum%The con!ition is also calle! a secon!3or!er con!ition%

    The height of the function at a isgreater than -or e)ual to. the heightan"&here else in that inter$al%

    Or+ more #riefl"' f-a. f-. for all inthe inter$al In other &or!s+ there isno height greater than f-a.%

    Note' f-a. shoul! #e insi!e theinter$al+ not at one en! or the other%

    C t

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    20/57

    Comments', f ma" ha$e man" critical points% The sufficient con!itions helpsus pic( the maimum out of the set of all critical points%, oth con!itions onl" esta#lish that : is a local ma% That is+

    there is no point close to : that has a higher f3$alue% ut therema" #e other points not close to : that !o% In that case theremust #e multiple points fulfilling #oth con!itions an! &e simpl"calculate &hich of these has the highest f3$alue%

    , If f is strictl" conca$e+ there is onl" one critical point an! thismust #e the glo#al ma% The reason is that f JJ-. K B e$er"&here-that is &hat it means to #e strictl" conca$e.% Thus+ there can onl"#e one point &here f J-. = B an! that satisfies the sufficientcon!ition automaticall"%

    @ l Th f ti http 88en i(ipe!ia org8 i(i8Ma ima an! minima

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    21/57

    @amples' The function

    , 9has a uni)ue glo#al minimum at = B%, has no glo#al minima or maima% Although the first!eri$ati$e -9. is B at = B+ this is an inflection point%,

    has a uni)ue glo#al maimum at = e figure%, 3has a uni)ue glo#al maimum o$er the positi$e realnum#ers at = 18e%, 8 has first !eri$ati$e 9 1 an! secon! !eri$ati$e 9%

    Setting the first !eri$ati$e to B an! sol$ing for gi$esstationar" points at 1 an! 1% 6rom the sign of the secon!!eri$ati$e &e can see that 1 is a local maimum an! 1 is

    a local minimum% Note that this function has no glo#almaimum or minimum%

    http'88en%&i(ipe!ia%org8&i(i8Maima_an!_minima

    C t l Th 6 ti

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    22/57

    Cont% eamples' The 6unction, QQ has a glo#al minimum at =B that cannot #e foun! #"ta(ing !eri$ati$es+ #ecause the !eri$ati$e !oes not eist at =B%, cos-.has infinitel" man" glo#al maima at B+ 9+ D+ +

    an! infinitel" man" glo#al minima at + + %, 9 cos-. has infinitel" man" local maima an! minima+ #ut

    no glo#al maimum or minimum%, cos-.8 &ith B%11%1 has a glo#al maimum at

    =B%1 -a #oun!ar".+ a glo#al minimum near =B%+ a localmaimum near = B%U+ an! a local minimum near =1%B%

    , 991 !efine! o$er the close! inter$al -segment.>D+9? has a local maimum at = 1VEW+ a local

    minimum at = 1VEW+ a glo#al maimum at = 9 an! a glo#al

    minimum at = D%

    C t

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    23/57

    The #ottom part of the !iagram sho&s some contour lines &ith astraight line running through the location of the maimum $alue%The cur$e at the top represents the $alues along that straight line

    hen the lines areclose together themagnitu!e of thegra!ient is large' the$ariation is steep%

    Contour

    Contour

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    24/57

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    25/57

    Minimize an A#solute Criterion

    http://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svg
  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    26/57

    Minimize an A#solute Criterion

    , Achie$e a specific o#4ecti$e; Minimum time; Minimum fuel

    ; Minimum financial cost, to achie$e a goal

    6or a continuous3time linear s"stem+ !efine! on + !escri#e! #"

    &ith a )ua!ratic cost function !efine! as

    http://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svghttp://en.wikipedia.org/wiki/File:Courbe_niveau.svg
  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    27/57

    @ample

    Slope #ecomes gra!ient $ector'

    http://en.wikipedia.org/wiki/File:Singularptfn.JPGhttp://en.wikipedia.org/wiki/Partial_derivativehttp://en.wikipedia.org/wiki/Differential_calculus
  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    28/57

    3Slope #ecomes gra!ient $ector'

    3 9n! or!er !eri$ati$e #ecomes *essian -or cur$ature matri.'

