Chapter 16, Solution 1. Consider the S-domain

Embed Size (px)

Citation preview

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    1/60

    Chapter 16, Solution 1.

    Consider the s-domain form of the circuit which is shown below.

    I(s)

    +

    1

    1/s1/s

    s

    222 )23()21s(

    1

    1ss

    1

    s1s1

    s1)s(I

    ++=

    ++=

    ++=

    = t

    2

    3sine

    3

    2)t(i 2t-

    =)t(i A)t866.0(sine155.1 -0.5t

    Chapter 16, Solution 2.

    8/ss

    s

    4 2+

    +

    Vx

    4

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    2/60

    V)t(u)e2e24(v

    3

    8j3

    4s

    125.0

    3

    8j3

    4s

    125.0

    s

    25.016

    )8s8s3(s

    2s16V

    s

    32s16)8s8s3(V

    0VsV)s4s2(s

    )32s16()8s4(V

    0

    s

    84

    0V

    2

    0V

    s

    s

    4V

    t)9428.0j3333.1(t)9428.0j3333.1(x

    2x

    2x

    x2

    x2

    x

    xxx

    + ++=

    +

    +

    ++

    +=

    ++

    +=

    +=++

    =++++

    +

    =

    +

    +

    +

    vx = Vt3

    22sine

    2

    6t

    3

    22cose)t(u4 3/t43/t4

    Chapter 16, Solution 3.s

    5/s 1/2

    +

    Vo

    1/8

    Current division leads to:

    )625.0s(16

    5

    s1610

    5

    s8

    1

    2

    12

    1

    s

    5

    8

    1Vo

    +=

    +=

    ++

    =

    vo(t) = ( ) V)t(ue13125. t625.00

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    3/60

    Chapter 16, Solution 4.

    The s-domain form of the circuit is shown below.

    6 s

    10/s1/(s + 1) +

    +

    Vo(s)

    Using voltage division,

    +++=

    +++=

    1s

    1

    10s6s

    10

    1s

    1

    s106s

    s10)s(V

    2o

    10s6s

    CBs

    1s

    A

    )10s6s)(1s(

    10)s(V

    22o ++

    ++

    +=

    +++=

    )1s(C)ss(B)10s6s(A10 22 ++++++=

    Equating coefficients :2s : -ABBA0 =+=1s : A5-CCA5CBA60 =+=++=0s : -10C-2,B,2AA5CA1010 ====+=

    22222o 1)3s(

    4

    1)3s(

    )3s(2

    1s

    2

    10s6s

    10s2

    1s

    2)s(V

    ++

    ++

    +

    +=

    ++

    +

    +=

    =)t(vo V)tsin(e4)tcos(e2e2-3t-3t-t

    Chapter 16, Solution 5.

    s

    2

    2s

    1

    +

    2

    Io

    s

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    4/60

    ( )

    ( ) A)t(ut3229.1sin7559.0e

    or

    A)t(ueee3779.0eee3779.0e)t(i

    3229.1j5.0s

    )646.2j)(3229.1j5.1(

    )3229.1j5.0(

    3229.1j5.0s

    )646.2j)(3229.1j5.1(

    )3229.1j5.0(

    2s

    1

    )3229.1j5.0s)(3229.1j5.0s)(2s(

    s

    2

    VsI

    )3229.1j5.0s)(3229.1j5.0s)(2s(

    s2

    2ss

    s2

    2s

    1

    2

    s

    2

    1

    s

    1

    1

    2s

    1V

    t2

    t3229.1j2/t90t3229.1j2/t90t2o

    22

    2

    o

    2

    =

    ++=

    +

    ++

    +

    +++

    ++

    =

    ++++==

    ++++=

    +++=

    +++

    =

    Chapter 16, Solution 6.

    2

    2s

    5

    +

    Io

    10/ss

    Use current division.

    t3sine3

    5t3cose5)t(i

    3)1s(

    5

    3)1s(

    )1s(5

    10s2s

    s5

    2s

    5

    s

    102s

    2sI

    tto

    22222o

    =

    ++

    ++

    +=

    ++=

    +++

    +=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    5/60

    Chapter 16, Solution 7.

    The s-domain version of the circuit is shown below.

    1/s1

    Ix

    + 2s

    1

    2

    +s

    Z

    2

    2

    2 s21

    1s2s2

    s21

    s21

    s2s

    1

    )s2(s

    1

    1s2//s

    11Z

    +

    ++=

    ++=

    +

    +=+=

    )5.0ss(

    CBs

    )1s(

    A

    )5.0ss)(1s(

    1s2

    1s2s2

    s21x

    1s

    2

    Z

    VI

    22

    2

    2

    2

    x++

    ++

    +=

    +++

    +=

    ++

    +

    +==

    )1s(C)ss(B)5.0ss(A1s2 222 ++++++=+

    BA2:s2 +=

    2CC2CBA0:s =+=++=

    -4B,6A30.5AorCA5.01:constant ===+=

    222x

    866.0)5.0s(

    )5.0s(4

    1s

    6

    75.0)5.0s(

    2s4

    1s

    6I

    ++

    +

    +=

    ++

    +

    +=

    [ ] A)t(ut866.0cose46)t(i t5.0x =

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    6/60

    Chapter 16, Solution 8.

    (a))1s(s

    1s5.1s

    s22

    )s21(

    s

    1)s21//(1

    s

    1Z

    2

    +

    ++=

    +

    ++=++=

    (b))1s(s2

    2s3s3

    s

    11

    1

    s

    1

    2

    1

    Z

    1 2

    +

    ++=

    +

    ++=

    2s3s3

    )1s(s2Z

    2 ++

    +=

    Chapter 16, Solution 9.

    (a) The s-domain form of the circuit is shown in Fig. (a).=

    ++

    +=+=

    s1s2

    )s1s(2)s1s(||2Z in 1s2s

    )1s(22

    2

    ++

    1

    1

    2s 2/s

    1/s

    s

    2

    (a) (b)

    (b) The s-domain equivalent circuit is shown in Fig. (b).

    2s3

    )2s(2

    s23

    )s21(2)s21(||2

    +

    +=

    +

    +=+

    2s3

    6s5)s21(||21 +

    +

    =++

    =

    +

    ++

    +

    +

    =

    +

    +=

    2s3

    6s5s

    2s3

    6s5s

    2s3

    6s5||sZ in 6s7s3

    )6s5(s2 +

    +

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    7/60

    Chapter 16, Solution 10.

    To find ZTh, consider the circuit below.

    1/s Vx

    +

    1V2 Vo 2Vo

    -

    Applying KCL gives

    s/12VV21 xo+=+

    But xo Vs/12

    2V

    += . Hence

    s3

    )1s2(V

    s/12

    V

    s/12

    V41 x

    xx +=+

    =+

    +

    s3

    )1s2(

    1

    VZ xTh

    +==

    To find VTh, consider the circuit below.1/s Vy

    +

    1

    2

    +s2 Vo 2Vo

    -

    Applying KCL gives

    )1s(3

    4V

    2

    VV2

    1s

    2o

    oo

    +==+

    +

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    8/60

    But 0Vs

    1V2V ooy =++

    )1s(s3

    )2s(4

    s

    2s

    )1s(3

    4)

    s

    21(VVV oyTh

    +

    +=

    +

    +=+==

    Chapter 16, Solution 11.

