229
Chapter 12 Coordination Compound

Chapter 12 Coordination Compound Main topics: Fundamental Concepts of CC Crystal Field Theory of CC Valence Bond Theory of CC Coordination compounds(or

Embed Size (px)

Citation preview

Page 1: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Chapter 12

Coordination Compound

Page 2: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Main topics: Fundamental Concepts of CC

Crystal Field Theory of CC

Valence Bond Theory of CC

Coordination compounds(or complexs) are closely related to the

chemistry of transition metals

Page 3: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Why Study chemistry of complex Transition metals are found in nature

– Rocks and minerals contain transition metals– The color of many gemstones is due to the presence

of transition metal ions• Rubies(红宝石 ) are red due to Cr(chromium)

• Sapphires(蓝宝石 ) are blue due to Fe and Ti(titanium)

– Many biomolecules contain transition metals that are involved in the functions of these biomolecules

• Vitamin B12 contains Co(cobalt)

• Hemoglobin, myoglobin, and cytochrome C contain Fe

Page 4: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Colour of transition metal complexes

Ruby

Corundum

Al2O3 with Cr3+ impurities

Sapphire

Corundum

Al2O3 with Fe2+ and Ti4+ impurities

Emerald

Beryl

AlSiO3 containing Be with Cr3+ impurities

octahedral metal centre

coordination number 6

Page 5: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Transition metals and their compounds have many useful applications– Fe is used to make steel and stainless steel

– Ti is used to make lightweight alloys

– Transition metal compounds are used as pigments

• TiO2 = white

• PbCrO4 = yellow

• Fe4[Fe(CN)6]3 (prussian blue, 普鲁士蓝 )= blue

– Transition metal compounds are used in many industrial processes

Why Study chemistry of complex

Page 6: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

To understand the uses and applications

of transition metals and their

compounds, we need to understand their

chemistry.

Our focus will be on the 4th period

transition elements.

Why Study chemistry of complex

Page 7: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Fig. 23.1

Page 8: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Fig. 23.3

Page 9: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Fig. 23.4

Page 10: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

f block transition elements

d block transition elements

Periodic Table

Page 11: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

General Properties– Have typical metallic properties– Not as reactive as Grp. IA, IIA metals– Have high MP’s, high BP’s, high density,

and are hard and strong– Have 1 or 2 s electrons in valence shell– Differ in # d electrons in n-1 energy level– Exhibit multiple oxidation states

Transition Metals

Page 12: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Sc Ti V Cr Mn Fe Co Ni Cu Zn

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

La Hf Ta W Re Os Ir Pt Au Hg

IIIB IVB VB VIB VIIB IB IIBVIIIB

d-Block Transition Elements

Most have partially occupied d subshells in common oxidation states

Page 13: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Electronic Configurations

Sc [Ar]3d14s2

Ti [Ar]3d24s2

V [Ar]3d34s2

Cr [Ar]3d54s1

Mn [Ar]3d54s2

Element Configuration

[Ar] = 1s22s22p63s23p6

Page 14: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

(p. 1012)

Page 15: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Aqueous Oxoanions of V, Cr, and Mn in their Highest Oxidation States

Fig 23.5

Page 16: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Fe [Ar] 3d64s2

Co [Ar] 3d74s2

Ni [Ar] 3d84s2

Cu [Ar]3d104s1

Zn [Ar]3d104s2

Element Configuration

[Ar] = 1s22s22p63s23p6

Electronic Configurations

Page 17: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Transition Metals

• Characteristics due to d electrons:– Exhibit multiple oxidation states– Compounds typically have color– Exhibit interesting magnetic properties

• Paramagnetism(顺磁性 )• Ferromagnetism(铁磁性 )

Page 18: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

3/7/01 Ch. 24 11

Oxidation States of Transition Elements

+3+3+3+3+3+3+3+3+3

+7

+6+6+6

+5+5+5+5

+4+4+4+4+4+4

+2+2+2+2+2+2+2+2+2

+1+1

ZnCuNiCoFeMnCrVTiSc

loss of ns e-sloss of ns and (n-1)d e-s

Page 19: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Electronic configuration of Fe2+

Electronic Configurations of Transition Metal Ions

valence ns e-’s removed first

Fe – 2e- Fe2+

[Ar]3d64s2 [Ar]3d6

Page 20: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Electronic configuration of Fe3+

Fe – 3e- Fe3+

[Ar]3d64s2 [Ar]3d5

valence ns e-’s removed first, then n-1 d e-’s

Electronic configuration of Co3+

Co – 3e- Co3+

[Ar]3d74s2 [Ar]3d6

valence ns e-’s removed first, then n-1 d e-’s

Page 21: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

A Brief Review for Concepts of acids and bases

Historically, chemists have sought to relate the properties of acids and bases to their compositions and molecular structures.

Page 22: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

■ Arrhenius concept of acids and bases — In the 1880s the Swedish chemist Svante Arrhenius(1859-1927, 1903 Nobel Prize in

chemistry) linked acid behavior with the presence of H+ ions and base behavior with the presence of OH-

(hydroxyl ion ) ions in aqueous solution. He defined acids as substances that produce H+ ions in water, and base as substances that produce OH- ions in water. Over time his concept of acids and bases came to be stated in the following way: Acids are substances that, when dissolved in water, increase the concentration of H+ ions. Likewise, bases are substances that, when dissolved in water, increase the concentration of OH- ions.

                                             

Page 23: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

■ Bronsted concept of acids and bases — In the 1923 Danish chemist Johannes Bronsted (1879-1947) and English chemist Thomas Lowry (1874-1936) proposed a more general definition of acids and bases. Their concept is based on the fact that acid-base reactions involve the transfer of H+ ions from one substance to another.Bronsted and Lowry proposed that acids and bases be defin- ed in terms of their ability to transfer protons. Their definition is: an acid is a substance(molecule or ion) that can transfer a proton to another sub- stance. Likewise, a base is a substance that can accept a proton.

Page 24: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

■ Lewis(1875-1946) concept of acids and bases — For a substance to be a proton acceptor(a Bronsted-Lowry base), that substance must possess an unshared pair of electrons for binding the proton. For example, NH3

(ammonia)acts as a proton acceptor when it reacts with H+ to form NH4

+ (ammonium ion). G.N. Lewis was the first to notice this aspect of acid-base reactions. He proposed a definition of acid and base that emphasizes the shared electron pair. A Lewis acid is defined as an electron-pair acceptor, and a Lewis base is defined as an electron-pair donor. The Lewis definition therefore greatly increases the number of species that can be considered acids.

Page 25: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

     Transition metals act as Lewis acids• Form complexes/complex ions

Fe3+(aq) + 6CN-(aq) Fe(CN)63-(aq)

Ni2+(aq) + 6NH3(aq) Ni(NH3)62+(aq)

Complex contains central metal ion bonded to one or Complex contains central metal ion bonded to one or more molecules or anionsmore molecules or anions

Lewis acid = metal = center of coordinationLewis acid = metal = center of coordination

Lewis base = ligand = molecules/ions covalently Lewis base = ligand = molecules/ions covalently bonded to metal in complexbonded to metal in complex

Lewis acid Lewis base Complex ion

Lewis acid Lewis base Complex ion

Page 26: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Transition metals act as Lewis acids

• Form complexes/complex ions

Fe3+(aq) + 6CN-(aq) [Fe(CN)6]3-(aq)

Ni2+(aq) + 6NH3(aq) [Ni(NH3)6]2+(aq)

Lewis acid Lewis base Complex ion

Lewis acid Lewis base Complex ion

Page 27: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

★ There is a rich and important chemistry asso- ciated with such complex assemblies of metals surrounded by molecules and ions.

Metal compounds of this kind are called:

配位化合物coordination compounds

Page 28: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Addition of base, ammonium hydrate(氨水 ) to an aqueous solution of Cu2+ ions causes precipitation(沉淀 ) of Cu(OH)2

(copper hydroxide). When the base is continually added in, the precipitation will dissolved and form a transparent (透明的 ) solution with dark blue color. If ethanol(乙醇 ) is added in this transparent solution, again, the dark blue precipitation appears. chemical analysis tells us the precipitate is Cu(NH3)4]SO4•H2O.

Page 29: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

★ Species such as [Cu(NH3)4]2+ that are assemblies of a central metal ion bonded to a group of surrounding molecules or ions are called metal complexes or merely complexes (复合物 ). If the complex carries a net electric charge, it is generally called a complex ion (复合离子 )。

Compounds that contain complexes are known as

coordination compounds ( CC, 配合物 )☞Although transition metals excel in forming coordination compounds, other metals can form them as well.

