Chapter 3 First Law Thermodynamics

Embed Size (px)

Citation preview

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    1/59

    CHAPTER

    3MEC 451Thermodynamics

    First Law ofThermodynamics

    Lecture Notes:MOHD HAFIZ MOHD NOH

    HAZRAN HUSAIN & MOHD SUHAIRIL

    Faculty of Mechanical Engineering

    Univeriti !e"nologi MARA# $%$%Shah Ala'# Selangor

     For students EM 220 and EM 221 only

    1

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    2/59

    Faculty of Mechanical Engineering, UiTM

    2

    MEC 451 – THEM!"#N$M%C&

    FIRS! LA( OF !HERMOD)NAMI*S

    ENERGY ANALYSISOF CLOSED SYSTEM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    3/59

    First La' of Ther(o)yna(ics

    MEC 451 – THEM!"#N$M%C&

    Faculty of Mechanical Engineering, UiTM

    3

    The First Law is usually referred to as the Law of Conservation

    of Energy i!e! energy can neither be created nor destroyed, but

    rather transformed from one state to another !

    The energy "alance is maintained within the system "eing

    studied#defined "oundary!

    The various energies associated are then "eing o"served as

    they cross the "oundaries of the system!

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    4/59

    Faculty of Mechanical Engineering, UiTM

    4

    MEC 451 – THEM!"#N$M%C&

    Energy *alance for Close) &yste(

    Heat

    +or

     z 

    Close)&yste(

    eference -lane, z  . /

    or

     E E E in out system− = ∆

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    5/59

    Faculty of Mechanical Engineering, UiTM

    5

    MEC 451 – THEM!"#N$M%C&

    $ccording to classical thermodynamics

    Q W E net net system− = ∆

    The total energy of the system E system is given as

     E Internal energy Kinetic energy otential energy

     E ! KE E 

    % & &

    % & &

    The change in stored energy for the system is

    ∆ ∆ ∆ ∆ E ! KE E = + +

    The first law of thermodynamics for closed systems then can "e

    written as

    Q W ! KE E  net net  − = + +∆ ∆ ∆

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    6/59

    Faculty of Mechanical Engineering, UiTM

    '

    MEC 451 – THEM!"#N$M%C&

    (f the system does not move with a velocity and has no change in

    elevation the conservation of energy e)uation is reduced to

    Q W ! net net  − = ∆ The first law of thermodynamics can "e in the form of 

    *+1,,,

    *+

    2,,,

    12

    2

    1

    2

    212   "# 

     $  $  g V V uumW Q   net net    

     

      

        −+−+−=−

    *#+1,,,

    *+

    2,,,

    12

    2

    1

    2

    212   "g "# 

     $  $  g V V uu%& net net 

       

     

     

        −+−+−=−

     For a constant 'olume (rocess

       

      

        −+

    −+−=−

    1,,,

    *+

    2,,,

    12

    2

    1

    2

    212

     $  $  g V V uumW Q   net net 

     

     

     

     

     

        −+−+−=1,,,

    *+

    2,,,

    12

    2

    1

    2

    212

     $  $  g V V uumQ net 

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    7/59

    Faculty of Mechanical Engineering, UiTM

    -

    MEC 451 – THEM!"#N$M%C&

    For a constant .ressure .rocess

        

         −+−+−=−

    1,,,

    *+

    2,,,

    122

    12

    212

     $  $  g V V uumW Q   net net 

       

     

     

        −

    +

    +−=−− 1,,,

    *+

    2,,,*+   12

    2

    1

    2

    2

    1212

     $  $  g V V uumV V   Q

    net 

       

      

        −+

    −+−+−=

    1,,,

    *+

    2,,,*+   12

    2

    1

    2

    21212

     $  $  g V V V V   uumQ net 

       

      

        −+

    −+−=

    1,,,

    *+

    2,,,

    12

    2

    1

    2

    212

     $  $  g V V hhmQ

    net 

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    8/59

    Faculty of Mechanical Engineering, UiTM

    /MEC 451 – THEM!"#N$M%C&

    0igid tan iston cylinder  

    Example of Closed Systems

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    9/59

    Faculty of Mechanical Engineering, UiTM

    MEC 451 – THEM!"#N$M%C&

    $ closed system of mass 2 g

    undergoes an adia"atic .rocess!

    The wor done on the system is

    3, ! The velocity of the system

    changes from 3 m#s to 15 m#s!

    uring the .rocess the elevationof the system increases 45 meters!

    etermine the change in internal

    energy of the system!