    The s-domain form of the circuit is shown below.

    4/s s

    I2I1+

    +

    2 4/(s + 2)1/s

    Write the mesh equations.

    21 I2Is

    42

    s

    1

    += (1)

    21 I)2s(I-22s

    4-++=

    +(2)

    Put equations (1) and (2) into matrix form.

    +

    +=

    + 2

    1

    I

    I

    2s2-

    2-s42

    2)(s4-

    s1

    )4s2s(s

    22 ++= ,

    )2s(s

    4s4s2

    1 +

    += ,

    s

    6-2 =

    4s2s

    CBs

    2s

    A

    )4s2s)(2s(

    )4s4s(21I

    22

    21

    1

    ++

    ++

    +

    =

    +++

    +=

    =

    )2s(C)s2s(B)4s2s(A)4s4s(21 222 ++++++=+

    Equating coefficients :2s : BA21 += 1s : CB2A22- ++=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    9/60

    0s : C2A42 +=

    Solving these equations leads to A 2= , 23-B = , -3C =

    221 )3()1s(

    3s23-

    2s

    2

    I ++

    ++=

    22221 )3()1s(

    3

    32

    3-

    )3()1s(

    )1s(

    2

    3-

    2s

    2I

    +++

    ++

    ++

    +=

    =)t(i1 [ ] A)t(u)t732.1sin(866.0)t732.1cos(e5.1e2 -t-2t 222

    22

    )3()1s(

    3-

    )4s2s(2

    s

    s

    6-I

    ++=

    ++=

    =

    == )t3sin(e3

    3-)t(i t-2 A)t(u)t732.1sin(e1.732-

    -t

    Chapter 16, Solution 12.

    We apply nodal analysis to the s-domain form of the circuit below.

    Vo

    10/(s + 1) +

    1/(2s) 4

    s

    3/s

    o

    oo

    sV24

    V

    s

    3

    s

    V1s

    10

    +=+

    +

    1s15s151015

    1s10V)ss25.01( o

    2

    +

    ++=++=++

    1s25.0s

    CBs

    1s

    A

    )1s25.0s)(1s(

    25s15V

    22o ++

    ++

    +=

    +++

    +=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    10/60

    7

    40V)1s(A 1-so =+= =

    )1s(C)ss(B)1s25.0s(A25s15 22 ++++++=+

    Equating coefficients :2s : -ABBA0 =+=1s : C-0.75ACBA25.015 +=++= 0s : CA25 +=

    740A = , 740-B = , 7135C =

    43

    21s

    2

    3

    3

    2

    7

    155

    43

    21s

    2

    1s

    7

    40

    1s

    1

    7

    40

    43

    21s

    7

    135s

    7

    40-

    1s

    7

    40

    V 222o

    +

    +

    +

    +

    +

    +

    +=

    +

    +

    ++

    +=

    +

    = t

    2

    3sine

    )3)(7(

    )2)(155(t

    2

    3cose

    7

    40e

    7

    40)t(v 2t-2t-t-o

    =)t(vo V)t866.0sin(e57.25)t866.0cos(e714.5e714.52-t2-t-t +

    Chapter 16, Solution 13.

    Consider the following circuit.

    Vo

    1/(s + 2)

    1/s 2s

    Io

    2 1

    Applying KCL at node o,

    o

    ooV

    1s2

    1s

    s12

    V

    1s2

    V

    2s

    1

    +

    +=

    ++

    +=

    +

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    11/60

    )2s)(1s(

    1s2Vo ++

    +=

    2s

    B

    1s

    A

    )2s)(1s(

    1

    1s2

    VI

    o

    o ++

    +=

    ++=

    +=

    1A = , -1B =

    2s

    1

    1s

    1Io +

    +

    =

    =)t(io ( ) A)t(uee -2t-t Chapter 16, Solution 14.

    We first find the initial conditions from the circuit in Fig. (a).

    1 4

    io

    +

    vc(0)

    +

    5 V

    (a)

    A5)0(io = , V0)0(vc =

    We now incorporate these conditions in the s-domain circuit as shown in Fig.(b).

    2s 5/s

    Io

    Vo

    +

    1 4

    15/s 4/s

    (b)

    At node o,

    0s44

    0V

    s

    5

    s2

    V

    1

    s15V ooo=

    +

    +++

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    12/60

    oV)1s(4

    s

    s2

    11

    s

    5

    s

    15

    +++=

    o

    2

    o

    22

    V)1s(s4

    2s6s5V

    )1s(s4

    s2s2s4s4

    s

    10

    +

    ++=+

    ++++=

    2s6s5

    )1s(40V

    2o ++

    +=

    s

    5

    )4.0s2.1s(s

    )1s(4

    s

    5

    s2

    VI

    2

    o

    o +++

    +=+=

    4.0s2.1s

    CBs

    s

    A

    s

    5I

    2o ++

    +++=

    sCsB)4.0s2.1s(A)1s(4 s2 ++++=+

    Equating coefficients :0s : 10AA4.04 ==1s : -84-1.2ACCA2.14 =+=+=2s : -10-ABBA0 ==+=

    4.0s2.1s

    8s10

    s

    10

    s

    5I

    2o ++

    ++=

    2222o 2.0)6.0s(

    )2.0(10

    2.0)6.0s(

    )6.0s(10

    s

    15I

    ++

    ++

    +=

    =)t(io ( ) ] A)t(u)t2.0sin()t2.0cos(e1015 0.6t- Chapter 16, Solution 15.

    First we need to transform the circuit into the s-domain.

    2s

    5

    +

    Vo

    +

    +

    5/s

    s/4

    + Vx

    10

    3Vx

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    13/60

    2s

    5VV

    2s

    5VV,But

    2s

    s5V120V)40ss2(0

    2s

    s5sVVs2V120V40

    0

    10

    2s

    5V

    s/5

    0V

    4/s

    V3V

    xoox

    xo2

    oo2

    xo

    ooxo

    ++=

    +=

    +++==

    +++

    =+

    +

    +

    We can now solve for Vx.

    )40s5.0s)(2s(

    )20s(5V

    2s

    )20s(10V)40s5.0s(2

    02s

    s5V120

    2s

    5V)40ss2(

    2

    2

    x

    2

    x2

    xx

    2

    ++

    +=

    +

    +=+

    =+

    ++++

    Chapter 16, Solution 16.

    We first need to find the initial conditions. For 0t < , the circuit is shown in Fig. (a).To dc, the capacitor acts like an open circuit and the inductor acts like a short circuit.