Page 30: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

§12.1 fundamental Concepts of CC

1.1 composition of complexes

Page 31: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

中心原子 配体

配位键

内层( inner sphere)外层( outer sphere)

配合物

[ Cu ( NH3 )4 ]2+ SO42-

离子键

★ coordination molecules have no outer sphere but inner sphere

coordination bond

ionic bond

coordination compounds

Page 32: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The molecules or ions that surround a

metal ion in a complex are called

ligands(配体 ). Ligands may be anions

or polar molecules. Some common

ligands are water (水 ), ammonia (氨 ),

hydroxide (氢氧化物 ), cyanide (氰化物 ), and chloride (氯化物 ).

Page 33: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Each of these has at least one unshared pair

of electrons that can be used to coordinate

(form a coordinate covalent bond (配位共价键 ) to the metal ion). Metal ions can act as

Lewis acids, accepting electrons from ligands,

which act as Lewis bases. The atom that is

bound directly to the metal ion is called the

donor atom(供电子原子 ). It's the atom that

donates a lone pair of electrons to the metal

ion.

Page 34: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[ Cu( NH3) 4 ] 2+ [ Fe(H2O) 6]3+ [ SiF6 ] 2-

中心原子

配体

配位 原子

Cu( ) Ⅱ Fe( ) Ⅲ Si(Ⅳ)

NH3 H2O F-

N O F

Page 35: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

中心原子 : cations or atoms offering empty orbitals

配 体 : the molecules or ions that surround the metal ion in a complex

配位原子 : the atoms of ligand bound directly to the metal

( central atom)

( Ligand)

( donor atom)

★ Ligand is from the Latin word ligare, meaning “to bind”

Page 36: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination sphere– Metal and ligands bound to it

Coordination number– number of donor atoms bonded to the central

metal atom or ion in the complex• Most common = 4, 6• Determined by ligands

– Larger ligands and those that transfer substantial negative charge to metal favor lower coordination numbers

Page 37: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Ligands– classified according to the number of donor

atoms– Examples

• monodentate = 1• bidentate = 2• tetradentate = 4• hexadentate = 6• polydentate = 2 or more donor atoms

Page 38: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination Compounds

Common ligands:

– water H - O - H

– ammonia NH3

– chloride ion Cl -

– cyanide ion C N -

Page 39: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

• Monodentate– Examples:

• H2O, CN-, NH3, NO2-, SCN-, OH-, X- (halides),

CO, O2-

– Example Complexes• [Co(NH3)6]3+

• [Fe(SCN)6]3-

单齿配体(monodentate ligand ): — the ligands possess a single donor atom and

are able to occupy only one site in a coordination sphere

Page 40: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

– Examples• oxalate ion = C2O4

2-

• ethylenediamine (en) = NH2CH2CH2NH2

• ortho-phenanthroline (o-phen)

– Example Complexes• [Co(en)3]3+

• [Cr(C2O4)3]3-

• [Fe(NH3)4(o-phen)]3+

二齿配体( bidentate ligand ): — the ligands possess two donor atoms

N - CH2- CH2 - N H

H H

H

Ethylenediamine (en)

Page 41: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

oxalate ion(草酸根 )

Ortho-phenanthroline(邻二氮杂菲 )

carbonate ion(碳酸根 )

bipyridine(联二吡啶 )

Structures of other bidentate ligands. The coordinating atoms are shown in blue.

Page 42: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

N - CH2- CH2 - N H

H H

HEthylenediamine (en)

Page 43: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

ethylenediaminetetraacetate (EDTA) = (O2CCH2)2N(CH2)2N(CH2CO2)2

4-

– Example Complexes• [Fe(EDTA)]-1

• [Co(EDTA)]-1

六齿配体( hexadentate ligand ): — the ligands possess six donor atoms

Page 44: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination Compounds

Uses for EDTA– Used in food products to complex metals that

promote decomposition reactions– Used to remove toxic heavy metals from the

body– Used to complex metal ions that inhibit or

promote polymerization reactions

Page 45: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

EDTA

Page 46: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

N

NH NH

N

Porphine(卟啉 ), an important chelating agent

found in nature

N

N N

N

Fe2+

Metalloporphyrin(铁卟啉)

Page 47: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination Compounds • Porphyrins are naturally occurring

complexes derived from porphin.– Heme (Fe2+)– Chlorophyll (Mg2+)

Page 48: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Myoglobin(肌红蛋白 ), a protein that stores O2 in cells

Page 49: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination Environment of Fe2+ in Oxymyoglobin (氧肌红蛋白 ), and Oxyhemoglobin (氧血红蛋白 )

Page 50: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Ferrichrome(铁血素 )

(Involved in Fe transport in bacteria)

Page 51: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

常见的单基配体

Page 52: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

常见的多基配体

Page 53: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

☛ The charge on a central metal ion can be determined in much the same way that

oxidation numbers are determined in molecular compounds. It is important to recognize common molecules, to remember that they are neutral, and to know the charges on both monoatomic and polyatomic ions. The sum of charges on the metal ion and the ligands must equal the net charge on the complex.

Complex charge

Page 54: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Fe(CN)6]3-

Complex charge = sum of charges on the metal and the ligands

+3 6(-1)

[Co(NH3)6]Cl2

Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions

neutral compound

+2 6(0) 2(-1)

Page 55: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

常见金属离子的配位数

Page 56: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

☛ Coordination numbers of 2, 4, and 6 are common. The geometry of a complex is determined in part by its coordination number. (Size of the ligands can also impact the geometry.)

Coordination Number

Geometry

2 Linear

4 Tetrahedral(more common) or square planar

6 Octahedral

Page 57: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

(p. 1017)

Page 58: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Structures of (a) [Zn(NH3)4]2+ and (b) [Pt(NH3)4]

2+,

illustrating the tetrahedral and square-planar geometries, respectively. These are the two common geometries for complexes in which the metal ion has a coordination number of 4. The shaded surfaces shown in the figure are not bonds; there are included merely to assist in visualizing the shape of the metal complex.

Page 59: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Two representations of an octahedral coordination sphere, the common geometric arrangement for complexes in which the metal ion has a coordination number of 6.

Page 60: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Attentions:

In mono-core coordination compounds, each donor atom can only bind directly to one central atom to form coordination bond.

Though some ligands have two or more donor atoms, they are still monodentate ligand because only one donor atom can form bond with central atom.

e.g: H2O 、 F-

e.g: SCN- 、 NCS- 、NO2

- 、 ONO-

Page 61: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

1.2 types of CC

1. Simple complex

— The one formed by central metal atom and monodentate ligand.

[Cu(NH3)4]SO4、 K[Ag(CN)2] 、K2[PtCl4]、 etc.

e.g:

Page 62: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

许多水合结晶盐都含有水合配离子 .

如 : FeCl3· 6H2O 为 [Fe(H2O)6]Cl3;

CuSO4·5H2O 为 [Cu(H2O)4]SO4·H2O 。

H2O分子是单基配体,配位原子是 O原

子。

Page 63: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. 螯合物 (Chelate compound)

Polydentate ligands (多基配体 ) tend to

coordinate more readily and form more

stable complexes than monodentate

ligands (单基配体 ). This phenomenon is

known as the chelate effect (螯合效应 ) .

— — the ringed coordination compounds the ringed coordination compounds formed by metal atom and polydentateformed by metal atom and polydentate

Page 64: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Cd2+

螯合剂螯合剂 (chelating agents)(chelating agents)

— — polydentate ligands are polydentate ligands are also known as chelating also known as chelating agents which are agents which are usually organic ligands usually organic ligands possessing donor atoms possessing donor atoms like Nlike N、、 PP、、 OO、、 S.S.

Page 65: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The [CoEDTA]– ion, showing how theEthylene diamine tetraacetate (乙二胺四乙酸 ) ion is able to wrap around a metal ion, occupying six positions in the coordination sphere. 

Page 66: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

3. 特殊配合物 (special complex)

M ← C间的键

M→C间的反馈键

1) 羰合物 (carboxide) — the complex formed when carbon

monoxide acts as the ligand

Page 67: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

NaClFeHCFeClNaHC 2)(2 255255

The first sandwich complex discovered was ferrocene (二茂铁 ). Ferrocene and its derivative are used as additive of rocket fuel, aging agent of silicon resin and rubber and absorbant of ultraviolet light.