    E0a(le 231

     Solution:

    Energy "alance

       

      

        −+

    −+−=−

    1,,,

    *+

    2,,,

    12

    2

    1

    2

    212

     $  $  g V V uumW Q   net net 

    0earrange the e)uation

    net Q

    ( )   ( )

    2 2

    2 1 2 1

    2 1

    2 2

    2 1 2 1

    2 1

    2 2

    + *

    2,,, 1,,,

    + *

    2,,, 1,,,

    !/1 4515 33, 2 2 2

    2,,, 1,,,

    14!451 !!

    net 

    net 

    V V g $ $  W m u u

    V V g $ $  W m u u

    u

    u "# )ns

     − −− = − + +   ÷

       − −

    − = − + + ÷  

       −− − = ∆ + +   ÷ ÷   ÷      ∆ =

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    10/59

    Faculty of Mechanical Engineering, UiTM

    1,MEC 451 – THEM!"#N$M%C&

    6team at 11,, a and 2 .ercent

    )uality is heated in a rigid container

    until the .ressure is 2,,, a! For a

    mass of ,!,5 g calculate the amount

    of heat su..ly +in * and the total

    entro.y change +in #g!7*!

    E0a(le 23 Solution:

    ( )

    ( )

    ( )

    3

    1 1

    1 1 1 1

    1 1 1 1

    1 1 1 1

    !

    1

    11,, ,!2

    ,!,,113 ,!2 ,!1--53 ,!,,1133

    ,!1'34

    -/,!, ,!2 1/,'!3

    2441!

    2!1-2 ,!2 4!3-44

    '!2,4

     f fg 

    m"g 

     f fg 

    "*"g 

     f fg 

    "# "g K 

    +tate

    at "a ,

    ' ' , '

    u u , u

     s s , s

    = == +

    = + −

    =

    = +

    = +

    =

    = +

    = +

    =

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    11/59

    Faculty of Mechanical Engineering, UiTM

    11MEC 451 – THEM!"#N$M%C&

    ( )

    3

    2 2

    2 2

    2

    2

    2

    2,,, ,!1'34

    ,!15122 245! -!122

    ,!1'34

    ,!1-5'/ 311'! -!433-

    ,!1'34 ,!15122245! 311'! 245!

    ,!1-5'/ ,!15122

    3,3,!42

    ,!1'34 ,!15122-!122 -!

    ,!1-5'/ ,!15122

    m"g 

    "# "g 

    +tate

    at "a '

    ' u s

    u s

    u

     s

    = =

    −  = + − ÷−  =

    −  = + ÷−    ( )

    !

    433- -!122

    -!2-,   "# "g K 

    =

    For a rigid container

    '2%'1%,!1'34 m3#g

    su.erheated

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    12/59

    Faculty of Mechanical Engineering, UiTM

    12MEC 451 – THEM!"#N$M%C&

    ( )

    ( )

    2 1

    ,!,5 3,3,!42 2441!

    2!43

    Q m u u

    "# 

    = −

    = −=

    $mount of heat su..lied 8

    The change in entro.y 9s

    2 1

    !

    -!2-, '!2,4

    1!,-5   "# "g K 

     s s s∆ = −= −=

    F l f M h i l E i i UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    13/59

    Faculty of Mechanical Engineering, UiTM

    13MEC 451 – THEM!"#N$M%C&

    E0a(le 232

    $ rigid tan is divided into two e)ual

     .arts "y a .artition! (nitially one side

    of the tan contains 5 g water at 2,,

    a and 25:C and the other side is

    evacuated! The .artition is then

    removed and the water e;.ands intothe entire tan! The water is allowed to

    e;change heat with its surroundings

    until the tem.erature in the tan

    returns to the initial value of 25:C!

    etermine +a* the volume of the tan

    +"* the final .ressure +c* the heat

    transfer for this .rocess!

     Solution:

    ( )

    31

    1   < 251

    1

    3

    1

    2,, ,!,,1,,3

    25

    5 ,!,,1,,3

    ,!,,5

    m"g o   f - 

    +tate

      "a' '

    . - 

    initial 'olume of half rese'oir 

    V m'

    m

    =   = ==  

    =

    =

    o

    5

    The initial volume for entire tan 

    ( )3

    2 ,!,,5

    ,!,1

    rese'oir V 

    m==

    Com.! li)uid

    F lt f M h i l E i i UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    14/59

    Faculty of Mechanical Engineering, UiTM

    14MEC 451 – THEM!"#N$M%C&

    ( )net net  

    net net  

    Q W m u "e e

    Q W 

    − = ∆ + ∆ + ∆

    −   m u "e= ∆ + ∆   e+ ∆( )( )2 1net Q m u m u u= ∆ = −

    The final .ressure

    The heat transfer for this .rocess

    3

    33

    2

    2

    2

    2

    25 ,!,,1,,3,!,1

    43!34,!,,25

    =

    > 3!1'

    m f     "g 

    mm g    "g "g 

     f g 

     sat 

     saturated m

    +tate

    . -  '

    ''

    ch

    i,ture

    ec" region

    ' ' 'then "a

    = =

    == =  

    < < →= =

    o

    ( )

    ( )

    1 < 25

    2 2

    2

    2

    5

    5

    2

    1,4!//

    2!3 1,

    1,4!// 2!3 1, 23,4!