    1

    + Vo

    1 F

    Vo/2+

    1 H io

    +

    2

    3 V

    (a)

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    14/60

    Hence,

    A1-3

    3-i)0(i oL === , V1-vo =

    V5.22

    1-

    )1-)(2(-)0(vc=

    =

    We now incorporate the initial conditions for as shown in Fig. (b).0t >

    I2I1+

    s

    2.5/s +

    1

    + Vo

    1/s

    Vo/2+

    Io

    +

    2

    -1 V

    5/(s + 2)

    (b)

    For mesh 1,

    0

    2

    V

    s

    5.2I

    s

    1I

    s

    12

    2s

    5- o21 =++

    ++

    +

    But, 2oo IIV ==

    s

    5.2

    2s

    5I

    s

    1

    2

    1I

    s

    12 21 +

    =

    +

    + (1)

    For mesh 2,

    0s

    5.2

    2

    V1I

    s

    1I

    s

    1s1

    o

    12 =+

    ++

    1s

    5.2I

    s

    1s

    2

    1I

    s

    1- 21 =

    +++ (2)

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    15/60

    Put (1) and (2) in matrix form.

    +

    =

    ++

    +

    1

    s

    5.2

    s

    5.2

    2s

    5

    I

    I

    s

    1s

    2

    1

    s

    1-

    s

    1

    2

    1

    s

    12

    2

    1

    s

    32s2 ++= ,

    )2s(s

    5

    s

    42-2 +

    ++=

    3s2s2

    CBs

    2s

    A

    )3s2s2)(2s(

    132s-II

    22

    22

    2o ++

    ++

    +=

    +++

    +=

    ==

    )2s(C)s2s(B)3s2s2(A132s- 222 ++++++=+

    Equating coefficients :2s : BA22- +=1s : CB2A20 ++=0s : C2A313 +=

    Solving these equations leads to

    7143.0A = , ,-3.429B = 429.5C =

    5.1ss

    714.2s7145.1

    2s

    7143.0

    3s2s2

    429.5s429.3

    2s

    7143.0I

    22o ++

    +=

    ++

    +=

    25.1)5.0s()25.1)(194.3(

    25.1)5.0s()5.0s(7145.1

    2s7143.0I

    22o +++

    +++

    +=

    =)t(io [ ] A)t(u)t25.1sin(e194.3)t25.1cos(e7145.1e7143.0 -0.5t-0.5t-2t +

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    16/60

    Chapter 16, Solution 17.

    We apply mesh analysis to the s-domain form of the circuit as shown below.

    2/(s+1)

    I3

    +

    1/s

    I2I1

    4

    s

    1 1

    For mesh 3,

    0IsIs

    1I

    s

    1s

    1s

    2213 =

    ++

    +(1)

    For the supermesh,

    0Iss

    1I)s1(I

    s

    11 321 =

    +++

    + (2)

    But (3)4II 21 =

    Substituting (3) into (1) and (2) leads to

    +=

    +

    ++

    s

    114I

    s

    1sI

    s

    1s2 32 (4)

    1s

    2

    s

    4-I

    s

    1sI

    s

    1s- 32 +

    =

    ++

    + (5)

    Adding (4) and (5) gives

    1s

    24I2 2 +=

    1s

    12I2 +=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    17/60

    == )t(i)t(i 2o A)t(u)e2(-t

    Chapter 16, Solution 18.

    vs(t) = 3u(t) 3u(t1) or Vs = )e1(s

    3

    s

    e

    s

    3 ss

    =

    1

    +

    Vo

    +

    1/sVs 2

    V)]1t(u)e22()t(u)e22[()t(v

    )e1(5.1s

    2

    s

    2)e1(

    )5.1s(s

    3V

    VV)5.1s(02

    VsV

    1

    VV

    )1t(5.1t5.1

    o

    sso

    soo

    oso

    =

    +=

    +=

    ==++

    +

    Chapter 16, Solution 19.

    We incorporate the initial conditions in the s-domain circuit as shown below.

    I

    1/s

    +

    2 IV1 Vo

    1/s

    s

    +

    2

    24/(s + 2)

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    18/60

    At the supernode,

    o

    11sV

    s

    1

    s

    V2

    2

    V)2s(4++=+

    +

    o1 Vss

    1

    Vs

    1

    2

    1

    22s

    2

    ++

    +=++ (1)

    But andI2VV 1o += s

    1VI

    1 +=

    2s

    2Vs

    s)2s(

    s2VV

    s

    )1V(2VV

    oo

    1

    1

    1o +

    =

    +

    =

    ++= (2)

    Substituting (2) into (1)

    oo Vs2s

    2V2s

    s

    s

    1s2

    s

    122s

    2

    +

    +

    +

    +

    =++

    oVs2s

    1s2

    )2s(s

    )1s2(2

    s

    12

    2s

    2

    +

    +

    +=

    +

    +++

    +

    o

    22

    V2s

    1s4s

    2s

    9s2

    )2s(s

    s9s2

    +

    ++=

    +

    +=

    +

    +

    732.3s

    B

    2679.0s

    A

    1s4s

    9s2

    V 2o ++

    +=

    ++

    +=

    443.2A = , 4434.0-B =

    732.3s

    4434.0

    2679.0s

    443.2Vo +

    +

    =

    Therefore,

    =)t(vo V)t(u)e4434.0e443.2(-3.732t-0.2679t

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    19/60

    Chapter 16, Solution 20.

    We incorporate the initial conditions and transform the current source to a voltage source

    as shown.

    1 s

    + 1/s2/s Vo

    +

    1

    1/(s + 1) 1/s

    At the main non-reference node, KCL gives

    s

    1

    s

    V

    1

    V

    s11

    Vs2)1s(1 ooo++=

    +

    +

    s

    1sV)s1s)(1s(Vs2

    1s

    soo

    ++++=

    +

    oV)s12s2(2s

    1s

    1s

    s++=

    +

    +

    )1s2s2)(1s(

    1s4s2-V

    2

    2

    o +++

    =

    5.0ss

    CBs

    1s

    A

    )5.0ss)(1s(

    5.0s2s-V

    22o ++

    ++

    +=

    +++

    =

    1V)1s(A 1-so =+= =

    )1s(C)ss(B)5.0ss(A5.0s2s- 222 ++++++=

    Equating coefficients :2s : -2BBA1- =+=1s : -1CCBA2- =++=0s : -0.515.0CA5.00.5- ==+=

    222o )5.0()5.0s(

    )5.0s(2

    1s

    1

    5.0ss

    1s2

    1s

    1V

    ++

    +

    +=

    ++

    +

    +=

    =)t(vo [ ] V)t(u)2tcos(e2e 2-t-t

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    20/60

    Chapter 16, Solution 21.

    The s-domain version of the circuit is shown below.