2) 夹心配合物(Sandwich complex)

Fe(C5H5)2

Page 68: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

3) 原子族状化合物

原子簇状化合物是指具有两个或两个以上金属 —原子以金属 金属键(M—M)直接结合而形成 的化合物,简称簇合物。双核簇合物 [Re2Cl8]

2 -

是最简单的双核簇合物。

[Re2Cl8]2 - 的结构

Page 69: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

4) 大环配合物 (marcocyclic complex)— Ringed coordination compounds formed by

metal atom and polydentate ligands with O、 N、 P、 S or As(arsenic) atoms on their ring frameworks

There are two types of macrocyclic complex:

冠醚( Crown ether)

穴醚( Hole ether)

Page 70: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The cation is named before the anion

When naming a complex:– Ligands are named first

• alphabetical order

– Metal atom/ion is named last• oxidation state given in Roman numerals follows

in parentheses

– Use no spaces in complex name

1.3 Nomenclature of CC (IUPAC Rules)

[Co(NH3)5Cl]2+ Pentaamminechlorocobalt (III) 五 氨 氯 钴 (III)

Page 71: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The names of anionic ligands end with the suffix -o– -ide suffix changed to

-o

– -ite suffix changed to -ito

– -ate suffix changed to -ato

Ligand Name

bromide, Br- bromo

chloride, Cl- chloro

cyanide, CN- cyano

hydroxide, OH-

hydroxo

oxide, O2- oxo

fluoride, F- fluoro

Nomenclature of CC (IUPAC Rules)

Page 72: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Ligand Name

carbonate, CO32- carbonato

oxalate, C2O42- oxalato

sulfate, SO42- sulfato

thiocyanate, SCN- thiocyanato

thiosulfate, S2O32- thiosulfato

Sulfite, SO32- sulfito

Nomenclature of CC (IUPAC Rules)

Page 73: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Neutral ligands are referred to by the usual name for the molecule

– Example• ethylenediamine

– Exceptions• water, H2O = aqua

• ammonia, NH3 = ammine

• carbon monoxide, CO = carbonyl

Nomenclature of CC (IUPAC Rules)

Page 74: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Greek prefixes are used to indicate the number of each type of ligand when more than one is present in the complex– di-, 2; tri-, 3; tetra-, 4; penta-, 5; hexa-, 6

If the ligand name already contains a Greek prefix, use alternate prefixes:– bis-, 2; tris-, 3; tetrakis-,4; pentakis-, 5; hexakis-, 6

– The name of the ligand is placed in parentheses

Nomenclature of CC (IUPAC Rules)

[Co(en)3]Cl3- tris(ethylenediamine)cobalt(III) chloride

e.g:

Page 75: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

K4[Fe(CN)6] potassium hexacyanoferrate(II)

[ 六氰合亚铁 (II)酸钾 ][CoCl4]2- tetrachlorocobaltate(II) ion

[四氯合钴 (II)酸根离子 ].

If a complex is an anion, its name ends with the -ate

– appended to name of the metal

Nomenclature of CC (IUPAC Rules)

e.g:

Page 76: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Transition Metal

Name if in Cationic Complex

Name if in Anionic Complex

Sc Scandium Scandate

Ti titanium titanate

V vanadium vanadate

Cr chromium chromate

Mn manganese manganate

Fe iron ferrate

Co cobalt cobaltate

Ni nickel nickelate

Cu Copper cuprate

Zn Zinc zincate

Nomenclature of CC (IUPAC Rules)

Page 77: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

★ Some names of coordination compounds

[Co(NH3)4Cl2]Cl: tetraamminedichlorocobalt(Ⅲ) chloride

[Pt(NH3)2Cl2]: diamminedichloroplatinum(Ⅱ)

K[Ni(C2O4)2]: potassium bisoxalatonicketate(Ⅱ) oxalic acid(草酸 )

[Cr (NH3)5H2O](NO3)3: pentaammineaquachromium (Ⅲ) nitrate

Page 78: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Questions

1. Which name is correct for the coordination compound [Fe(en)2Cl2]Cl?

A dichlorobisethylenediamineiron(III) chloride

B diethylenediaminechlorineiron(I) chloride

C iron(III) bisethylenediaminedichloro chloride

D iron(III) trichloridebisethylenediamine

Page 79: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

总称 阴离子在前,阳离子在后◆ 含配阳离子:

某酸某 某化某 氢

氧化某◆ 含配阴离子:

某酸某 某酸

◆中性配位分子

[Co(NH3)4Cl2]Cl氯化二氯四氨合钴( III)

[Ag(NH3)2]OH氢氧化氨合银 ( )Ⅰ

[Cu(NH3)4]SO4 硫酸四氨合铜( II)

K4[Fe(CN)6]六氯合铁( II)酸钾H2[PtCl6]六氯合铂( IV)酸

配合物的命名nomdenclature of complex

Page 80: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Co(NH3)4(NO2)Cl]NO3

硝酸氯硝基四氨合钴( III)

NH4[Co(NO2)4(en)]

四硝基(乙二胺)合钴( III)酸铵

[Co(NH3)3(H2O)Cl2]Cl[Co(NH3)3(H2O)Cl2]Cl

氯化二氯三氨水合钴( III)氯化二氯三氨水合钴( III)

[Co (NO2)(NH3)4Cl]NO3[Co (NO2)(NH3)4Cl]NO3

硝酸氯硝基四氨合钴( III)硝酸氯硝基四氨合钴( III)

注意:配体次序           

                                    

                                    

      

1)      先无机配体后有机配体                                         

                              2)先阴                   离子后中性分子

                                         

              3)若配体均为阴离 子或中性 分子可按配位原子

      元素符号的英文字母顺序                                         

     4)同类配体中若配位原子相同,则将含较少原子数的配体排在前面,较多原子数

                 的配体列后 5)

复杂配体均加圆括号,以免混淆

Page 81: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Cu( NH3) 4]2+

四氨合铜( II)离子

[CoCl2( NH3) 4

]+

二氯四氨合钴( III)离子

[Fe( en) 3]Cl3

氯化三(乙二胺)合钴( III)

四氨铜( II)

四氨二氯合钴( III)离子

氯化三乙二胺合钴( III)

Page 82: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Ag( NH3) 2]OH

氢氧化二氨合银( I)

氢氧化氨合银

H2[PtCl6]

六氯合铂( IV)酸

[Co( NH3) 5( H2O) ]2( SO4

) 3

硫酸五氨水合钴( III)

六氯合铂酸( IV)

硫酸一水五氨合钴( III)

Page 83: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Co( NH3) 2( en) 2]Cl3

氯化二氨二(乙二胺)合钴( III)

[Ni( CO) 4]

四羰基合镍

氯化二(乙二胺) 二氨合钴( III)

四羰基合镍( 0)

Page 84: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Cu( NH3) 4]2+

加少量加少量 NaOH NaOH 加少量加少量 NaNa22S S

无明显现象无明显现象 黑色沉淀黑色沉淀

Ksp(Ksp(Cu(OH)Cu(OH)22)=5.6×10)=5.6×10-20-20

Cu(OH)Cu(OH)22 IP< Ksp IP< KspKsp(Ksp(CuS CuS )=6.3×10)=6.3×10-36-36

CuSCuS IP > Ksp IP > Ksp

说明:说明: 配离子在溶液中仍或多或少的离解配离子在溶液中仍或多或少的离解出出 Cu2+

Page 85: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Cu2++4NH3 [Cu(NH3)4]2+ 配位 kf

解离 kd

kf=[Cu(NH3)4

2+]

[Cu2+][NH3]4

Formation constant of cc Kf

同类 kf 配合物稳定性↗

Kf[Ag(CN)2]-=1.31021 Kf[Ag(NH3)2]+=1.1107

稳定性 [Ag(CN)2]- [Ag(NH3)2]+

1.4 Equilibrium of CC

1. Kd and Kf of coordination compounds

Page 86: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Kf1

Cu2+ +NH3

[Cu(NH3)]2+

Kf2

[Cu(NH3)2]2+ [Cu(NH3)]2+ + NH3

Kf3

[Cu(NH3)3]2+ [Cu(NH3)2]2+ + NH3

Kf4

[Cu(NH3)4]2+ [Cu(NH3)3]2+ + NH3

Kf 也叫配合物的稳定常数 (KS) 或积累稳定常数 (Kβ)

KKff = K = Kf1f1×K×Kf2f2×K×Kf3f3×K×Kf4 f4 = = 1Kd

Page 87: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Comparison of stability of CC ions:Comparison of stability of CC ions:

KKs s [ M[ Mn+ n+ ]]

(( 11)) same typesame type::■■Ag(NHAg(NH3 3 ))22

+ + 1.11.1× × 10107 7 9.19.1× × 1010-9-9

■■ Ag(CN)Ag(CN)22- - 1.31.3× × 101021 21

7.77.7× × 1010-23-23

(( 22)) different typedifferent type::■■ CuYCuY2- 2- 6.36.3××101018 18 1.31.3× × 1010-10-10

■■ Cu(en)Cu(en)222+ 2+ 44××10101919

8.68.6× × 1010-8-8

Comparison of stability of CC ions:Comparison of stability of CC ions:

KKs s [ M[ Mn+ n+ ]]