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    29/57

    , 6urther @tension' $ector function of $ector

    3 SlopeY of '-u. &ith respect to u is a

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    30/57

    3Meaning of matri LuuZB or KB0

    & positi$e !efinite -&$%. if x#&x K B x [ B

    & negati$e !efinite -&'%. if

    & positi$e semi!efinite -& B. ifx#&x B x [ B

    & in!efinite ifx#&x Z B for somex [ B an!x#&x K B for somex [ B

    & negati$e semi!efinite -& B. ifx#&x B x [ B

    -Appen!i A%.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    31/57

    3Testing Positi$e8Negati$e 7efinitenessMetho! 31% " @igen$alues ]iof &

    & positi$e !efinite -&$%. if all Z B+ i =1+L+n ]

    & negati$e !efinite -&'%. if - B. if all B+ i 1+ + n & positi$esemi!efinite & ]i = L

    B an! some B+ i 1+ +n i L = K Z ] ] i & in!efinite if some& negati$e semi!efinitex#&x Z B x [ B

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    32/57

    Metho! 39% " 7eterminant

    : Testing positi$e8negati$e3!efinitenessO#tain lea!ing minors of

    &'

    , Testing semi3positi$e8negati$e3!efiniteness ' O#tain Principal

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    33/57

    ,Testing semi3positi$e8negati$e3!efiniteness ' O#tain Principalminor of &'

    * & is in!efinite if none of the a#o$e cases are satisfie!

    Some sef l Matri Calc l s form la -Appen!i A D.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    34/57

    , Some useful Matri Calculus formula -Appen!i A%D.

    , If & is s"mmetric

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    35/57

    , If & is s"mmetric

    ; Some useful *essians

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    36/57

    Some useful *essians

    , If & is s"mmetric

    I : 8 i i t f L( ) 0

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    37/57

    3Is u: ma8min point of L(u) 0

    dL at stationar" point u* ecomes

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    38/57

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    39/57

    ; Optimize! $alue of performance in!e'

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    40/57

    : Stationar" point

    Plug in the a#o$e e)uation

    Example 1.1-2: Optimization by Scalar Manipulations

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    41/57

    e ha$e !iscusse! optimization in terms of $ectors an! the gra!ient% As an alternati$eapproach+ &e coul! !eal entirel" in terms of scalar )uantities%

    6in! L-1+31. 0

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    42/57

    efore start

    section 1%9

    *o& to !ra&mesh+ contoursplots

    G an! ^ arra"s for 37 plots

    G an! ^ arra"s for 37 plots

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    43/57

    f -+". = 9 "9% Then an eas" calculation sho&s that f -9+ 1. = E%Therefore+ -9+ 1+ E. is an or!ere! triple that lies on the graph of f %This point is sho&n in 6igure%

    6igure Point -9+ 1+ E. is on the graph of f %To plot the graph of f -. = 9in the plane+ &e #egin #" ma(ing ata#le of points that satisf" the e)uation+ as sho&n in Ta#le

    Ta#le A ta#le of points satisf"ing f (x) " x+

    transforms the !omain specifie! #" $ectors an! " into arra"s Gan! ^ that can #e use! for the e$aluation of functions of t&o$aria#les an! 37 surface plots

    6or creating a ta#le of points that satisf" the e)uation f -+". = 9 "9% Matla#

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    44/57

    Outputis easil" un!erstoo! if one superimposes the matri ^ onto the matri G to o#taina gri! of or!ere! pairs%

    g p " ) - ". "accomplishes this &ith the meshgri! comman!%ZZ >G+^?=meshgri!->1+9++D+E?.

    Therefore+ Ta#le contains a set of points in the plane that &e &ill su#stitute into thefunction f (x,y) " xy+ Matla#Fs arra" smart operators ma(e this an eas" proposition%

    The ro&s of the output arra" G are copies of the $ector an! the columns of the outputarra" ^ are copies of the $ector "%

    ZZ >G+^?=meshgri!->1+9++D+E?.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    45/57

    ZZ =G%`9 % 9

    It is no& an eas" tas( to plot the surface to &hich these points #elong%

    ZZ mesh-G+^+.

    6igure ' Plotting the surfacef (x,y) "x y+

    ZZ =3'

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    46/57

    = 3 39 31 B 1 9

    ZZ "=3'" = 3 39 31 B 1 9

    ZZ >G+^?=meshgri!-+".

    ZZ =G%`9 % 9

    ZZ mesh-G+^+.

    1

    1

    1

    1

    The surface - " x y on t.e domain

    The plot of z = x2+ y2.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    47/57

    ZZ =3'%9'/ZZ "=3'%9'/ZZ >G+^?=meshgri!-+"./ZZ =G%b9^%b9/

    ZZ mesh-G+ +.ZZ la#el-3aisF.ZZ "la#el-"3aisF.ZZ zla#el-z3aisF.ZZ title-The plot of z = b9 "b9%F.