    1 sV1 Vo

    + 2/s 2 1/s

    -

    At node 1,

    10/s

    ooo V

    sVsV

    s

    s

    VVV

    s )12

    ()1(1021

    102

    11

    1

    ++=+=

    (1)

    At node 2,

    )12

    (2

    2

    11 ++=+=

    s

    sVVsV

    V

    s

    VVoo

    oo (2)

    Substituting (2) into (1) gives

    oooVsssV

    sVsss )5.12()1

    2()12/)(1(10 2

    22 ++=++++=

    5.12)5.12(

    1022 ++

    ++=

    ++=

    ss

    CBs

    s

    A

    sssV

    o

    CsBsssA ++++= 22 )5.12(10

    BAs +=0:2

    CAs += 20:

    -40/3C-20/3,B,3/205.110:constant ==== AA

    ++++

    +

    =

    ++

    +

    = 22222 7071.0)1(

    7071.0

    414.17071.0)1(

    11

    3

    20

    5.12

    21

    3

    20

    ss

    s

    sss

    s

    sVo

    Taking the inverse Laplace tranform finally yields

    [ ] V)t(ut7071.0sine414.1t7071.0cose13

    20)t(v tto

    =

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    21/60

    Chapter 16, Solution 22.

    The s-domain version of the circuit is shown below.

    4s

    V1 V2

    1s +

    121 2 3/s

    At node 1,

    s4

    V

    s4

    11V

    1s

    12

    s4

    VV

    1

    V

    1s

    12 2

    1

    211

    +=

    +

    +=

    +(1)

    At node 2,

    ++=+=

    1s2s

    3

    4VVV

    3

    s

    2

    V

    s4

    VV 2212

    221 (2)

    Substituting (2) into (1),

    222

    2 V2

    3s

    3

    7s

    3

    4

    s4

    1

    s4

    111s2s

    3

    4V

    1s

    12

    ++=

    +

    ++=

    +

    )8

    9s

    4

    7s(

    CBs

    )1s(

    A

    )8

    9s

    4

    7s)(1s(

    9V

    222

    ++

    ++

    +=

    +++=

    )1s(C)ss(B)8

    9s

    4

    7s(A9 22 ++++++=

    Equating coefficients:

    BA0:s2 +=

    A4

    3CCA

    4

    3CBA

    4

    70:s =+=++=

    -18C-24,B,24AA8

    3CA

    8

    99:constant ====+=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    22/60

    64

    23)

    8

    7s(

    3

    64

    23)

    8

    7s(

    )8/7s(24

    )1s(

    24

    )8

    9s

    4

    7s(

    18s24

    )1s(

    24V

    2222

    ++

    +

    ++

    +

    +=

    ++

    +

    +=

    Taking the inverse of this produces:

    )t(u)t5995.0sin(e004.5)t5995.0cos(e24e24)t(v t875.0t875.0t2 +=

    Similarly,

    )8

    9s

    4

    7s(

    FEs

    )1s(

    D

    )8

    9s

    4

    7s)(1s(

    1s2s3

    49

    V22

    2

    1

    ++

    ++

    +=

    +++

    ++

    =

    )1s(F)ss(E)8

    9s

    4

    7s(D1s2s

    3

    49 222 ++++++=

    ++

    Equating coefficients:

    ED12:s2 +=

    D4

    36FFD

    4

    36orFED

    4

    718:s =+=++=

    0F4,E,8DD833orFD

    899:constant ====+=

    64

    23)

    8

    7s(

    2/7

    64

    23)

    8

    7s(

    )8/7s(4

    )1s(

    8

    )8

    9s

    4

    7s(

    s4

    )1s(

    8V

    2221

    ++

    ++

    ++

    +=

    ++

    ++

    =

    Thus,

    )t(u)t5995.0sin(e838.5)t5995.0cos(e4e8)t(v t875.0t875.0t1 +=

    Chapter 16, Solution 23.

    The s-domain form of the circuit with the initial conditions is shown below.

    V

    I

    1/sCsLR -2/s4/s 5C

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    23/60

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    24/60

    Chapter 16, Solution 24.

    At t = 0-, the circuit is equivalent to that shown below.

    +

    9A 4 5 vo

    -

    20)9(54

    4x5)0(vo =

    +=

    For t > 0, we have the Laplace transform of the circuit as shown below after

    transforming the current source to a voltage source.

    4 16 Vo

    +

    36V 10A 2/s 5

    -

    Applying KCL gives

    8.12B,2.7A,5.0s

    B

    s

    A

    )5.0s(s

    s206.3V

    5

    V

    2

    sV10

    20

    V36o

    ooo ==+

    +=+

    +=+=+

    Thus,

    )t(ue8.122.7)t(v t5.0

    o

    =

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    25/60

    Chapter 16, Solution 25.

    For , the circuit in the s-domain is shown below.0t >

    s6 I

    Applying KVL,

    +

    V

    +

    (2s)/(s

    2+ 16)

    +

    9/s

    2/s

    0s

    2I

    s

    9s6

    16s

    s22

    =+

    +++

    +

    )16s)(9s6s(

    32s4I

    22

    2

    +++

    +=

    )16s()3s(s

    288s36

    s

    2

    s

    2I

    s

    9V

    22

    2

    ++

    ++=+=

    16s

    EDs

    )3s(

    C

    3s

    B

    s

    A

    s

    222 +

    ++

    ++

    +++=

    )s48s16s3s(B)144s96s25s6s(A288s36 2342342 ++++++++=+

    )s9s6s(E)s9s6s(D)s16s(C 232343 ++++++++

    Equating coefficients :

    0s : A144288 = (1)1s : E9C16B48A960 +++= (2)2s : E6D9B16A2536 +++= (3)3s : ED6CB3A60 ++++= (4)4s : (5)DBA0 ++=

    Solving equations (1), (2), (3), (4) and (5) gives

    2A = , B , C7984.1-= 16.8-= , D 2016.0-= , 765.2E =

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    26/60

    16s

    )4)(6912.0(

    16s

    s2016.0

    )3s(

    16.8

    3s

    7984.1

    s

    4)s(V

    222 ++

    +

    +

    +=

    =)t(v V)t4sin(6912.0)t4cos(2016.0et16.8e7984.1)t(u4 -3t-3t +

    Chapter 16, Solution 26.

    Consider the op-amp circuit below.

    R2

    +

    Vo

    0

    +

    R1

    1/sC

    +

    Vs

    At node 0,

    sC)V0(R

    V0

    R

    0V

    o2

    o

    1

    s

    +

    =

    ( )o

    2

    1s V-sCR

    1RV

    +=

    211s

    o

    RRCsR

    1-

    V

    V

    +=

    But 2

    10

    20

    R

    R

    2

    1 == , 1)1050)(1020(CR 6-31 ==

    So,2s

    1-

    V

    V

    s

    o

    +=

    )5s(3Ve3V s-5t

    s +==

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    27/60

    5)2)(s(s

    3-Vo ++

    =

    5s

    B

    2s

    A

    5)2)(s(s

    3V- o +

    ++

    =++

    =

    1A = , -1B =

    2s

    1

    5s

    1Vo +

    +

    =

    =)t(vo ( ) )t(uee -2t-5t Chapter 16, Solution 27.