(( 11)) same typesame type::■■Ag(NHAg(NH3 3 ))22

+ + 1.11.1× × 10107 7 9.19.1× × 1010-9-9

■■ Ag(CN)Ag(CN)22- - 1.31.3× × 101021 21

7.77.7× × 1010-23-23

(( 22)) different typedifferent type::■■ CuYCuY2- 2- 6.36.3××101018 18 1.31.3× × 1010-10-10

■■ Cu(en)Cu(en)222+ 2+ 44××10101919

8.68.6× × 1010-8-8

Page 88: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or
Page 89: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. Shift of coordination equilibrium

1) coordination equili- and acid-base equili-

2) coordination equili- and precipitate equili-

3) coordination equili- and redox equili-

Common characteristic :

multiple equilibrium

Page 90: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Cu( NH3) 4]2+ Cu2++4NH3

+4H+

4NH4+

shift

(1) Effect of Acidity (1) Effect of Acidity

Acidity ( pH ) stabilityAcidity ( pH ) stability ↘↘

1) coordination equilibrium and acid-base equilibrium

Page 91: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[FeF6]3- Fe3+ + 6F- [H[H+]>0.5 ]>0.5 mol/Lmol/L酸效应酸效应+

6H+

6HF

Acidity ↓ stability of CC ↑Acidity ↓ stability of CC ↑

+3OH-

Fe(OH)3

水水解解效效应应

一般:在保证不生成氢氧化物沉淀的前提下一般:在保证不生成氢氧化物沉淀的前提下尽量提高尽量提高 PHPH值,以保证配合物的稳定性值,以保证配合物的稳定性

(2) Effect of hydrolysis(2) Effect of hydrolysis

Page 92: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

KspAgBr= 5.0×10KspAgBr= 5.0×10-13-13

+ + 2NH2NH33

[Ag(NH[Ag(NH33))22]]++

AgClAgCl AgAg+ + + Cl+ Cl-- KspAgCl=1.8×10KspAgCl=1.8×10-10-10

AgAg+ + + 2NH+ 2NH33

+ + BrBr--

AgBrAgBr

Ks=1.1×10Ks=1.1×1077

争取争取 AgAg++能力:能力:ClCl- - <NH<NH3 3 < Br< Br--

< I< I- - < CN< CN- - < S< S2-2-

注意注意:同类型的物质才能由平衡常数作判据:同类型的物质才能由平衡常数作判据

2) coordination equilibrium and precipitate equilibrium

Page 93: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

12-7

Page 94: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

例:计算 298.15K时, AgCl在 1L 6molL-

1NH3 溶液中的溶解度。

解解:先写出此溶液主要存在的平衡反应:先写出此溶液主要存在的平衡反应

11))沉淀平衡:沉淀平衡:AgClAgCl (( ss))

AgAg+ + + Cl+ Cl-- KspAgCl=1.77×10KspAgCl=1.77×10-10-10

22))配位平衡:配位平衡:Ks=1.1×10Ks=1.1×1077AgAg+ + + 2NH+ 2NH33 [Ag(NH[Ag(NH33))22]]++

两式相加:两式相加:AgCl (s) +2NHAgCl (s) +2NH33 [Ag(NH[Ag(NH33))22]]+ + + Cl+ Cl--

KK

Page 95: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

AgCl (s) +2NHAgCl (s) +2NH33 [Ag(NH[Ag(NH33))22]]+ + + Cl+ Cl--KK

s s6-2ss

K= KsKsp = 1.1107 1.77 10-10

S = 0.24(mol L-1)

K =[Ag(NH3)2

+][Cl-]

[NH3]2

[Ag(NH3)2+][Ag+][Cl-]

[Ag+][NH3]2= = KsKsp

=s2

(6-2s)2

所以:

Page 96: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

沉淀溶解条件 Ks Ksp 沉淀生成条件 Ks Ksp

当加入配合剂使沉淀溶解时,最有利于沉淀转化 为配合物的条件是( )

1) Ks 大 2) Ks 小 3) Ksp 大 4) Ksp小

A. 1) 2) 3 ) B. 1) 3 ) C. 2) 4 ) D. 4 ) E. 1) 2) 3) 4)

B

AgCl (s) + 2NHAgCl (s) + 2NH33 [Ag(NH[Ag(NH33))22]]+ + + Cl+ Cl--KK

K =KsKsp

[Ag(NH3)2]+ + Br- AgBr + 2NH3

K′=1

KsKsp

Page 97: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

解:

若在上述溶液中加入 NaBr固体使 Br-浓度为 0.1 molL-

1(忽略加入引起的体积变化)问有无 AgBr沉淀生成?

( Ks[Ag( NH3) 2]+=1.1107、 KspAgCl=1.77

10-10 、 KspAgBr=5.35 10-13)s=0.24(mol L-1)

[Ag( NH3) 2]+ + Br-

AgBr + 2NH3

6-2 0.240.10.24

KsKsp

= 1 103 QK

反应向右进行 AgBr生成有

K=1

=5.53 10-13 1.1107

1=1.7105

Q =( 6-2 0.24) 20.24 0.1

Page 98: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

解:溶液中的平衡为Ag + +2NH3

[Ag(NH3)2]+

例: 在 100.0ml含有过量 NH3• H2O 的

AgNO3混合溶液中,加入 0.1molL-1NaCl溶

液 100.0ml时无 AgCl沉淀生成 , 计算混合液中 NH3的平衡浓度至少为多少?

Ks[Ag(NH3)2]+ = 1.1107、

KspAgCl = 1.8 10-10

Page 99: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

∵无 AgCl ∴ 沉淀 [Ag+][Cl-] ≤ KspAgCl

[Ag+] ≤ KspAgCl ⁄ [Cl-]

[Cl-]= 0.1×100/200=0.05 molL-1

∴[Ag+] ≤ 1.8 10-10 ⁄ 0.05 = 3.6× 10-9molL-1

[Ag(NH3)2]+ = 0.1×100 ⁄ 200 - [Ag+] ≈ 0.05 molL-1

由配位平衡

得: [NH3]min = 1.12 molL-1

{[Ag(NH3)2]+}

[Ag+]•[NH3]2Ks =

Page 100: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

若用若用 NaBrNaBr代替代替 NaClNaCl情况如何?情况如何?

[Ag[Ag++] ≤ KspAgBr ] ≤ KspAgBr / / [Br[Br--]]

[Ag[Ag++] ≤ 5.0 ] ≤ 5.0 1010-13-13 / / 0.05 = 1.0× 100.05 = 1.0× 10-11-11molmolLL-1-1

∵ ∵ 浓浓 NHNH33•• HH22OO的浓度仅为的浓度仅为 15mol 15mol LL-1-1

∴∴上述条件下用上述条件下用 NHNH33•• HH22OO 不可能阻止 不可能阻止

AgBrAgBr沉淀沉淀

{[Ag(NH3)2]+}

[Ag+]•[NH3]2Ks =

[NH[NH33]min ≈21.3 mol]min ≈21.3 molLL-1-1

Page 101: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

在在 0.1mol0.1molLL-1-1 [Zn(NH[Zn(NH33))44]]2+2+ 溶液中通入溶液中通入 HH22SS至至SS2-2-浓度为浓度为 :1.0×10:1.0×10-10 -10 molmolLL-1-1 ,,问是否有问是否有 ZnZnSS沉淀沉淀析出?析出?Ks [Zn(NHKs [Zn(NH33))44]]2+2+=5.0=5.0101088 、、 Ksp ZnKsp ZnSS =1.2 =1.21010-23-23

解解:未通:未通 HH22SS前前设设0.1mol0.1molLL-1-1 [Zn(NH[Zn(NH33))44]]2+2+ 溶液中溶液中 [[ZnZn2+2+]] = = x x molmolLL-1 -1 则:则: [[NHNH33]] = 4= 4x x molmolLL-1-1

通通HH22SS IP IP = = CCZnZn2+ 2+ •• CCSS2- 2- = 3.8×10= 3.8×10-3-3 × × 1.0×101.0×10-10 -10

IPIP = 3.8×10= 3.8×10-13 -13 > > Ksp ZnKsp ZnSS

∴∴上述条件下有上述条件下有 ZnZnSS沉淀沉淀析出析出

ZnZn2+2+ +4NH +4NH33[Zn(NH[Zn(NH33))44]]2+2+

[Zn(NH[Zn(NH33))44]]2+2+ = = 0.10.1-- x ≈ x ≈ 0.10.1 molmolLL-1-1

代入 代入 Ks = {[Zn(NHKs = {[Zn(NH33))44]]2+2+} } ⁄⁄ [[ZnZn2+2+]]•• [[NHNH33]]44

得: 得: x≈ x≈ 3.8×103.8×10-3-3 mol molLL-1-1

Page 102: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

4Au+O2+2H2O 4OH-+4Au+

Au+/Au=1.692v O2/OH- =0.401v

4Au + O2 + 2H2O + 8CN- 4[Au(CN)2]- + 4OH-

shift

[Au( CN) 2]-/Au=-0.574v O2/OH-=0.401v forward

2[Au(CN)2]- + Zn [Zn (CN)4]2- + 2Au

ºº

º º

3) coordination equilibrium and redox equilibrium

Page 103: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Fe3+ + I- Fe2++1/2 I2