    1,4!3

    >

    5 1,4!3 1,4!//

    ,!25

    "# "g  f - 

     f fg 

     f  

     fg 

    "# "g 

    net 

    u u

    u u , u' '

     ,'

    u

    .hen

    Q

    "# 

    = =

    = +−=

    = ×

    ∴ = + ×

    =

    = −

    =

    o

    /'e sign indicates heat transfer

    into the system

    1,4!/3 +23,4!3*

    +1,4!//?1,4!/3*

    1,4!//

    F lt f M h i l E i i UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    15/59

    Faculty of Mechanical Engineering, UiTM

    15MEC 451 – THEM!"#N$M%C&

    &ule(entary -ro6le(s 1

    1! Two tans are connected "y a valve! Tan $ contains 2 g of car"on

    mono;ide gas at --:C and ,!- "ar! Tan @ holds / g of the same gas

    at 2-:C and 1!2 "ar! Then the valve is o.ened and the gases are

    allowed to mi; while receiving energy via heat transfer from the

    surrounding! The final e)uili"rium tem.erature is found to "e 42:C!

    etermine +a* the final .ressure +"* the amount of heat transfer! $lso

    state your assum.tion! A  210 "a, Q

    /342 "# B

    2! $ .iston cylinder device contains ,!2 g of water initially at /,, a

    and ,!,' m3! ow 2,, of heat is transferred to the water while its

     .ressure is held constant! etermine the final tem.erature of the water!$lso show the .rocess on a T?D diagram with res.ect to saturation

    lines!

    A 4211o- B

    F lt f M h i l E i i UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    16/59

    Faculty of Mechanical Engineering, UiTM

    1'MEC 451 – THEM!"#N$M%C&

    &ule(entary -ro6le(s 1

    3! $ .iston?cylinder device contains ' g of refrigerant?134a at /,, a

    and 5,oC! The refrigerant is now cooled at constant .ressure until ite;ist as a li)uid at 24oC! 6how the .rocess on T?v diagram and

    determine the heat loss from the system! 6tate any assum.tion made!

    A121025

    "# B4! $ ,!5 m3 rigid tan contains refrigerant?134a initially at 2,, a and 4,

     .ercent )uality! eat is now transferred to the refrigerant until the .ressure reaches /,, a! etermine +a* the mass of the refrigerant in

    the tan and +"* the amount of heat transferred! $lso show the .rocess

    on a ?v diagram with res.ect to saturation lines!

    A123 "g, 2652

    "# B5! $n insulated tan is divided into two .arts "y a .artition! ne .art of

    the tan contains ' g of an ideal gas at 5,:C and /,, a while the

    other .art is evacuated! The .artition is now removed and the gas

    e;.ands to fill the entire tan! etermine the final tem.erature and the

     .ressure in the tan!

    A07-, 800 "aB

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    17/59

    Faculty of Mechanical Engineering, UiTM

    1-MEC 451 – THEM!"#N$M%C&

    6ome thermodynamic cycle com.oses of .rocesses in which

    the woring fluid undergoes a series of state changes such

    that the final and initial states are identical!

    For such system the change in internal energy of theworing fluid is Gero!

    The first law for a closed system o.erating in a

    thermodynamic cycle "ecomes

    Close) &yste( First La' of a Cycle

    Q W ! 

    Q W 

    net net cycle

    net net  

    − =

    =

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    18/59

    Faculty of Mechanical Engineering, UiTM

    1/MEC 451 – THEM!"#N$M%C&

    *oun)ary +ors

    2

    4

    5

    1

    P

    V

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    19/59

    Faculty of Mechanical Engineering, UiTM

    1MEC 451 – THEM!"#N$M%C&

    No Value of n Process Description Result of !L

    1 H isochoric constant volume +D1 % D

    2*

    2 , isobar ic constant .ressure +1

     % 2

    *

    3 1 isothermal  constant tem.erature+T

    1 % T

    2*

    4 1InI J .olytro.ic ?none?