    Consider the following circuit.

    For mesh 1,

    I2

    2s

    I1+

    10/(s + 3) 1

    2ss

    1

    221 IsII)s21(3s

    10+=

    +

    21 I)s1(I)s21(3s

    10++=

    +(1)

    For mesh 2,

    112 IsII)s22(0 +=

    21 I)1s(2I)s1(-0 +++= (2)

    (1) and (2) in matrix form,

    ++

    ++=

    +

    2

    1

    I

    I

    )1s(2)1s(-

    )1s(-1s2

    0

    )3s(10

    1s4s3 2 ++=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    28/60

    3s

    )1s(201 +

    +=

    3s

    )1s(10

    2+

    +=

    Thus

    =

    = 11I )1s4s3)(3s(

    )1s(202 ++

    =

    = 22I )1s4s3)(3s(

    )1s(102 ++

    2

    I1=

    Chapter 16, Solution 28.

    Consider the circuit shown below.

    +

    Vo

    I1

    +

    1

    2s s I2

    s

    6/s 2

    For mesh 1,

    21 IsI)s21(s

    6++= (1)

    For mesh 2,

    21 I)s2(Is0 ++=

    21 Is

    21-I

    += (2)

    Substituting (2) into (1) gives

    2

    2

    22 Is

    2)5s(s-IsI

    s

    212s)-(1

    s

    6 ++=+

    ++=

    or2s5s

    6-I

    22 ++=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    29/60

    4.561)0.438)(s(s

    12-

    2s5s

    12-I2V

    22o ++=

    ++==

    Since the roots of s are -0.438 and -4.561,02s52 =++

    561.4s

    B

    438.0s

    AVo +

    ++

    =

    -2.914.123

    12-A == , 91.2

    4.123-

    12-B ==

    561.4s

    91.2

    0.438s

    2.91-)s(Vo +

    ++

    =

    =)t(vo [ ] V)t(uee91.2 t438.0-4.561t Chapter 16, Solution 29.

    Consider the following circuit.

    1 : 2Io

    +

    10/(s + 1)

    1

    4/s 8

    Let1s2

    8

    s48

    )s4)(8(

    s

    4||8ZL +

    =+

    ==

    When this is reflected to the primary side,

    2n,n

    Z

    1Z 2L

    in=+=

    1s2

    3s2

    1s2

    21Zin +

    +=

    ++=

    3s2

    1s2

    1s

    10

    Z

    1

    1s

    10I

    in

    o +

    +

    +=

    +=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    30/60

    5.1s

    B

    1s

    A

    )5.1s)(1s(

    5s10Io +

    ++

    =++

    +=

    -10A = , 20B =

    5.1s

    20

    1s

    10-)s(Io +

    ++

    =

    =)t(io [ ] A)t(uee210 t-1.5t Chapter 16, Solution 30.

    )s(X)s(H)s(Y = ,1s3

    1231s

    4)s(X+

    =+

    =

    22

    2

    )1s3(

    34s8

    3

    4

    )1s3(

    s12)s(Y

    +

    +=

    +=

    22 )31s(

    1

    27

    4

    )31s(

    s

    9

    8

    3

    4)s(Y

    +

    +=

    Let 2)31s(

    s

    9

    8-

    )s( +=G

    Using the time differentiation property,

    +== 3t-3t-3t- eet

    3

    1-

    9

    8-)et(

    dt

    d

    9

    8-)t(g

    3t-3t- e9

    8et

    27

    8)t(g =

    Hence,

    3t-3t-3t- et27

    4e

    9

    8et

    27

    8)t(u

    3

    4)t(y +=

    =)t(y 3t-3t- et27

    4e

    9

    8)t(u

    3

    4+

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    31/60

    Chapter 16, Solution 31.

    s

    1)s(X)t(u)t(x ==

    4s

    s10)s(Y)t2cos(10)t(y

    2 +==

    ==)s(X

    )s(Y)s(H

    4s

    s102

    2

    +

    Chapter 16, Solution 32.

    (a) )s(X)s(H)s(Y =

    s

    1

    5s4s

    3s2

    ++

    +=

    5s4s

    CBs

    s

    A

    )5s4s(s

    3s22 ++

    ++=

    ++

    +=

    CsBs)5s4s(A3s 22 ++++=+

    Equating coefficients :0s : 53AA53 == 1s : 57-A41CCA41 ==+= 2s : 53--ABBA0 ==+=

    5s4s

    7s3

    5

    1

    s

    53)s(Y

    2 ++

    +=

    1)2s(

    1)2s(3

    5

    1

    s

    6.0

    )s(Y 2 ++

    ++

    =

    =)t(y [ ] )t(u)tsin(e2.0)tcos(e6.06.0 -2t-2t

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    32/60

    (b)2

    2t-

    )2s(

    6)s(Xet6)t(x

    +==

    22 )2s(

    6

    5s4s

    3s)s(X)s(H)s(Y

    +

    ++

    +==

    5s4s

    DCs

    )2s(

    B

    2s

    A

    )5s4s()2s(

    )3s(6)s(Y

    2222 ++

    ++

    ++

    +=

    +++

    +=

    Equating coefficients :3s : (1)-ACCA0 =+=2s : DBA2DC4BA60 ++=+++= (2)1s : D4B4A9D4C4B4A136 ++=+++= (3)0s : BA2D4B5A1018 +=++= (4)

    Solving (1), (2), (3), and (4) gives

    6A = , 6B = , 6-C = , -18D =

    1)2s(

    18s6

    )2s(

    6

    2s

    6)s(Y

    22 ++

    +

    ++

    +=

    1)2s(

    6

    1)2s(

    )2s(6

    )2s(

    6

    2s

    6)s(Y

    222 ++

    ++

    +

    ++

    +=

    =)t(y [ ] )t(u)tsin(e6)tcos(e6et6e6 -2t-2t-2t-2t Chapter 16, Solution 33.

    )s(X

    )s(Y)s(H = ,

    s

    1)s(X =

    16)2s(

    )4)(3(

    16)2s(

    s2

    )3s(2

    1

    s

    4)s(Y

    22 ++

    ++

    ++=

    == )s(Ys)s(H20s4s

    s12

    20s4s

    s2

    )3s(2

    s4

    22

    2

    ++++

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    33/60

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    34/60

    3s

    V

    s2

    VV3

    11s

    +=

    1s

    1V

    2

    s3V

    2

    s3

    3s

    V=

    +

    s1 V2

    s3V

    2

    s3

    3s

    1=

    +

    +

    s21V

    2s9s3

    )3s(s3V

    ++

    +=

    s21oV

    2s9s3

    s9V

    3s

    3V

    ++=

    +=

    ==s

    o

    V

    V)s(H

    2s9s3

    s92 +

    Chapter 16, Solution 36.