[FeF6]3-

+6F-

[FeCl4]- Fe3++4Cl-

+ I-

Fe2++1/2 I2

Page 104: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

在某一配位平衡体系中,加入另一种能与中在某一配位平衡体系中,加入另一种能与中

心原子心原子 ((或配体或配体 ))形成配合物的配体(或中形成配合物的配体(或中

心原子)配位平衡是否变化,可根据它们的心原子)配位平衡是否变化,可根据它们的

KsKs值相对大小值相对大小 ((同类型同类型 ))及计算来判断。及计算来判断。

4) coordination equilibrium and other coordination equilibrium

Page 105: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

1. 已 知 Ks[Ag ( CN ) 2]-

Ks[Ag( NH3) 2]+,

反应

[Ag ( CN ) 2]- + 2NH3 [Ag ( NH3 ) 2]+

+2CN- 将( )

A. 正向自发进行 B. 处于平衡状

C. 逆向自发进行 D. 无法判定

C

Questions:

Page 106: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. 在 [Cu( NH3) 4]SO4溶液中存在平衡

[Cu( NH3) 4]2+ Cu2++4NH3

若向该溶液中分别加入以下试剂,能使平衡右移的

是( )

1 )盐酸 2 )氨水 3) Na2S 4) Na2SO4

A. 1) 2) 3 ) B. 1) 3 )

C. 2) 4 ) D. 4 )

E. 1) 2) 3) 4)

B

Page 107: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

isomer(异构体 ) : Two or more

compounds with the same elemental

composition but different arrangements of

atoms.

✽ Isomerism of CC

— Major Types

structural isomers

stereoisomers

Page 108: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

1.4.1 Structural Isomers

structural isomers(结构异构体 ) : — isomers that have different bonds.

1. Coordination-sphere isomers– differ in a ligand bonded to the metal in the

complex, as opposed to being outside the coordination-sphere

• Example

[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl

Page 109: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

— Consider ionization in water

[Co(NH3)5Cl]Br [Co(NH3)5Cl]+ + Br-

[Co(NH3)5Br]Cl [Co(NH3)5Br]+ + Cl-

[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Cl

— Consider precipitation

[Co(NH3)5Cl]Br(aq) + AgNO3(aq) [Co(NH3)5Cl]NO3(aq) + AgBr(s)

[Co(NH3)5Br]Cl(aq) + AgNO3(aq) [Co(NH3)5Br]NO3(aq) + AgCl(aq)

Page 110: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. Linkage isomers

— differ in the atom of a ligand bonded to the metal in the complex

Example:

– [Co(NH3)5(ONO)]2+ vs. [Co(NH3)5(NO2)]2+

Example:

– [Co(NH3)5(SCN)]2+ vs. [Co(NH3)5(NCS)]

Co-SCN vs. Co-NCS

Page 111: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

stereoisomers(立体异构体 )

1.4.2 Stereoisomers

— isomers with the same bonds but different spatial arrangements of those bonds.

1. Geometric isomers

- Have different chemical/physical properties different colors, melting points, polarities, solubilities, reactivities, etc.

- Differ in the spatial arrangements of the ligands

Page 112: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or
Page 113: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

cis isomer, 顺式

trans isomer,反式

Pt(NH3)2Cl2

Geometric Isomers

Page 114: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[PtCl2(NH3)2]的顺式异构体

称为顺铂 (cisplatin), 是一个很好的抗癌药物,当它进入人体后,能迅速而又牢固地与 DNA(脱氧核糖核酸 )

结合成为一种隐蔽的 cis-

DNA加合物,干扰 DNA的复制,阻止癌细胞的再生。

[PtCl2(NH3)2]的反式异构体

没有抗癌功能。

Page 115: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

cis isomer trans isomer

[Co(H2O)4Cl2]+

Geometric Isomers

Page 116: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. Optical isomers

– isomers that are nonsuperimposable mirror images

• said to be “chiral” (handed)

• referred to as enantiomers

– A substance is “chiral” if it does not have a “plane of symmetry”

Page 117: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or
Page 118: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Fig. 23.12

Page 119: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

mirror p

lane

cis-[Co(en)2Cl2]+

Example 1

Page 120: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

180 °

rotate mirror image 180°Example 1

Page 121: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Nonsuperimposable, enantiomers

cis-[Co(en)2Cl2]+

Example 1

Page 122: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

mirror p

lane

trans-[Co(en)2Cl2]+

Example 2

Page 123: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Example 2

180 °

rotate mirror image 180°

trans-[Co(en)2Cl2]+

Page 124: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Example 2

Superimposable-not enantiomers

trans-[Co(en)2Cl2]+

Page 125: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Properties of Optical Isomers

Enantiomers – possess many identical properties

• solubility, melting point, boiling point, color, chemical reactivity (with nonchiral reagents)

– different in:• interactions with plane polarized light• reactivity with “chiral” reagents

Example

Page 126: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Optical Isomers

light source

unpolarized light

polarizing filter plane

polarized light

(random vibrations) (vibrates in one plane)

Page 127: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

(+) dextrorotatory (right rotation )(-) levorotatory(left rotation )

Optical Isomers

Page 128: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

optically active sample in solution

rotated polarized light

polarizing filterplane

polarized light

Page 129: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

optically active sample in solution

rotated polarized light

polarizing filterplane

polarized light

Dextrorotatory (d) = right rotation

Levorotatory (l) = left rotation

Racemic mixture = equal amounts of two enantiomers; no net rotation

Page 130: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

— theory of bonds between metal atoms and donor atoms

§12.2 Valence Bond Theory of Coordination Compounds

主价副价理论 (main valence and auxiliary vanlence theory)

价键理论 (valence bond theory) 晶体场理论 (crystal field theory) 分子轨道理论 (molecular orbital theory) 配位场理论 (coordination field theory)

Page 131: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or
Page 132: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Werner's name will always be associated with the theory of coordination which he established and with his work on the spatial relationships of atoms in the molecule, the foundations of which were laid in the work he did, when he was only 24, for his doctorate thesis in 1892. In this work he formulated the idea that, in the numerous compounds of tervalent(三价的 ) nitrogen, the three valence bonds of the nitrogen atom are directed towards the three corners of a tetrahedron, the fourth corner of this being occupied by the nitrogen atom.

Alfred Werner (1866 - 1919)The founder coordination compound

1913 Nobel Prize in chemistry

Page 133: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

In 1891 he had published a paper on the

theory of affinity and valence, in which he

substituted for Kekulé's conception of

constant valence, the idea that affinity is an

attractive force exerted from the centre of the

atom which acts uniformly towards all parts

of the surface of the atom.

Page 134: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Some Coordination Compounds of Cobalt Studied by Werner

Werner’s Data*Traditional Total Free Modern Charge ofFormula Ions Cl- Formula Complex Ion

CoCl3 6 NH3 4 3 [Co(NH3)6]Cl3 3+

CoCl3 5 NH3 3 2 [Co(NH3)5Cl]Cl2 2+

CoCl3 4 NH3 2 1 [Co(NH3)4Cl2]Cl 1+

CoCl3 3 NH3 0 0 [Co(NH3)3Cl3] ---

.

.

.

.

Page 135: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

L· Pauling H· Bethe J· H· Van Vleck

Valence bond theory

1931年Crystal field theory

1929→1950S

20s of 20 century20s of 20 century

Page 136: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

一 . Valence Bond Theory一 . Valence Bond Theory

Central atomCentral atom ligandligandligandligand

Coordination Coordination bondbond

Coordination Coordination bondbond

Equivalent hybridization

Equivalent hybridization

Lone electron pairLone electron pair

main concepts: - hybridization -coordination bond

Page 137: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Geometry of NH3

Page 138: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Zn2+

NH3

NH3 NH3

NH3

2+

Page 139: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Zn(NH[Zn(NH33))44] ] 2+2+

3030ZnZn2+2+ [Ar] [Ar]1818

3d3d10104s4s 4p4p

等性等性 spsp33杂杂化化

3d3d10104 4 个个 spsp33 杂化轨杂化轨道道

[Ar][Ar]1818

Tetrahedron Tetrahedron

Geometry of [Zn(NHGeometry of [Zn(NH33))44] ] 2+2+

Page 140: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Atoms in the third period and beyond can also

use d orbitals to form hybrid orbitals. Mixing

one s orbital, three p orbitals, and one d

orbital leads to five sp3d hybrid orbitals. These

hybird orbitals are directed toward the

vertices(顶点 ) of a trigonal bipyramid(三角双锥 ). The formation sp3d hybrids is

exemplified by the phosphorus (磷 ) atom in

PF5 , phosphorus pentafluoride .

