16
Nano & Flexible Device Materials Lab. 1 1 Chapter 1. Thermodynamics and Phase Diagrams Young- Chang Joo Nano Flexible Device Materials lab Seoul National University Phase Transformation in Materials

Chapter 1. Thermodynamics and Phase Diagramsocw.snu.ac.kr/sites/default/files/NOTE/Wk1_2Chapter 1... · 2020. 1. 9. · Nano & Flexible 1 Device Materials Lab. Chapter 1. Thermodynamics

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • Nano & Flexible

    Device Materials Lab.111

    Chapter 1.

    Thermodynamics and Phase Diagrams

    Young- Chang Joo

    Nano Flexible Device Materials lab

    Seoul National University

    Phase Transformation in Materials

  • Nano & Flexible

    Device Materials Lab.222

    Contents

    Equilibrium

    Single Component Systems– Gibbs Free Energy as a Function of Temperature

    – The Driving Force for Solidification

    Binary Solutions– Gibbs Free Energy of Binary Solutions

    – Ideal Solutions

    – Chemical Potential

    – Regular Solutions, Activity

    – Real Solutions

    Interface Effect (Size Effect)

    Phase Transformation in Materials

  • Nano & Flexible

    Device Materials Lab.333

    1.1. Equilibrium

    System

    – An alloy that can exist as a mixture of one or more

    phase

    Phase

    – A portion of the system whose properties and

    composition are homogeneous

    Component

    – Different elements or chemical compounds which

    make up the system

    Phase Transformation in Materials

  • Nano & Flexible

    Device Materials Lab.444

    1.1. Equilibrium

    Phase Transformation :

    how one or more phase is an alloy(system) change

    into a new or mixture of phase

    Why? Initial state is unstable

    Phase Transformation in Materials

  • Nano & Flexible

    Device Materials Lab.555

    1.1. Equilibrium

    Phase Transformation in Materials

    Gibbs free energy, G

    G = H - TS

    H (enthalpy) = E + PV

    S (entropy)

    Internal energy (=kinetic energy + potential energy)

    For condensed phase (liquid or solid), usually small

  • Nano & Flexible

    Device Materials Lab.666

    1.1. Equilibrium

    Phase Transformation in Materials

    Gibbs free energy, G

    dG = 0 Stable equil.

    Metastable equil.

    UnstabledG ≠ 0

    • Kinetics : How fast does a phase transformation occurs

  • Nano & Flexible

    Device Materials Lab.777

    1.2.1. Gibbs free E. as a function of temperature

    Phase Transformation in Materials

    𝐶𝑝 =𝜕𝐻

    𝜕𝑇𝑝

    𝐻 = න298

    𝑇

    𝐶𝑝 𝑑𝑇

    𝐶𝑝

    𝑇=

    𝜕𝑆

    𝜕𝑇𝑝

    𝑆 = න0

    𝑇𝐶𝑝

    𝑇𝑑𝑇

    Enthalpy, Entropy vs. Temperature

  • Nano & Flexible

    Device Materials Lab.888

    Variation of Gibbs free energy with temperature

    Phase Transformation in Materials

    1.2.1 Single component system

    𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃as pressure const. dP=0

    𝜕𝐺

    𝜕𝑇𝑃

    = −𝑆

    𝐺 = 𝐻 − 𝑇𝑆

  • Nano & Flexible

    Device Materials Lab.999

    1.2 Liquid and Solid Phase

    Phase Transformation in Materials

    𝐺 = 𝐻 − 𝑇𝑆𝐻𝐿

    𝐻𝑆

    TS

    H : liquid > solid

    S : liquid > solid

  • Nano & Flexible

    Device Materials Lab.101010

    1.2 Liquid and Solid Phase

    Phase Transformation in Materials

    𝐻𝐿

    𝐻𝑆

    TS

    𝑢𝑝𝑜𝑛 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 ℎ𝑒𝑎𝑡 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑠 …

  • Nano & Flexible

    Device Materials Lab.111111

    1.2.2 Driving Force for Solidification

    Phase transformation deals with ∆𝐺 of two phase of interest at temp

    away from 𝑇𝑒

    Ex) liquid metal under cooled by ∆𝑇 below 𝑇𝑚

    Phase Transformation in Materials

    Δ𝐺 ∶ 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 𝑓𝑜𝑟 𝑠𝑜𝑙𝑖𝑑𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

  • Nano & Flexible

    Device Materials Lab.121212

    1.2.2 Driving Force for Solidification

    Phase Transformation in Materials

    ∆𝐺 = ∆𝐻 − 𝑇∆S

    ∆𝐻 = 𝐻𝐿 −𝐻𝑆

    ∆𝑆 = 𝑆𝐿 − 𝑆𝑆

    at T,

    𝐺𝐿 = 𝐻𝐿 − 𝑇𝑆𝐿

    𝐺𝑆 = 𝐻𝑆 − 𝑇𝑆𝑆

    at 𝑇𝑚 𝐺𝐿 = 𝐺𝑆

    ∆𝐻 = 𝑇𝑚∆𝑆

    ∴ ∆𝐺 = 0

    ∆𝑆 =∆𝐻

    𝑇𝑚=

    𝐿

    𝑇𝑚= 𝑅

    (≈ 8.3 𝐽𝑚𝑜𝑙−1𝐾−1)

    Entropy of fusionFor most metals →Richard’s rule

    (L 과 Tm은 bonding strength와같은경향성!!!)

    ∴ 𝐿 ∝ 𝑇𝑚

  • Nano & Flexible

    Device Materials Lab.131313

    1.2.2 Driving Force for Solidification

    Phase Transformation in Materials

    ∆𝐺 = ∆𝐻 − 𝑇∆S

    ∆𝐻 = 𝐻𝐿 −𝐻𝑆

    ∆𝑆 = 𝑆𝐿 − 𝑆𝑆

    at T,

    For small ∆𝑇, ∆𝐶𝑝(= 𝐶𝑝𝐿 − 𝐶𝑝

    𝑠)~ small

    ∆𝐻, ∆𝑆 ≠ 𝑓𝑛(𝑇) (= const.)

    ∆𝐺 = ∆𝐻 − 𝑇∆𝑆

    𝐿𝐿

    𝑇𝑚

    ∆𝐺 =𝐿∆𝑇

    𝑇𝑚

    = 𝑅∆𝑇

    ∝ ∆𝑇

  • Nano & Flexible

    Device Materials Lab.141414

    1.3 Binary solution

    Phase Transformation in Materials

    Gibbs free E changes as T, P & composition

    𝑋𝐴, 𝑋𝐵: Mole fraction (𝑋𝐴 + 𝑋𝐵 = 1)

  • Nano & Flexible

    Device Materials Lab.151515

    1.3.1 Gibbs Free Energy of Binary solution

    Phase Transformation in Materials

    𝐺1 = 𝐻1 − 𝑇𝑆1

    𝐺2 = 𝐻2 − 𝑇𝑆2⇒

    ∆𝐻𝑚𝑖𝑥 = 𝐻2 − 𝐻1

    ∆𝑆𝑚𝑖𝑥 = 𝑆2 − 𝑆1

    ∆𝐺𝑀 = ∆𝐻𝑀 − 𝑇∆𝑆𝑀

    ∆𝐺𝑚𝑖𝑥

    Heat absorbed or evolved during step 2

    Difference in entropy between mixed & unmixed state

  • Nano & Flexible

    Device Materials Lab.161616

    1.3 Binary solutions

    Ideal solution: ∆𝑯𝒎𝒊𝒙 = 𝟎

    ∆𝑮𝒎𝒊𝒙 = −𝑻∆𝑺𝒎𝒊𝒙

    Regular solution: ∆𝑯𝒎𝒊𝒙 ≠ 𝟎, ∆𝑮𝒎𝒊𝒙 = 𝐢𝐝𝐞𝐚𝐥 𝐬𝐨𝐥

    Quasi-chemical approach

    Real solution

    Phase Transformation in Materials

    ∆𝐺𝑀 = ∆𝐻𝑀 − 𝑇∆𝑆𝑀