    5 J isentropi c constant entro.y +61 % 6

    2*

    $ccording to a law of constant=nV   

    2

    2

    1

    1

      

      =

    2

    2

    1

    1

    . V 

    . V  =

    2211 V   V      =

    1

    2

    1

    1

    2

    2

    1−

       

      

     =   

      

     =  n

    nn

      

      

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    20/59

    Faculty of Mechanical Engineering, UiTM

    2,MEC 451 – THEM!"#N$M%C&

    Darious forms of wor are e;.ressed as follows

    Process "oundary #or$  

    isochoric

    isobar ic

    isothermal 

     .olytro.ic

    isentropi c

    ,*+ 1212   =−= V V   W 

    *+ 1212 V V   W    −=

    1

    2

    1112  ln

    V  

    V  V    W     =

    nV   V   W 

    −−=

    1

    112212

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    21/59

    Faculty of Mechanical Engineering, UiTM

    21MEC 451 – THEM!"#N$M%C&

    E0a(le 234

    6etch a ?D diagram showing the following .rocesses in a cycle

     Process 1-2> iso"aric wor out.ut of 1,!5 from an initial volume of ,!,2/

    m3 and .ressure 1!4 "ar

     Process 2-3> isothermal com.ression and

     Process 3-1> isochoric heat transfer to its original volume of ,!,2/ m3

     and .ressure 1!4 "ar!

    Calculate +a* the ma;imum volume in the cycle in m3 +"* the isothermal wor

    in +c* the net wor in and +d* the heat transfer during iso"aric e;.ansion

    in !

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    22/59

    Faculty of Mechanical Engineering, UiTM

    22MEC 451 – THEM!"#N$M%C&

     Solution:

    rocess "y .rocess analysis

    ( )

    ( )

    ( )

    12 2 1

    2

    3

    2

    1,!5

    14, ,!,2/ 1,!5

    1

    ,!1 3

    2

    ,

    W V V  

    +ection isobari

    V m

    c

    = − =

    =

    =

    The isothermal wor 

    ( )

    ( )

    ( )

    2 2 3 3

    3

    323 2 2

    2

    ,!1,314, 515

    ,!,2/

    ln

    ,!,2/14, ,!1,3 ln

    ,!1,3

    1/!-/

    2 3

      V V 

      "a

    V W V 

    +ection isothermal 

    "# 

    =

     = = ÷  

    → =

     =   ÷

     

    =

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    23/59

    Faculty of Mechanical Engineering, UiTM

    23MEC 451 – THEM!"#N$M%C&

    The net wor 

    ( )31

    12 23 31

    ,

    1,!5 1/!-/

    /!2

    1

    /

    3

    net 

    W W 

    +ection isochoric

    W W 

    "# 

    =∴ = + +

    = −

    = −

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    24/59

    Faculty of Mechanical Engineering, UiTM

    24MEC 451 – THEM!"#N$M%C&

    E0a(le 235

    $ fluid at 4!15 "ar is e;.anded reversi"ly according to a law D % constant to

    a .ressure of 1!15 "ar until it has a s.ecific volume of ,!12 m3#g! (t is then

    cooled reversi"ly at a constant .ressure then is cooled at constant volume

    until the .ressure is ,!'2 "arK and is then allowed to com.ress reversi"ly

    according to a law  V n  % constant "ac to the initial conditions! The wor

    done in the constant .ressure is ,!525 and the mass of fluid .resent is ,!22

    g! Calculate the value of n in the fourth .rocess the net wor of the cycle and

    setch the cycle on a ?D diagram!

    Faculty of Mechanical Engineering UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    25/59

    Faculty of Mechanical Engineering, UiTM

    25MEC 451 – THEM!"#N$M%C&

     Solution:

    rocess "y .rocess analysis

    ( )

    ( )

    ( )

    1 1 2 2

    1

    3

    212 1 1

    1

    115,!22 ,!12

    415

    ,!,,-32

    ln

    ,!,2'4415 ,!,,-32 l

    1

    n,!,,-32

    3!/ 5

    2

    +ection isothe

     V V 

    m

    V W V 

    rm l 

     # 

    a

    =

     =  ÷  

    =

    =

    =

    =

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    26/59

    Faculty of Mechanical Engineering, UiTM

    2'MEC 451 – THEM!"#N$M%C&

    ( )

    ( )23 3 2

    3

    3

    ,!525

    ,!525 ,!,2'4115

    ,!,3

    2 3

    ,-

    +ec

    W V V  

    tion iso

    "# 

    m

    baric

    =

    =

    =

    − =

    +

    ( )

    34

    3

    ,

    4+ection iso

    choric

    =

    ( )

    ( ) ( )

    4 1

    1 4

    1 1 4 441

    '2 ,!,,-32

    415 ,!,3,-

    ln ,!144 ln ,!23'4

    1!31/2

    1

    415 ,!,,-2 '2 ,!,3,-

    1 1!31/2

    3! 2

    1

    51 4

    4

    n

    n

      V 

      V 

    n

    n V V 

    W n

    +ection olytroic

     # 

     =

      ÷    =  ÷  

    =

    =−=

    −−

    =−

    = −

    The net wor of the cycle

    12 23 34 41

    ,!,-'

    net W W W W W  

    "# 

    = + + +=

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    27/59

    Faculty of Mechanical Engineering, UiTM

    2-MEC 451 – THEM!"#N$M%C&

    &ule(entary -ro6le(s

    1! $ mass of ,!15 g of air is initially e;ists at 2 Ma and 35,oC! The air

    is first e;.anded isothermally to 5,, a then com.ressed

     .olytro.ically with a .olytro.ic e;.onent of 1!2 to the initial state!

    etermine the "oundary wor for each .rocess and the net wor of the

    cycle!