How to use VSEPR method to predict the molecular shape of PF5 ?

Page 141: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Similarly, mixing one s orbital, three p orbitals, and two d orbitals gives six sp3d2 hybrid orbitals, which are directed toward the vertices of an octahedron(八面体 ). The use of d orbitals in constructing hybrid orbitals nicely corresponds to the notion of an expanded valence shell.

Geometry of coordination compounds depends on the geometry of hybrid orbitals of central atoms !

Page 142: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Common hybridization types of metals and the Geometries of the Complexes

Linear

Coordination Number Geometry

2examples:

[Ag(NH3)2]+

[Ag(CN)2]-

[Cu(NH3)2]+

sp hybridization

Page 143: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Common hybridization types of metals and the Geometries of the Complexes

Coordination Number Geometry

3Example:

[Cu(CN)3]2-

sp2 hybridization

Page 144: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination Number Geometry

4 tetrahedral

square planar

Example:

[Ni(CN)4]2-

Examples:

[Zn(NH3)4]2+,

[FeCl4]-

Common hybridization types of metals and the Geometries of the Complexes

sp3

dsp2

Page 145: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination Number Geometry

Common hybridization types of metals and the Geometries of the Complexes

5Examples:

[Ni(CN)5]3-

[Fe(CO)5]

dsp3

Page 146: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Coordination Number Geometry

6 octahedral

[FeF6]3- sp3d2

Common hybridization types of metals and the Geometries of the Complexes

Examples:

[Fe(CN)6]3- d2sp3

[Cr(NH3)6]3+ sp3d2

Page 147: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Hybrid Orbitals and Bonding in the Tetrahedral [Zn(OH)4]2- ion

30Zn [Ar]3d104s2

Page 148: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Hybrid Orbitals and Bonding in the Square Planar [Ni(CN)4]2- Ion

28Ni [Ar]3d84s2

Page 149: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Valence Bond TheoryHybrid Orbitals and Bonding in the Octahedral

[Cr(NH3)6]3+ Ion

24Cr [Ar]3d54s1

Page 150: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Factors affecting the geometry of complexs

Electronic configuration of central atoms (metal atoms)

electronegativity of donor atoms

Page 151: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

1. outer-orbital coordination compound(high-spin complexs)

When the electronegativity of donor atoms like halogen and oxygen is high, it is uneasy for them to lose the lone electron pairs. So the donor atoms can not disorder(push) the valence electrons in metal atoms. Under this circumstance the central atoms only offer their outer-orbitals to form hybrid orbitals, sp,sp2,sp3, sp3d2 ,sp2d3..

Since the electrons in valence shell of the metal atoms are not rearranged, there are relatively more unpaired d electrons in their valence shell. So these complexs are called high-spin complexs.

Page 152: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[FeF[FeF66] ] 3-3- FF- - 1s1s2 2 2s2s2 2 2p2p66

2626Fe [Ar]Fe [Ar]18 18 3d3d6 6 4s4s2 2 → Fe→ Fe3+3+ [Ar] [Ar]18 18 3d3d554s4s0 0

3d3d55 4s4s00 4p4p 4d4d

Equivalent Equivalent sp3d2 hybridization hybridization

3d3d55

4d4dSpSp33dd22 hybridization orbital hybridization orbital

high-spin complexs

Page 153: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

3d3d55

4d4d

Because bonding orbitals is relatively far Because bonding orbitals is relatively far

away from the nuclei, the bonding electron away from the nuclei, the bonding electron

pairs are not firmly held by the nuclei. So, the pairs are not firmly held by the nuclei. So, the

bond energy of outer-orbital complexs is low bond energy of outer-orbital complexs is low

and consequently they are not so stable, and consequently they are not so stable,

having a high solubility in water. having a high solubility in water.

SpSp33dd22 hybridization orbitalhybridization orbital

Page 154: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. inner-orbital coordination compound(low-spin complexs)

When the electronegativity of donor atoms like carbon (CNcarbon (CN--) ) ,, nitrogen(-NOnitrogen(-NO2-2-) ) is not so high, it is easy for them to lose the lone electron pairs. So the donor atoms can not push the valence electrons into inner orbitals of metal atoms. Under this circumstance the central atoms can offer inner-orbitals to form hybrid orbitals, (n-1)dsp2,(n-1)d2sp3..

Since the electrons in valence shell of the metal atoms are rearranged, there are relatively less unpaired d electrons in their valence shell. So these complexs are called low-spin complexs.

Page 155: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Fe(CN)[Fe(CN)66] ] 3-3-

26Fe [Ar]26Fe [Ar]18 18 3d3d6 6 4s4s2 2 → Fe→ Fe3+3+ [Ar] [Ar]18 18 3d3d554s4s0 0

3d3d55 4s4s00 4p4p

3d3d55

3d3d55 dd22spsp33杂化轨道杂化轨道

low-spin complexs

Page 156: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

3d3d55 dd22spsp33杂化轨道杂化轨道

Because bonding orbitals is relatively closer Because bonding orbitals is relatively closer to the nuclei, the bonding electron pairs are to the nuclei, the bonding electron pairs are firmly held by the nuclei. So, the bond energy firmly held by the nuclei. So, the bond energy of low-orbital complexs is comparatively high of low-orbital complexs is comparatively high and consequently they are stable and have a and consequently they are stable and have a low solubility in water. low solubility in water.

Strength of ligand:CNCN-- > NO > NO22

- - > SO> SO332- 2- > en > NH> en > NH33

> EDTA> H> EDTA> H22OO

> OH> OH-- > F > F -- > SCN > SCN- - > Cl > Cl -- > Br > Br -- > > I I --

越强越易使中心原子电子重排并成对越强越易使中心原子电子重排并成对。。

Page 157: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Outer-orbital Vs. Inner-orbital hybridization

Outer-orbital Vs. Inner-orbital hybridization

Outer orbital:

Inner orbital:

spd

(n-1)dsp

sp3d2、 sp、 sp3

dsp2、 d2sp3

Requirement for formation of inner-oribtal complexs — The energy released during the bonding between donor atoms and metal atoms is more than that released during formation of outer-orbital complex after offseting the energy for electron pairing.

Page 158: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

3d3d55 dd22spsp33—inner-orbital—inner-orbital[Fe(CN)[Fe(CN)66] ] 3-3-

3d3d55

4d4dspsp33dd22—outer-orbital—outer-orbital

[FeF[FeF66] ] 3-3-

3d3d55 4s4s00 4p4p

FeFe3+3+ 1818[Ar][Ar]

High-spin

low-spin

Page 159: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Generally, coordination compounds formed by inner Generally, coordination compounds formed by inner orbitals are stabler than those formed by outer orbitals are stabler than those formed by outer orbitals, but the coordination compound formed orbitals, but the coordination compound formed contains empty (n-1)d orbitals, it will be unstable.contains empty (n-1)d orbitals, it will be unstable.

[V(NH[V(NH33))66]]3+3+

VV3+3+

1818[Ar][Ar] 3d3d224s4s 4p4p

dd22spsp33杂化杂化

1818[Ar][Ar]

3d3d22 dd22spsp33杂化杂化

Page 160: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

We know that the existence of unpaired electrons in a molecule causes the molecule

to exhibit paramagnetism(顺磁性 ). Paramagnetic substances are attracted by a magnetic field. The magnitude of this attraction can provide evidence of the number of unpaired electrons in the substance.

2. Magnetism of complexs

Page 161: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

★ 未成对 d 电子数与配合物磁矩的关系: B——玻尔磁子 (B.M)

1B =9.27×10-24 B.M

■ ■ 形成外轨型配合物时,一般 形成外轨型配合物时,一般 n n 值不变:值不变: [Fe(H[Fe(H22O)O)66]]2+ 2+ 实测 =5.70 B

■ ■ 形成内轨型配合物时,一般 形成内轨型配合物时,一般 n n 值减小:值减小: [Fe(CN)[Fe(CN)66]]3+ 3+ 实测 =2.25B

)2( nnm

n 1 2 3 4 5 6 7

m 1.73 2.83 3.87 4.90 5.92 6.93 7.49

( 1) [26Fe( H2O) 6]3+ =5.9

Fe3+ 1s22s22p63s23p6 3d 5

sp3d23d外轨 八面体

Page 162: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

配合物的电子结构和磁矩

Page 163: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

已知 [26Fe( CN) 6]3-的磁矩 = 3 , Fe3+ 采用( )已知 [29Cu( NH3) 4]2+为内轨型配离子, Cu2+空轨

道的杂化类型为( )

A. sp3 杂化 B. dsp2 杂化 C. sp3不 等性杂化

D. dsp2 不等性杂化 E. d2sp3 杂化 F. sp3d2

杂化

E

Cu2+ 1s22s22p63s23p63d9

3d 激发dsp2

3d4p

B

Page 164: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Measurement of the magnetic properties of coordination complexes gives some interesting results. Two complexes containing the cobalt(III) ion exhibit different magnetic properties. The complex ion [Co(NH3)6]

3+ is diamagnetic(反磁性的 ). It contains no unpaired electrons. The complex ion [CoF6]

3– is paramagnetic (顺磁性的 ). In fact, its degree of paramagnetism is such that we know it contains four unpaired electrons.