    From the previous problem,

    s2

    1V

    2s9s3

    s3

    3s

    VI3

    ++

    =

    +

    =

    s2V

    2s9s3

    sI

    ++=

    But o

    2

    s Vs9

    2s9s3V

    ++=

    2

    2

    3 9 2

    3 9 2 9 9

    o

    o

    V s s sI V

    s s s

    + +=

    + +=

    ==I

    V)s(H

    o9

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    35/60

    Chapter 16, Solution 37.

    (a) Consider the circuit shown below.3 2s

    +

    Vx

    2/s +I1 I2+

    Vs 4Vx

    For loop 1,

    21s Is

    2I

    s

    23V

    += (1)

    For loop 2,

    0Is

    2I

    s

    2s2V4 12x =

    ++

    But,

    =

    s

    2)II(V 21x

    So, 0Is

    2I

    s

    2s2)II(

    s

    81221 =

    ++

    21 Is2s

    6I

    s

    6-0

    += (2)

    In matrix form, (1) and (2) become

    +=

    2

    1s

    I

    I

    s2s6s6-

    s2-s23

    0

    V

    +=

    s

    2

    s

    6s2

    s

    6

    s

    23

    4s6s

    18=

    s1 Vs2s

    6

    = , s2 Vs

    6=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    36/60

    s

    1

    1 Vs64s18

    )s2s6(I

    =

    =

    =

    =

    32s9

    ss3

    V

    I

    s

    1

    9s2s3

    3s2

    2

    (b)

    = 22I

    == 2121x s

    2)II(

    s

    2V

    =

    =

    ss

    x

    V4-)s6s2s6(Vs2V

    ==s

    s

    x

    2

    4V-

    Vs6

    V

    I

    2s

    3-

    Chapter 16, Solution 38.

    (a) Consider the following circuit.

    1

    +

    Vo

    sIs

    1/s

    VoV1

    1/s+

    Vs

    1 Io

    At node 1,

    s

    VVVs

    1

    VV o11

    1s +=

    o1s Vs

    1V

    s

    1s1V

    ++= (1)

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    37/60

    At node o,

    ooo

    o1V)1s(VVs

    s

    VV+=+=

    o2

    1 V)1ss(V ++= (2)

    Substituting (2) into (1)

    oo2

    s Vs1V)1ss)(s11s(V ++++=

    o23

    s V)2s3s2s(V +++=

    ==s

    o

    1 V

    V)s(H

    2s3s2s

    123 +

    (b) o2o231ss V)1ss(V)2s3s2s(VVI +++++==o

    23s V)1s2ss(I +++=

    ==s

    o

    2 I

    V)s(H

    1s2ss

    123 +

    (c)1

    VI

    o

    o =

    ==== )s(HI

    V

    I

    I)s(H 2

    s

    o

    s

    o

    3 1s2ss

    123 +

    (d). ==== )s(HV

    V

    V

    I)s( 1

    s

    o

    s

    o

    4H 2s3s2s

    123 +

    Chapter 16, Solution 39.

    Consider the circuit below.

    +

    Vo

    Io

    +

    1/sC

    RVb

    Va+

    Vs

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    38/60

    Since no current enters the op amp, flows through both R and C.oI

    +=

    sC

    1RI-V oo

    sC

    I-VVV

    o

    sba ===

    =+

    ==sC1

    sC1R

    V

    V)s(H

    s

    o1sRC+

    Chapter 16, Solution 40.

    (a)LRs

    LR

    sLR

    R

    V

    V)s(H

    s

    o

    +=

    +==

    =)t(h )t(ueL

    RLRt-

    (b) s1)s(V)t(u)t(v ss ==

    LRs

    B

    s

    A

    )LRs(s

    LRV

    LRs

    LRV so

    +

    +=

    +

    =

    +

    =

    1A = , -1B =

    LRs

    1

    s

    1Vo +

    =

    == )t(ue)t(u)t(v L-Rto )t(u)e1(L-Rt

    Chapter 16, Solution 41.

    )s(X)s(H)s(Y =

    1s

    2)s(H)t(ue2)t(h t-

    +==

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    39/60

    s5)s(X)s(V)t(u5)t(v ii ===

    1s

    B

    s

    A

    )1s(s

    10)s(Y

    ++=

    +=

    10A = , -10B =

    1s

    10

    s

    10)s(Y

    +=

    =)t(y )t(u)e1(10 -t

    Chapter 16, Solution 42.

    )s(X)s(Y)s(Ys2 =+

    )s(X)s(Y)1s2( =+

    )21s(2

    1

    1s2

    1

    )s(X

    )s(Y)s(H

    +=

    +==

    =)t(h )t(ue5.0 2-t

    Chapter 16, Solution 43.

    i(t)

    +

    1

    1Fu(t)

    1H

    First select the inductor current iL and the capacitor voltage vC to be the statevariables.

    Applying KVL we get:'CC vi;0'ivi)t(u ==+++

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    40/60

    Thus,

    )t(uivi

    iv

    C'

    'C

    +=

    =

    Finally we get,

    [ ] [ ] )t(u0i

    v10)t(i;)t(u

    1

    0

    i

    v

    11

    10

    i

    v CCC +

    =

    +

    =

    Chapter 16, Solution 44.

    1/8 F1H

    )t(u4 2+

    +

    vx

    4

    First select the inductor current iL and the capacitor voltage vC to be the statevariables.

    Applying KCL we get:

    LCxxLC

    'C

    C

    'C

    Cx

    x'L

    xL'C

    'CxL

    i3333.1v3333.0vor;v2i4v2

    vv

    8

    v4vv

    v)t(u4i

    v4i8vor;08

    v

    2

    vi

    +=+=+=+=

    =

    ==++

    LC'L

    LCLCL'C

    i3333.1v3333.0)t(u4i

    i666.2v3333.1i333.5v3333.1i8v

    =

    +==

    Now we can write the state equations.

    =

    +

    =

    L

    Cx

    L

    C

    'L

    'C

    i

    v

    3333.1

    3333.0v;)t(u

    4

    0

    i

    v

    3333.13333.0

    666.23333.1

    i

    v

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    41/60

    Chapter 16, Solution 45.

    First select the inductor current iL (current flowing left to right) and the capacitor voltage

    vC (voltage positive on the left and negative on the right) to be the state variables.

    Applying KCL we get:

    2o'L

    oL'CL

    o'C

    vvi

    v2i4vor0i2

    v4

    v

    =

    +==++

    1Co vvv +=

    21C'L

    1CL'C

    vvvi

    v2v2i4v

    +=

    +=

    [ ] [ ]

    +

    =

    +

    =

    )t(v

    )t(v01

    v

    i10)t(v;

    )t(v

    )t(v

    02

    11

    v

    i

    24

    10

    v

    i

    2

    1

    C

    Lo

    2

    1

    C

    L

    C

    L

    Chapter 16, Solution 46.