    2! ,!,-/ g of a car"on mono;ide initially e;ists at 13, a and 12,oC! The

    gas is then e;.anded .olytro.ically to a state of 1,, a and 1,, oC!

    6etch the ?D diagram for this .rocess! $lso determine the value of n

    +inde;* and the "oundary wor done during this .rocess!  A1289,19 " B

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    28/59

    acu y o ec a ca g ee g, U

    2/MEC 451 – THEM!"#N$M%C&

    3! Two g of air e;.eriences the three?

     .rocess cycle shown in Fig! 3?14!

    Calculate the net wor!

    4! $ system contains ,!15 m3 of air .ressure of 3!/ "ars and 15, C! (t is⁰

    e;.anded adia"atically till the .ressure falls to 1!, "ar! The air is then

    heated at a constant .ressure till its enthal.y increases "y -, !

    6etch the .rocess on a ?D diagram and determine the total wor

    done!

      se c .%1!,,5 #g!7 and cv%,!-14 #g!7 

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    29/59

    y g g,

    2MEC 451 – THEM!"#N$M%C&

    FIRS! LA( OF !HERMOD)NAMI*S

    MASS & ENERGY ANALYSISOF CONTROL VOLUME

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    30/59

    y g g,

    3,MEC 451 – THEM!"#N$M%C&

    Conser7ation of Mass

    Conservation of mass is one of the most fundamental

     .rinci.les in nature! e are all familiar with this

     .rinci.le and it is not difficult to understand it=

    For closed system the conservation of mass .rinci.le is

    im.licitly used since the mass of the system remain

    constant during a .rocess!

    owever for control volume mass can cross the

     "oundaries! 6o the amount of mass entering and leavingthe control volume must "e considered!

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    31/59

    y g g

    31MEC 451 – THEM!"#N$M%C&

    Mass an) 8olu(e Flo'ates

    Mass flow through a cross?sectional area .er unit time is called themass flow rate! ote the dot over the mass sym"ol indicates a time

    rate of change! (t is e;.ressed as

    ∫ =   d)V m   ! ρ 

    (f the fluid density and velocity are constant over the flow cross?

    sectional area the mass flow rate is

    'oulme s(ecificcalled is

    %here

     )V  )V m

    ν 

     ρ ν 

    ν 

     ρ 

    1=

    ==

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    32/59

    32MEC 451 – THEM!"#N$M%C&

    -rincial of Conser7ation of Mass

    The conservation of mass .rinci.le for a control volume can "e

    e;.ressed as

    in out -V  

    m m m− =9 9 9

    For a steady state steady flow .rocess the conservation of mass

     .rinci.le "ecomes

    +g#s*in out  m m=9 9

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    33/59

    33MEC 451 – THEM!"#N$M%C&

    $s the fluid u.stream .ushes mass across the control volume wor

    done on that unit of mass is

     flo%

     flo%

     flo%

     )W F d* F d* dV ' m

     )W 

    % 'm

    δ δ 

    δ δ 

    δ 

    = = = =

    = =

    Flo' +or 9 The Energy of a Flo'ingFlui)

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    34/59

    34MEC 451 – THEM!"#N$M%C&

    The total energy carried "y a unit of mass as it crosses the control

    surface is the sum of the internal energy & flow wor & .otential

    energy & inetic energy

    ∑   ++=+++=   g$ V 

    h g$ V 

      uenergy 22

    22

    ν 

    The first law for a control volume can "e written as

    ∑∑       

       ++−   

        ++=−

    in

    inin

    inin

    out 

    out out 

    out out net net    g$ V 

    hm g$ V 

    hmW Q22

    2!2!!!

     Total Energy of a Flo'ing Flui)

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    35/59

    35MEC 451 – THEM!"#N$M%C&

     Total Energy of a Flo'ing Flui)

    The steady state steady flow conservation of mass and first law of

    thermodynamics can "e e;.ressed in the following forms

    *+1,,,

    *+

    2,,,

    12

    2

    1

    2

    212

    !!!