Page 165: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The fact that the cobalt(III) ion has different numbers of unpaired electrons in different compounds indicates that the free ion's electron configuration is not the only determining factor in the number of unpaired electrons in a complex. Crystal-field theory helps explain these observations.

Page 166: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Assumes bonding is covalent

Does not account for colour of complexes

Can predict magnetism wrongly

Does not account for spectrochemical

series

Limitations of VB theory

Page 167: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

When ligands coordinate to a metal ion, they increase the energies of the metal‘s d orbitals by ligand d-orbital repulsion. Because of their spatial arrangement, the d orbitals do not all experience the same increase in energy. If we consider the formation of an octahedral(八面体的 ) complex in which the ligands approach the metal ion along the x, y, and z axes, we see that only orbitals that lie along the axes (the dz2 and dx2-y2) are approached directly.

§12.3 Crystal-Field Theory

Page 168: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

(红宝石 )

Page 169: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Crystal-Field TheoryCrystal-Field Theory Crystal field theory describes bonding in

transition metal complexes. The formation of a complex is a Lewis acid-base

reaction. Both electrons in the bond come from the ligand

and are donated into an empty, hybridized orbital on the metal.

Charge is donated from the ligand to the metal. Assumption in crystal field theory: the

interaction between ligand and metal is electrostatic.

The more directly the ligand attacks the metal orbital, the higher the energy of the d orbital.

Page 170: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or
Page 171: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

ligands approach along x, y, z axes

(-) Ligands attracted to (+)

metal ion; provides stability

Octahedral Crystal Field

d orbital e-’s repulsed by (–) ligands; increases d orbital

potential energy

+

-

- -

-

-

-

Crystal Field Theory

Page 172: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

greater electrostatic repulsion = higher potential energy

less electrostatic repulsion = lower potential energy

Page 173: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The complex metal ion has a lower energy than the separated metal and ligands.

In an octahedral field, the five d orbitals do not have the same energy: three degenerate orbitals are higher energy than two degenerate orbitals.

The energy gap between

them is called , the crystal field splitting energy.

3.1 Splitting of d orbital of metal atoms

Page 174: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or
Page 175: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Splitting of d-orbital Energies by a Tetrahedral Field and a Square Planar

Field of Ligands

Page 176: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

分裂能△ o的大小与配体的场强、中心离子

的电荷数及中心离子在周期表中的位置等因素有关。

3.2 Factors affecting the magnitude of ∆

Page 177: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

1. effect of ligands

中心离子相同,配体不同,则由配体所产生的晶体场分裂能力越强,所产生的晶体场场强越大,分裂能

越大。 同一种金属离子分别与不同的配体生成一系列八面体配合物,用电子光谱法分别测定它们在八面体场中

△的分裂能( o),按由小到大的次序排列,得如下序

列:

Page 178: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

光谱化学序列

Page 179: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or
Page 180: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. Effect of metal atoms配体相同,中心金属离子相同时,金属离子价态越高,分裂能越大。例如: [Co(H2O)6]

3+ △ o=18600 cm - 1

[Co(H2O)6]2+ △ o= 9300 cm - 1

[Co(NH3)6]3+ △ o= 23000 cm - 1

[Co(NH3)6]2+ △ o= 10100 cm - 1

配体相同,中心金属离子价态相同且为同族元素时,从上到下分裂能增大。例如: [Co(NH3)6]

3+ △ o=23000 cm - 1

[Rh(NH3)6]3+ △ o= 33900 cm - 1

[Ir(NH3)6]3+ △ o= 40000 cm - 1

Page 181: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

3.3 Electronic Configurations of Transition Metal Complexes

• Expected orbital filling tendencies for e-’s:– occupy a set of equal energy orbitals one at a time

with spins parallel (Hund’s rule) • minimizes repulsions

– occupy lowest energy vacant orbitals first

• These are not always followed by transition metal complexes.

Page 182: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d orbital occupancy depends on and pairing energy, P– e-’s assume the electron configuration with the

lowest possible energy cost

– If > P ( large; strong field ligand)

• e-’s pair up in lower energy d subshell first

– If < P ( small; weak field ligand)

• e-’s spread out among all d orbitals before any pair up

Page 183: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d-orbital energy level diagramsoctahedral complex

d1

Page 184: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d2

d-orbital energy level diagramsoctahedral complex

Page 185: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d3

d-orbital energy level diagramsoctahedral complex

Page 186: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d4

high spin < P

low spin

> P

d-orbital energy level diagramsoctahedral complex

Page 187: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d5

high spin < P

low spin

> P

d-orbital energy level diagramsoctahedral complex

Page 188: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d6

high spin < P

low spin

> P

d-orbital energy level diagramsoctahedral complex

Page 189: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d7

high spin < P

low spin

> P

d-orbital energy level diagramsoctahedral complex

Page 190: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d8

d-orbital energy level diagramsoctahedral complex

Page 191: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d9

d-orbital energy level diagramsoctahedral complex

Page 192: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

d10

d-orbital energy level diagramsoctahedral complex

Page 193: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Electronic Configurations of Transition Metal Complexes

Determining d-orbital energy level diagrams:– determine oxidation # of the metal

– determine # of d e-’s

– determine if ligand is weak field or strong field

– draw energy level diagram

Page 194: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

High-spin and low-spin complex ions of Mn2+

Page 195: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Orbital Occupancyfor High- and Low-Spin Complexes of d4 Through d7 MetalIons

d4

d6

d7

d5

High spin weak-field

ligand

Low spin strong-field

ligand

Page 196: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Crystal field theory can offer a good

explanation of many properties of

transition metal, such as

stability、 spectrum、 and

magnetism.

3.4 Application of crystal field theory

Page 197: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Properties of Transition Metal Complexes

Properties of transition metal complexes:– usually have color

• dependent upon ligand(s) and metal ion– many are paramagnetic

• due to unpaired d electrons• degree of paramagnetism dependent on

ligand(s)– [Fe(CN)6]3- has 1 unpaired d electron– [FeF6]3- has 5 unpaired d electrons

Page 198: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Crystal Field Theory– Can be used to account for

• Colors of transition metal complexes– A complex must have partially filled d

subshell on metal to exhibit color– A complex with 0 or 10 d e-s is colorless

• Magnetic properties of transition metal complexes

– Many are paramagnetic– # of unpaired electrons depends on the

ligand

Page 199: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Compounds/complexes that have color:– absorb specific wavelengths of visible light (400 –

700 nm)

• wavelengths not absorbed are transmitted• color observed = complementary color of color

absorbed

1. Account for the color of complexs

Page 200: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Visible Spectrum

White = all the colors (wavelengths)

400 nm 700 nm

wavelength, nm

higher energy

lower energy

(Each wavelength corresponds to a different color)

Page 201: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

absorbed color

observed color

Page 202: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Relation Between Absorbed and Observed Colors

Absorbed ObservedColor (nm) Color (nm)

Violet 400 Green-yellow 560Blue 450 Yellow 600 Blue-green 490 Red 620Yellow-green 570 Violet 410Yellow 580 Dark blue 430Orange 600 Blue 450Red 650 Green 520

Page 203: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Color & Visible SpectraColor & Visible Spectra

Page 204: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Color& SpectraColor& Spectra The plot of absorbance versus

wavelength is the absorption spectrum.

—For example, the absorption spectrum for [Ti(H2O)6]3+ has

a maximum absorption occurs at 510 nm (green and yellow).

—So, the complex transmits all light except green and yellow.

—Therefore, the complex appears to be purple.

Page 205: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Absorption of UV-visible radiation by atom, ion, or molecule:– Occurs only if radiation has the energy needed

to raise an e- from its ground state to an

excited state• i.e., from lower to higher energy orbital• light energy absorbed = energy difference

between the ground state and excited state • “electron jumping”

Page 206: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

white light

red light absorbed

green light observed

For transition metal complexes, corresponds to

energies of visible light.