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    42/60

    First select the inductor current iL (left to right) and the capacitor voltage vC to be

    the state variables.

    Letting vo = vC and applying KCL we get:

    sC'L

    sLC'CsC'CL

    vvi

    iiv25.0vor0i4

    vvi

    +=

    ++==++

    Thus,

    +

    =

    +

    =

    s

    s

    L

    Co

    s

    s

    'L

    'C

    'L

    'C

    i

    v

    00

    00

    i

    v

    0

    1)t(v;

    i

    v

    01

    10

    i

    v

    01

    125.0

    i

    v

    Chapter 16, Solution 47.

    First select the inductor current iL (left to right) and the capacitor voltage vC (+ on theleft) to be the state variables.

    Letting i1 =4

    v 'C and i2 = iL and applying KVL we get:

    Loop 1:

    1CL'CL

    'C

    C1 v2v2i4vor0i4

    v2vv +==

    ++

    Loop 2:

    21C21CL

    L'L

    2'L

    'C

    L

    vvvv2

    v2v2i4i2i

    or0vi4

    vi2

    +=+

    +=

    =++

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    43/60

    1CL1CL

    1 v5.0v5.0i4

    v2v2i4i +=

    +=

    +

    =

    +

    =

    )t(v

    )t(v

    00

    05.0

    v

    i

    01

    5.01

    )t(i

    )t(i;

    )t(v

    )t(v

    02

    11

    v

    i

    24

    10

    v

    i

    2

    1

    C

    L

    2

    1

    2

    1

    C

    L

    C

    L

    Chapter 16, Solution 48.

    Let x1 = y(t). Thus, )t(zx4x3yxandxyx 21'22

    ''1 +====

    This gives our state equations.

    [ ] [ ] )t(z0x

    x01)t(y;)t(z

    1

    0

    x

    x

    43

    10

    x

    x

    2

    1

    2

    1

    '2

    '1 +

    =

    +

    =

    Chapter 16, Solution 49.

    zxyorzyzxxand)t(yxLet 2'''

    121 +====

    Thus,

    z3x5x6zz2z)zx(5x6zyx 21''

    21''

    2 =+++==

    This now leads to our state equations,

    [ ] [ ] )t(z0x

    x01)t(y;)t(z

    3

    1

    x

    x

    56

    10

    x

    x

    2

    1

    2

    1

    '2

    '1 +

    =

    +

    =

    Chapter 16, Solution 50.

    Let x1 = y(t), x2 = .xxand,x'23

    '1 =

    Thus,

    )t(zx6x11x6x321

    "

    3+=

    We can now write our state equations.

    [ ] [ ] )t(z0

    x

    x

    x

    001)t(y;)t(z

    1

    0

    0

    x

    x

    x

    6116

    100

    010

    x

    x

    x

    3

    2

    1

    3

    2

    1

    '3

    '2

    '1

    +

    =

    +

    =

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    44/60

    Chapter 16, Solution 51.

    We transform the state equations into the s-domain and solve using Laplace

    transforms.

    +=

    s

    1B)s(AX)0(x)s(sX

    Assume the initial conditions are zero.

    +++=

    +=

    =

    )s/2(

    0

    4s2

    4s

    8s4s

    1

    s

    1

    2

    0

    s2

    44s)s(X

    s

    1B)s(X)AsI(

    2

    1

    222222

    221

    2)2s(

    2

    2)2s(

    )2s(

    s

    1

    2)2s(

    4s

    s

    1

    8s4s

    4s

    s

    1

    )8s4s(s

    8)s(X)s(Y

    ++

    +

    ++

    ++=

    ++

    +=

    ++

    +=

    ++==

    y(t) = ( )( ) )t(ut2sint2cose1 t2 +

    Chapter 16, Solution 52.

    Assume that the initial conditions are zero. Using Laplace transforms we get,

    +

    +

    ++=

    +

    +=

    s/4

    s/3

    2s2

    14s

    10s6s

    1

    s/2

    s/1

    04

    11

    4s2

    12s)s(X

    2

    1

    22221

    1)3s(

    8.1s8.0

    s

    8.0

    )1)3s((s

    8s3X

    ++

    +=

    ++

    +=

    2222 1)3s(

    16.

    1)3s(

    3s8.0

    s

    8.0

    +++

    ++

    +=

    )t(u)tsine6.0tcose8.08.0()t(x t3t31 +=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    45/60

    22222 1)3s(

    4.4s4.1

    s

    4.1

    1)3s((s

    14s4X

    ++

    +=

    ++

    +=

    2222

    1)3s(

    12.0

    1)3s(

    3s4.1

    s

    4.1

    ++

    ++

    +=

    )t(u)tsine2.0tcose4.14.1()t(x t3t32 =

    )t(u)tsine8.0tcose4.44.2(

    )t(u2)t(x2)t(x2)t(y

    t3t3

    211

    +=

    +=

    )t(u)tsine6.0tcose8.02.1()t(u2)t(x)t(y t3t312 +==

    Chapter 16, Solution 53.

    If is the voltage across R, applying KCL at the non-reference node givesoV

    o

    o

    o

    o

    s VsL

    1sC

    R

    1

    sL

    VVsC

    R

    VI

    ++=++=

    RLCsRsL

    IsRL

    sL1sC

    R1

    IV

    2

    ss

    o

    ++

    =

    ++

    =

    RsLRLCs

    IsL

    R

    VI

    2

    so

    o ++==

    LC1RCss

    RCs

    RsLRLCs

    sL

    I

    I)s(H

    22s

    o

    ++=

    ++==

    The roots

    LC1

    )RC2(1

    RC21-s

    22,1=

    both lie in the left half plane since R, L, and C are positive quantities.

    Thus, the circuit is stable.

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    46/60

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    47/60

    Chapter 16, Solution 56.

    LCs1

    sL

    sC1sL

    sC

    1sL

    sC

    1||sL

    2

    +

    =

    +

    =

    RsLRLCs

    sL

    LCs1

    sLR

    LCs1

    sL

    V

    V2

    2

    2

    1

    2

    ++=

    ++

    +=

    LC

    1

    RC

    1ss

    RC

    1s

    V

    V

    21

    2

    ++

    =

    Comparing this with the given transfer function,

    RC

    12 = ,

    LC

    16 =

    If ,= k1R ==R2

    1C F500

    == C6

    1

    L H3.333

    Chapter 16, Solution 57.

    The circuit in the s-domain is shown below.