    "W  $  $  g V V 

    hhmW Q   net net     

      

        −+

    −+−=−

    *+1,,,

    *+

    2,,,

    12

    2

    1

    2

    212   "# 

     $  $  g V V hhmW Q   net net    

     

      

        −+−+−=−

    *#+

    1,,,

    *+

    2,,,

    12

    2

    1

    2

    212   "g "# 

     $  $  g V V hh%& net net    

     

     

     

        −+−+−=−

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    36/59

    3'MEC 451 – THEM!"#N$M%C&

    &tea)y;o' Engineering "e7ices

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    37/59

    3-MEC 451 – THEM!"#N$M%C&

    No

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    38/59

    3/MEC 451 – THEM!"#N$M%C&

    Energy "alance +noGGle O diffuser*>

    ∑∑      

      

     ++++=  

     

      

     ++++

    out 

    out out 

    out out out out 

    in

    inin

    inininin   g$V 

    hmW Q g$V 

    hmW Q22

    2!!!

    2!!!

        

       +=  

      

       +

    22

    2!2!out 

    out out in

    inin

    V hm

    V hm

         

      +=     

      +22

    2

    22

    2

    11

    V hV h

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    39/59

    3MEC 451 – THEM!"#N$M%C&

    E0a(le 23>

    6team at ,!4 Ma 3,,PC

    enters an adia"atic noGGle witha low velocity and leaves at ,!2

    Ma with a )uality of ,Q!

    Find the e;it velocity!

     Solution:

    6im.lified energy "alance>

    2

    1

    1

    h  +

    ( )

    2

    22

    11

    1

    2 22

    22

    2 2

    1

    3,'-!1,!4

    3,,   su.2

    ,!2

    24/'!1,!

    "# "g 

    o

     f fg 

    "# "g 

    h

    +tate

    h  Ma

    . -    erheated +tate

    h h , h  Ma

    h ,

            ÷   = + ÷ ÷      

    ==  

    =  

    = +=   ==   1 2

    1 2

    1

    ,!4 ,!2

    3,, ,!

    1 2

    ,

    o

      Ma Ma

    . - ,

    +tate + te

    ta

    = =

    = =5

    E;it velocity>

    ( )2   2,,, 3,'-!1 24/'!1

    1,-/ #

    m s

    = −

    =

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    40/59

    4,MEC 451 – THEM!"#N$M%C&

    E0a(le 23?

    $ir at 1,:C and /, a enters the

    diffuser   of a Net engine steadilywith a velocity of 2,, m#s! The

    inlet area of the diffuser is ,!4 m2!

    The air leaves the diffuser with a

    velocity that is very small

    com.ared with the inlet velocity!

    etermine +a* the mass flow rate

    of the air and +"* the tem.erature

    of the air leaving the diffuser!

    1 2

    1

    1

    2

    1

    /, ,

    1

    1

    ,

    2,, #

    ,!

    2

    4

    o

      "a V 

    . - 

    V m s

    +t 

     )

    ate +tate

    m

    =

    ==

    =

    5

     Solution:

    2221

    1 22

    V V h h

     + = + ÷

     

    ,

    2

      ÷ ÷  

    6im.lified energy "alance>

    From (deal Ras Law>

    311

    1

    1!,15 m"g 

     :. '

      = =

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    41/59

    41MEC 451 – THEM!"#N$M%C&

    Mass flow rate

    ( ) ( )

    1 1

    1

    1

    12,, ,!4

    1!,15

    -/!/"g 

     s

    m V )'=

     =  ÷  

    =

    9

    Enthal.y at state 1

    ( )1 1 1!,,5 2/3

    2/4!42

     (

    "# "g 

    h - . = =

    =

    From energy "alance>

    2

    1

    2 1

    2

    22

    2,,,

    2,,2/4!42

    2,,,

    3,4!42

    3,4!42

    1!,,5

    3,2!

    "# "g 

     (

    h h

    h. - 

     K 

    = +

    = +

    =

    =

    =

    =

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    42/59

    42MEC 451 – THEM!"#N$M%C&

     Tur6ine 9 Co(ressor

    Tur"ine S a wor .roducing device through the e;.ansion of a

    fluid!

    Com.ressor +as well as .um. and fan* ? device used to increase

     .ressure of a fluid and involves wor in.ut!

    8 % , +well insulated* 9E % , 97E % , +very small com.are

    to 9enthal.y*!

     

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    43/59

    43MEC 451 – THEM!"#N$M%C&

    Energy "alance> for tur"ine

    ∑∑      

      

     ++++=  

     

      

     ++++

    out 

    out out 

    out out out out 

    in

    inin

    inininin  g$

    V hmW Q g$

    V hmW Q

    22

    2!!!

    2!!!

    ( ) ( )out out out inin   hmW hm!!!

    +=

    ( )21!!

    hhmW   out    −=

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    44/59

    44MEC 451 – THEM!"#N$M%C&

    Energy "alance> for com.ressor .um. and fan

    ∑∑      

      

     ++++=  

     

      

     ++++

    out 

    out out 

    out out out out 

    in

    inin

    inininin  g$

    V hmW Q g$

    V hmW Q

    22

    2!!!

    2!!!

    ( ) ( )out out ininin   hmhmW !!!