    -4

    -2

    02

    4

    -4

    -2

    0

    2

    40

    5

    10

    15

    20

    x-axisy-axis

    z-axis

    close all1 1 1

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    48/57

    "=31'%1'1/z=31'%1'1/>""+zz?=meshgri!-"+z./=zz%b/mesh-+""+zz./la#el-d3aisd."la#el-d"3aisd.zla#el-dz3aisd.title-dThe plot of G = b9$ie&->1B+DB?.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    49/57

    efore start section 1%9

    Sol$e section'1%1 @amplesan!

    @n! Chapter Pro#lems ofsection 1%1

    @ample -Not in #oo(.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    50/57

    s"ms "

    f=b"b:b93:"b93

    f=!iff-f+./

    f"=!iff-f+"./

    s=sol$e-f+f"./

    >s%+s%"?

    p - .

    Ma Min0

    Classification of critical points

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    51/57

    Classification of critical points

    alue of f-+". at critical pointsf-B+B.=3 f-39+B.=-3.B19B3=3D

    f-39+9.= 3193193=3 f-B+9.= BB3193=19

    Luu=BI7

    LuuKB7

    LuuZB37

    Mesh Surface

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    52/57

    >+"?=meshgri!-3'%9'./z=%b"%b:%b93:"%b93/mesh-+"+z.la#el-3ais."la#el-"3ais.

    7ifficult to$ie& MeshSurface

    Contour map

    >+"?=meshgri!-3'%9'./z=%b"%b:%b93:"%b93/contour-+"+z.la#el( x-axis )ylabel( y-axis )

    -4

    -2

    0

    2

    4

    -4

    -2

    0

    2

    4-100

    -50

    0

    50

    -3 -2 -1 0 1 2 3-3

    -2

    -1

    0

    1

    2

    3

    >+"?=meshgri!-3'%9'./ 3

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    53/57

    > "? g - .z=%b"%b:%b93:"%b93/contour-+"+z+9B.la#el- 3ais .

    "la#el- "3ais .

    >+"?=meshgri!-3'%9'./z=%b"%b:%b93:"%b93/>c+h?=contour-+"+z+31D'3D./

    cla#el-c+h.la#el- 3ais ."la#el- "3ais .

    -3 -2 -1 0 1 2 3-3

    -2

    -1

    0

    1

    2

    x-axis

    y-ax

    is

    -3 -2 -1 0 1 2 3

    -3

    -2

    -1

    0

    1

    2

    3

    Slop 00

    Approach from an"!irection "ou are

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    54/57

    x-axis

    y-ax

    is

    -3 -2 -1 0 1 2 3-3

    -2

    -1

    0

    1

    2

    3

    Approach from an"!irection "ou are &al(ing

    uphill crossing contour at3+3U+3E an! finall" local

    maimum at -39+B.

    !irection "ou are&al(ing !o&nhill

    crossing contour at3+3+311 an! finall" local

    minimum at -B+9.

    If "ou mo$e from point -B+B.or -39+9. in an" one !irection

    the height of the contour

    increases an! !ecreases if"ou mo$e in opposite!irection

    Xuestion'9 Assignment

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    55/57

    6in! the minimum $alue of L-1+9.=19319991/ let = L-+".=93""9

    s"ms "f=%b93:""%b9:/

    f=!iff-f+./

    f"=!iff-f+"./

    s=sol$e-f+f"./

    >s%+s%"?

    >+"?=meshgri!-3'%9'./

    f=%b93:""%b9:/mesh-+"+f.la#el-3ais."la#el-"3ais.

    >+"?=meshgri!-3'%9'./

    f=%b93:""%b9:/contour-+"+f.la#el( x-axis )ylabel( y-axis )

    >+"?=meshgri!-3'%9'./f=%b93:""%b9:/>c+h?=contour-+"+f+31D'3D./cla#el-c+h.la#el- 3ais .

    "la#el- "3ais .

    >+"?=meshgri!-3'%9'./f=%b93:""%b9://contour-+"+f+EB.la#el- 3ais ."la#el- "3ais .

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    56/57

    >+"?=meshgri!-3'%9'./z=%b"%b:%b93:"%b93/u = z-+"./)ui$er-+"+u. / gri! on/ ais e)ual

    Chec( for )ui$er-+"+u.

    ANIMATION _ +"?=meshgri!-3'%9'./f=%b93:""%b9://contour-+"+f+EB.

    la#el- 3ais ."la#el- "3ais .

    Pro#lem 1%93D -oo(.

  • 8/9/2019 Chap_1_Static Optimization_1.1_2014.ppt

    57/57

    s"ms " l

    f=b9:3U3"/