    +Vx

    V1

    +

    R1

    C R2

    L

    Vi

    Z

    CsRLCs1

    sLR

    sC1sLR

    )sLR()sC1()sLR(||

    sC

    1Z

    22

    2

    2

    2

    2 ++

    +=

    ++

    +=+=

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    48/60

    i

    1

    1 VZR

    ZV

    +=

    i

    12

    2

    1

    2

    2

    o VZR

    Z

    sLR

    R

    VsLR

    R

    V ++=+=

    CsRLCs1

    sLRR

    CsRLCs1

    sLR

    sLR

    R

    ZR

    Z

    sLR

    R

    V

    V

    22

    2

    1

    22

    2

    2

    2

    12

    2

    i

    o

    ++

    ++

    ++

    +

    +

    =+

    +

    =

    sLRRCRsRLCRs

    R

    V

    V

    212112

    2

    i

    o

    ++++=

    LCR

    RR

    CR

    1

    L

    Rss

    LCR

    R

    V

    V

    1

    21

    1

    22

    1

    2

    i

    o

    ++

    ++

    =

    Comparing this with the given transfer function,

    LCR

    R5

    1

    2= CR

    1

    L

    R6

    1

    2 += LCR

    RR25

    1

    21 +=

    Since and ,= 4R1 = 1R2

    20

    1LC

    LC4

    15 == (1)

    C4

    1

    L

    16 += (2)

    20

    1LC

    LC4

    525 ==

    Substituting (1) into (2),

    01C24C80C4

    1C206 2 =++=

    Thus,20

    1,

    4

    1C =

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    49/60

    When4

    1C = ,

    5

    1

    C20

    1L == .

    When 20

    1

    C = , 1C20

    1

    L == .

    Therefore, there are two possible solutions.

    =C F25.0 =L H2.0 or =C F05.0 =L H1

    Chapter 16, Solution 58.

    We apply KCL at the noninverting terminal at the op amp.

    )YY)(V0(Y)0V( 21o3s =

    o21s3 V)YY(-VY +=

    21

    3

    s

    o

    YY

    Y-

    V

    V

    +=

    Let ,11 sCY = 12 R1Y = , 23 sCY =

    11

    12

    11

    2

    s

    o

    CR1s

    CsC-

    R1sC

    sC-

    V

    V

    +=

    +=

    Comparing this with the given transfer function,

    1C

    C

    1

    2 = , 10CR

    1

    11

    =

    If ,= k1R1

    ===421 10

    1CC F100

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    50/60

    Chapter 16, Solution 59.

    Consider the circuit shown below. We notice that o3 VV = and o32 VVV == .

    Y4

    Y3

    Y1

    V1

    V2Y2

    +

    +

    Vo

    Vin

    At node 1,

    4o12o111in Y)VV(Y)VV(Y)VV( += )YY(V)YYY(VYV 42o42111in +++= (1)

    At node 2,

    3o2o1 Y)0V(Y)VV( =

    o3221 V)YY(YV +=

    o

    2

    32

    1 VY

    YYV

    += (2)

    Substituting (2) into (1),

    )YY(VV)YYY(Y

    YYYV 42oo421

    2

    32

    1in ++++

    =

    )YYYYYYYYYYYYYY(VYYV 422243323142

    2221o21in +++++=

    43323121

    21

    in

    o

    YYYYYYYY

    YY

    V

    V

    +++=

    1Y and must be resistive, while and must be capacitive.2Y 3Y 4Y

    Let1

    1 R

    1Y = ,

    2

    2 R

    1Y = , 13 sCY = , 24 sCY =

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    51/60

    212

    2

    1

    1

    1

    21

    21

    in

    o

    CCsR

    sC

    R

    sC

    RR

    1

    RR

    1

    V

    V

    +++

    =

    2121221

    212

    2121

    in

    o

    CCRR

    1

    CRR

    RRss

    CCRR

    1

    V

    V

    +

    ++

    =

    Choose R , then= k11

    6

    2121

    10CCRR

    1= and 100

    CR

    RR

    221

    21 =R

    +

    We have three equations and four unknowns. Thus, there is a family of solutions. Onesuch solution is

    =2R k1 , C =1 nF50 , =2C F20

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    52/60

    Chapter 16, Solution 60.

    With the following MATLAB codes, the Bode plots are generated as shown below.

    num=[1 1];den= [1 5 6];

    bode(num,den);

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    53/60

    Chapter 16, Solution 61.

    We use the following codes to obtain the Bode plots below.

    num=[1 4];den= [1 6 11 6];

    bode(num,den);

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    54/60

    Chapter 16, Solution 62.

    The following codes are used to obtain the Bode plots below.

    num=[1 1];den= [1 0.5 1];

    bode(num,den);

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    55/60

    Chapter 16, Solution 63.

    We use the following commands to obtain the unit step as shown below.

    num=[1 2];den= [1 4 3];

    step(num,den);

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    56/60

    Chapter 16, Solution 64.

    With the following commands, we obtain the response as shown below.

    t=0:0.01:5;x=10*exp(-t);

    num=4;

    den= [1 5 6];

    y=lsim(num,den,x,t);

    plot(t,y)

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    57/60

    Chapter 16, Solution 65.

    We obtain the response below using the following commands.

    t=0:0.01:5;x=1 + 3*exp(-2*t);

    num=[1 0];

    den= [1 6 11 6];

    y=lsim(num,den,x,t);

    plot(t,y)

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    58/60

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    59/60

    When ,11 sCY = F5.0C1 =

    1

    2 R

    1Y = , = k10R1

    23 YY = , 24 sCY = , F1C2 =

    )RsC2(RsC1

    RsC-

    )R2sC(sCR1

    RsC-

    V

    V

    1112

    11

    11221

    11

    i

    o

    ++=

    ++=

    1RC2sRCCs

    RsC-

    V

    V

    122121

    2

    11

    i

    o

    ++=

    1)10)(1010(1)2(s)10)(1010)(110(0.5s

    )10)(1010(0.5s-

    V

    V

    36-236-6-2

    3-6

    i

    o

    ++

    =

    42i

    o

    102s400s

    s100-

    V

    V

    ++=

    Therefore,

    =a 100- , =b 400 , =c 4102

    Chapter 16, Solution 68.

    (a) Let3s

    )1s(K)s(Y

    +

    +=

    Ks31

    )s11(Klim

    3s

    )1s(Klim)(Y

    ss=

    +

    +=

    +

    +=

    i.e. .K25.0 =

    Hence, Y =)s()3s(4

    1s++

    (b) Consider the circuit shown below.I

    Vs = 8 V+

    t = 0

    YS

  • 8/14/2019 Chapter 16, Solution 1. Consider the S-domain

    60/60

    s8V)t(u8V ss ==

    )3s(s

    )1s(2

    3s

    1s

    s4

    8)s(V)s(Y

    Z

    VI s

    s

    +

    +=

    +

    +===

    3s

    B

    s

    AI

    ++=

    32A = , 34-B =

    =)t(i [ ] A)t(ue423

    13t-

    Chapter 16, Solution 69.

    The gyrator is equivalent to two cascaded inverting amplifiers. Let be the

    voltage at the output of the first op amp.1V

    ii1 -VVR

    R-V ==

    i1o VsCR

    1

    VR

    sC1-

    V ==

    CsR

    V

    R

    VI

    2

    oo

    o ==

    CsRI

    V2

    o

    o=

    CRLwhen,sLI

    V2

    o

    o =