    =+

    ( )12!!

    hhmW   in   −=

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    45/59

    45MEC 451 – THEM!"#N$M%C&

    E0a(le 23@

    The .ower out.ut of an adia"atic steam tur"ine is 5 M! Com.arethe magnitudes of 9h 9e and 9.e! Then determine the wor done

     .er unit mass of the steam flowing through the tur"ine and calculate

    the mass flow rate of the steam!

    ata > (nlet + % 2 Ma T % 4,,PCv % 5, m#s G % 1, m*

    E;it + % 15 a ; % ,Q v % 1/, m#s G % 'm*

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    46/59

    4'MEC 451 – THEM!"#N$M%C&

     Solution:

    ( )

    1

    11

    2

    2

    2 2 2 2

    1

    su.2

    324-!'4,,

    2

    15

    !,!

    225!4 ,! 23-3!1

    23'1!-3

    o "# "g 

     f fg 

    "# "g 

    +tate

    erheated  ( Ma

    h. - 

    +tate

      "a

     sat mi,ture ,

    h h , h

    =   ==  

    =   =  

    = +

    = +

    =

    !

    inQ

    !

    inW +

    2!

    2! ! !

    2

    2

    inin in in

    in

    out out  out out out  out 

    out 

    V m h g$

    V Q W m h g$

     + + + = ÷  

     + + + + ÷

     

    From energy "alance>

    ( )

    2 1

    2 2

    2 1

    2 1

    //5!/-

    14!5

    2,,,

    ,!,41,,,

    "# "g 

    "# "g 

    "# "g 

    h h h

    V V  KE 

     g $ $  E 

    ∆ = − = −

    −∆ = =

    −∆ = = −

    6olve the e)uation>

    324/!4

    +23-2!3*

    23'1!,1

    ?//-!3

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    47/59

    4-MEC 451 – THEM!"#N$M%C&

    the wor done .er unit mass

    ( )   ( )2 2

    1 21 21 2

    2,,, 1,,,

    //5!/- 14!5 ,!,4

    /-,!'

    out 

    "# "g 

     g $ $ V V W h h  −  −= − + + ÷ ÷      

    = − +=

    The mass flow rate

    5,,,5!-4

    /-,!'

    "g out 

     s

    out 

    W m

    = = =9

    9

    //-!3

    /-2!4/

    /-2!4/

    5!-3

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    48/59

    4/MEC 451 – THEM!"#N$M%C&

    E0a(le 23A

    $ir at 1,, a and 2/, 7 is

    com.ressed steadily to ',,a and 4,, 7! The mass

    flow rate of the air is ,!,2

    g#s and a heat loss of 1'

    #g occurs during the .rocess! $ssuming the

    changes in inetic and

     .otential energies are

    negligi"le determine thenecessary .ower in.ut to the

    com.ressor!

     Solution:

    sim.lified energy "alance>

    ( )( )

    2 1

    2 1

    in out  

    out 

    W m h h Q

    m h h m&= − += − +

    99  9

    9 9

    1

    11

    2

    22

    1

    1,,

    2/,!132/,

    2

    ',,

    4,,!/4,,

    "# "g 

    "# "g 

    +tate

    air   "a

    h. K 

    +tate

    air   "a

    h. K 

    =   ==  

    =   ==  

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    49/59

    4MEC 451 – THEM!"#N$M%C&

    Thus

    ( ),!,2 4,,!/ 2/,!13 1'2!-4

    inW 

    "W  = − +

    =9

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    50/59

    5,MEC 451 – THEM!"#N$M%C&

     Throttling 8al7e

    Flow?restricting devices that

    cause a significant .ressure dro.

    in the fluid!

    6ome familiar e;am.les are

    ordinary adNusta"le valves and

    ca.illary tu"es!

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    51/59

    51MEC 451 – THEM!"#N$M%C&

    6team enters a throttling valve at

    /,,, a and 3,,:C and leavesat a .ressure of 1',, a!

    etermine the final tem.erature

    and s.ecific volume of the

    steam!

    E0a(le 231/

    ( )   ( )

    1

    11

    2

    2 1

    2 2 2 2 2

    1

    su./,,,

    2-/'!53,,

    2

    1',,int

    15,, 1/!2 ,!,,1154 ,!131-1, /44!55 2-1

    1',,

    1-5, 2,5!-2 ,!,,11'' ,!11344, /-/!1' 2-5!2

    o "# "g 

    o f g f g 

     f g f g 

    +tate

    erheated   "a

    h. - 

    +tate

      "ama"e er(olation

    h h

    ' ' h h  "a . - 

    . ' ' h h

    =   ==  

    =   =  

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    52/59

    52MEC 451 – THEM!"#N$M%C&

    2   2,1!3o

     sat . . - = =

    $t state 2 the region is sat!

    mi;ture

    Retting the )uality at state 2

    2 2

    2

    2 2

    2-/'!5 /5-!4

    2-2!'/ /5-!4

    ,!-

     f  

     g f  

    h h ,h h

    −=−

    −=

    −=

    6.ecific volume at state 2

    ( )3

    2 2 2 2

    ,!,,115//

    ,!- ,!1244,2 ,!,,115//

    ,!124,

     f fg 

    m

    "g 

    ' ' , '= += +

    =

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    53/59

    53

    MEC 451 – THEM!"#N$M%C&

    The section where the mi;ing .rocess

    taes .lace!

