27
Dr. Munzer Ebaid Dr. Munzer Ebaid 1 1 Flow in conduits SUMMARY Chapter (10) Dr. MUNZER EBAID MECH. ENG. DEPT.

Chapter (10) · 2013. 11. 6. · Equation (10.22) is called Darcy-Weisbach Equation 64 min :For La ar Flow f = R e 2 0 8 1 = R f − : log( ) . f For Turbulent Flow e. ... The problems

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 11

    Flow in conduits

    SUMMARY

    Chapter (10)

    Dr. MUNZER EBAID

    MECH. ENG. DEPT.

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 22

    Shear Stress and Velocity Distribution across a Pipe Section

    1. Shear Stress distribution is linear.

    2. Velocity distribution is parabolic.

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 33

    The Average Velocity

    Laminar Flow in a Pipe

    The Head Loss

    The Discharge

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 44

    Velocity Distribution in a Smooth Pipe for Turbulent Flow

    Applicable everywhere except near the wall

    Turbulent Flow in a Pipe

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 55

    factorfrictioncalledisfwherefcf 4=

    (m) varies from 1/6-1/10

    Depending on Re

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 66

    Equation (10.22) is called Darcy-Weisbach Equation

    64eRfFlowarLaFor =:min

    8021 .)(log: −= fRf

    FlowTurbulentFor e

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 77

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 88

    ( ) .',,)( usedisdiagramsMoodyinplotD

    KRHenceknownare

    DK

    andVWhen SeS ⎟

    ⎠⎞

    ⎜⎝⎛

    ⎟⎠⎞

    ⎜⎝⎛

    ( ) .',,)()( usedisdiagramsMoodyinplotD

    KfRHenceknownare

    DK

    honlyandknownnotisVWhen SeS

    f ⎟⎠

    ⎞⎜⎝

    ⎛⎟⎠

    ⎞⎜⎝

    Moody’s Diagram

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 99

    Swamee & Jain Formula

    %)(')(

    )(

    3

    1021010104 2583

    bydiagramsMoodyfromcediffererenfD

    KandRFor Se

    −− ×

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1010

    SituationSituation Given ValuesGiven Values Computed Computed

    Values in orderValues in orderValues Values

    read from read from Moody's Moody's diagramdiagram

    Final Value Final Value requiredrequired

    Case (a)Case (a)

    Case (b)Case (b)

    Case (c)Case (c) Assume a value for , Assume a value for , then calculatethen calculate

    Iterative Iterative procedure is procedure is used to computeused to compute

    mLDKS &,,,

    fS hLDK ,,,

    LmhK fS ,,, &

    DK

    RV Se ,,

    2123 2⎟⎠⎞

    ⎜⎝⎛

    LghD

    DK fS

    ν,

    f fh

    QmV && ,,

    DeS RVDK ,,⎟⎠⎞⎜⎝⎛)(D

    eRf ,

    eRf ,

    The problems in the previous slide are summarized in the Table below:

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1111

    Example (10.7)Case (C)To solve for the pipe size, i.e (D), an iterative procedure is followed as follows

    Assume an initial value for (f)

    f D Vk/D Re New (f)Compare (f) with New (f)

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1212

    Explicit Equations for Discharge (Q) and Diameter (D)

    Swamee & Jain Formula

    Streeter & Wile

    mLDKS &,,, To calculateGiven fh

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1313

    Loss Coefficients For Various Transition and Fittings

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1414

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1515

    Transition Losses and Grade Lines Energy Grade Line

    Hydraulic Grade Line

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1616

    Pipe SystemsSimple Pump in a

    Pipe Systems

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1717

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1818

    Pipe in Parallel

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 1919

    Pipe Networks

    S = Sources

    L = Loads

    The requirements of the pipe

    networks design are:

    1. Layout of the pipes.

    1. Pipe sizes.

    2. Future loads.

    For the design of the pipe networks,two conditions must be satisfied:

    1. Continuity must be satisfied.2. Head loss between any two junctions must

    be the same.

    DCACBCAB

    DCACBCAB

    hhhhConditionQQQQCondition

    +=++=+

    :)(:)(

    21

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2020

    Uniform Free – Surface Flows

    500eRFlowTurbulentFor :

    2000/4=500

    3000/4=750

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2121

    Rock – Bedded Channels

    Example (10.16)

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2222

    The Chezy Equation and Manning Equation

    Manning Eqn.(SI units)

    n= The Manning’s Number

    Chezy Equation

    Manning Eqn.(Imperial units)

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2323

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2424

    Best Hydraulic Section

    The best hydraulic section is the channel proportion that yields a minimum wetted perimeter for a given cross section, hence a large discharge.

    factortionthecalledisPAAARtermThe h sec

    3232 ⎟

    ⎠⎞

    ⎜⎝⎛=

    PQandAQthatseenbecanIt 1αα(

    For a given channel (hence resistance) and a slope

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2525

    Best Hydraulic Section

    1. Trapezoidal channel=1/2 a hexagon

    2. Circular channel=1/2 a Circle

    3. Triangular channel=1/2 a square

    Uniform Flow in Culverts and Sewers

    Conditions for Design of Sewers:

    1. Maximum flow condition.

    2. Minimum velocity = 2 ft/s (0.60 m/s).

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2626

    Uniform Flow in Culverts

    A Culvert is a conduit placed under a fill such as highway embracement. It is used to convey stream flow from uphill side of the fill to the downhill side.

  • Dr. Munzer Ebaid Dr. Munzer Ebaid 2727

    END OF SUMMARY