Absorption raises an electron from the lower d subshell to the higher d

subshell.

Page 207: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Many coordination compounds exhibit vivid colors. Pigments in paint are often coordination complexes, as are the colorants(着色剂 ) in stained glass(彩色玻璃) . The colors exhibited by coordination compounds can be explained in terms of the electron configurations of their central metal ions.It is generally necessary for a metal ion to have a partially filled d subshell for it to be colored. In fact, most transition-metal ions have a partially filled d subshell. Compounds of metal ions with empty d subshells, such as Al3+ and Ti4+ are typically colorless. Compounds of metal ions with completely filled d subshells, such as Zn2+, also tend to be colorless.

Page 208: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Objects and substances appear colored by virtue of

reflection or absorption of visible light. An opaque

(不透明的 ) object may appear yellow because

it reflects only yellow light and absorbs all other

colors; or, it may appear yellow because it absorbs

just the complementary color (补色 ) of yellow,

which is violet . A translucent (半透明的 )material may transmit only green light, or it may

transmit all colors but red, the complementary

color of green. Either way, it will appear green to

our eyes.

violet

Page 209: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Different complexes exhibit different colors because:– color of light absorbed depends on

• larger = higher energy light (Shorter wavelengths) absorbed

• smaller = lower energy light(Longer wavelengths) absorbed

– magnitude of depends on:• ligand(s)• metal

Page 210: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

white light

red light absorbed

(lower energy light)

green light observed

[M(H2O)6]3+

Page 211: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

white light

blue light absorbed (higher energy light)

orange light observed

[M(en)3]3+

Colors of Transition Metal Complexes

Page 212: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

配离子显色的原因如下:

如果配合物中心离子的 t2g轨道和 eg轨道没有

充满,通过吸收可见光(或紫外光)区的某一波长的光波,就可以使 d电子从 t2g轨道跃迁到 eg轨

道,我们称之为 d-d 跃迁。 包含所有可见光波长的白光,照射配离子的水溶液时,因为配离子发生 d—d跃迁而吸收了部分波长,透过余下的光波,溶液便呈现出不同的颜色。

因为产生 d—d跃迁所吸收的能量与配离子的分裂能有关,所以分裂能不同的配离子会显示不同的颜色。

Page 213: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Colour of transition metal complexes

Ruby

Corundum

Al2O3 with Cr3+ impurities

Sapphire

Corundum

Al2O3 with Fe2+ and Ti4+ impurities

Emerald

Beryl

AlSiO3 containing Be with Cr3+ impurities

octahedral metal centrecoordination number 6

(红宝石 ) (刚玉 )

(蓝宝石 )

(绿宝石 ,翡翠 )

(绿玉 )

Page 214: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The wavelength of light absorbed depends on the size of the energy gap, ∆ , between lower- and higher-energy d orbitals. The size of ∆ depends in part on the identity of the ligands coordinating to the metal ion. Figure below shows a series of four chromium(III) complexes, each with a different ∆ value.

green yellow yellow

∆3

violet violetvioletyellowred

∆1∆2

∆4

24Cr3+ 3d3

Page 215: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

例如, [Ti(H2O)6]3+ △的分裂能 o =20400 cm―1对

波长为 490 nm(波数为 20400 cm―1)的光有最大吸收峰,相当于吸收了蓝绿色的光,该配合物呈现出紫红色。

Page 216: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

The energy gap between the three lower-energy d orbitals and the two higher-energy d orbitals is such that visible light causes this electron promotion. Thus, a particular wavelength of visible light is absorbed, giving a coordination complex its characteristic color. The gap between lower- and upper-level d orbitals in the [Ti(H2O)6]

3+ ion is of the magnitude that light of

510 nm wavelength promotes an electron. Absorption of this wavelength of light (510 nm is

a green wavelength) gives the ion its

characteristic red color.

Page 217: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

22Ti [Ar]3d24s2

22Ti3+ [Ar]3d14s0

Ti: titanium

[Ti(H2O)6]3+, 红色

Page 218: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

★ 因为 Zn2+为 d10构型,不会发生 d—d跃 迁, 所以 [ Zn(H2O)6]

2+离子为无色溶液。

“ ”光谱化学序列 就是利用这一原理测出来的。需要指出的是,过渡金属离子颜色不一定都是 d—d 跃迁的结果。

Page 219: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

• Color of a complex depends on: (i) the metal and (ii) its oxidation state.

• Pale blue [Cu(H2O)6]2+ can be converted into dark blue [Cu(NH3)6]2+ by adding NH3(aq).

• A partially filled d orbital is usually required for a complex to be colored.

• So, d 0 metal ions are usually colorless. Exceptions: MnO4

- and CrO42-.

• Colored compounds absorb visible light.

• The color our eye perceives is the sum of the light not absorbed by the complex.

Page 220: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

2. Account for the stability of complexs

1.配合物稳定性的示方法

在 [Cu(NH3)4]SO4溶液中,实际上存在着如

下平衡:

[Cu(NH3)4]2+ ⇌ Cu2++4NH3

Cu2++4NH3 ⇌ Cu(NH3)4]2+

Page 221: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

[Cu(NH3)4]2+ ⇌ Cu2++4NH3

Cu2++4NH3 ⇌ Cu(NH3)4]2+

前者是配离子的解离反应,后者则是配离子的生成反应。与之相应的标准平衡常数分别为叫做配离子的解离常数 (dissociation constant)和生成常数 (formation constant),分别用符号Kd和 Kf 表示。 Kd是配离子不稳定性的量

度,对相同配位数的配离子来说, Kd越大,

表示配离子越易解离。

Page 222: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Kf 是配离子稳定性的量度, Kf值越大,表

示该配离子在水中越稳定,因而 Kd和 Kf又

分别称为不稳定常数 (unstable constant)和

稳定常数 (stable costant)。

显然任何一个配离子的与互为倒数关

系:

Kd × Kf = 1

Page 223: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

在溶液中配离子的生成是分步进行的,每一步都有一个对应的稳定常数,我们称它为逐级稳定常数 (stepwise stable constants)(或分步稳定常数)。逐级稳定常数越大表示该级配合物越稳定,例如:

Cu2+ + NH3 ⇌ [Cu(NH3)]2+

10

/)( /) (

/))]( ([ 31.4

0

3

02

02

30

1

cNHccCuc

cNHCucK

Page 224: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

同理有:

[Cu(NH3)]2+ + NH3 ⇌ [Cu(NH3)2]2+ K2

0 = 10 3.67

[Cu(NH3)2]2+ + NH3 ⇌ [Cu(NH3)3]2+ K30 = 10 3.04

[Cu(NH3)3]2+ + NH3 ⇌ [Cu(NH3)4]2+ K40 = 10 2.3

多配体配离子的总稳定常数(或累积稳定常数)等于逐级稳定常数的乘积:

[Cu]2+ + 4NH3 ⇌ [Cu(NH3)4]2+

32.1340

302

02430

403

02

01

0 10/)( /)(

/)])(([

cNHccCuc

cNHCucKKKKK f

Page 225: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

一些常见配离子的稳定常数

Page 226: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

☛ 在晶体场中,中心离子的 d 电子从假如未分 裂的 d轨道(能量为 Es的 d轨道)进入分裂后 的 d轨道所产生的能量下降低值,称为 晶体 场稳定化能 (crystal field stability energy) 。

d6

Page 227: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

除了 Ni2+和 Cu2+的顺序反常外,弱场中配离子的稳定性顺序与 CFSE顺序基本一致,即 CFSE愈大,配合物愈稳定。 Cu2+的稳定性大于 Ni2+是由于Cu2+的八面体配离子产生了杨 -泰勒效应的结果 .

Page 228: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

在价键理论中,需要借助配离子的磁性实验数据推测中心离子 d 轨道中的未成对电子数,从而判断中心离子属于何种杂化类型,该配合物属于何种配合物。

△在晶体场理论中,只要知道分裂能( o)和电

子成对能( P)数据,就可以判断该配离子属于

强场或弱场离子,并进一步写出 d电子在 t2g轨道

和 eg轨道上的分布情况,判断成单电子数,并利

用公式 3-12计算出该配离子磁矩的理论值。

3. Account for the magnetism of complexs

Page 229: Chapter 12 Coordination Compound Main topics:  Fundamental Concepts of CC  Crystal Field Theory of CC  Valence Bond Theory of CC Coordination compounds(or

Magnetism• Many transition metal complexes are

paramagnetic (i.e. they have unpaired electrons).

• There are some interesting observations. Consider a d6 metal ion:– [Co(NH3)6]3+ has no unpaired electrons, but [CoF6]3-

has four unpaired electrons per ion.

• We need to develop a bonding theory to account for both color and magnetism in transition metal complexes.