    $n ordinary T?el"ow or a ?el"ow in

    a shower for e;am.le serves as the

    mi;ing cham"er for the cold? and

    hot?water streams!

    Mi0ing Cha(6er

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    54/59

    54

    MEC 451 – THEM!"#N$M%C&

    Mi0ing Cha(6er

    Energy @alance>

    ( )

    ( ) ( )

    1 1 2 2 3 3

    1 1 3 1 2 3 3

    1 1 2 3 3 2

    3 21 3

    1 2

    m h m h m h

    m h m m h m h

    m h h m h h

    h hm m

    h h

    + =

    + − =

    − = −  −=   ÷−  

    9 9 9

    9 9 9 9

    9 9

    9 9

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    55/59

    55

    MEC 451 – THEM!"#N$M%C&

    evices where two moving fluid

    streams e;change heat without

    mi;ing!

    eat e;changers ty.ically involve

    no wor interactions +w % ,* and

    negligi"le inetic and .otentialenergy changes for each fluid

    stream!

    Heat E0changer

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    56/59

    5'

    MEC 451 – THEM!"#N$M%C&

    Li)uid sodium flowing at 1,,

    g#s enters a heat e;changer at

    45,:C and e;its at 35,:C! The

    s.ecific heat of sodium is 1!25

    #g!oC! ater enters at 5,,,

    a and 2,oC! etermine the

    minimum mass flu; of the waterso that the water does not

    com.letely va.oriGe! eglect the

     .ressure dro. through the

    e;changer! $lso calculate the

    rate of heat transfer!

    E0a(le 2311   Solution:

    sim.lified energy "alance>

    ( ) ( )

    ( ) ( )

    1 1 2 2

    1 2 2 1

    1 2 2 1

     s s % % s s % %

     s s s % % %

     s ( s s s % % %

    m h m h m h m h

    m h h m h h

    m - . . m h h

    + = +− = −

    − = −

    9 9 9 9

    9 9

    9 9

    1

    11

    2

    2

    1>

    !5,,,

    //!'12,

    2 >

    5,,,

    2-4!2

    o   "# %   "g 

    "# %   "g 

    +tate %ater com( li&uid   "a

    h. - 

    +tate %ater 

      "a

    h

    =   ==  

    ==

     Assume a sat.vapor state toobtain the max.allowable exitingenthalpy.

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    57/59

    5-

    MEC 451 – THEM!"#N$M%C&

    the minimum mass flu; of the water

    so that the water does not

    com.letely va.oriGe

    ( )

    ( )

    ( ) ( )

    1 2

    2 1

    1,, 1!25 45, 35,

    2-4!2 //!'1

    4!'2

     s ( s s s

    %

    % %

    "g 

     s

    m - . .  m

    h h

    −=

    −= −=

    9

    the rate of heat transfer 

    ( )( )

    2 1

    4!'2 2-4!2 //!'1

    12!5

    % % % %Q m h h

     MW 

    = −= −

    =

    9   9

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    58/59

    5/

    MEC 451 – THEM!"#N$M%C&

    &ule(entary -ro6le(s 2

    1! $ir flows through the su.ersonic noGGle ! The inlet conditions are - a

    and 42,:C! The noGGle e;it diameter is adNusted such that the e;itingvelocity is -,, m#s! Calculate + a * the e;it tem.erature + " *the mass flu;

    and + c * the e;it diameter! $ssume an adia"atic )uasie)uili"rium flow!

    2! 6team at 5 Ma and 4,,:C enters a noGGle steadily velocity of /, m#s

    and it leaves at 2 Ma and 3,,:C! The inlet area of the noGGle is 5, cm 2and heat is "eing lost at a rate of 12, #s! etermine +a* the mass flow

    rate of the steam +"* the e;it velocity of the steam and +c* the e;it area

    noGGle!

    3! 6team enters a tur"ine at 4,,, a and 5,,o

    C and leaves as shown in Fig$ "elow! For an inlet velocity of 2,, m#s calculate the tur"ine .ower

    out.ut! + a *eglect any heat transfer and inetic energy change + " *6how

    that the inetic energy change is negligi"le!

    Faculty of Mechanical Engineering, UiTM

  • 8/9/2019 Chapter 3 First Law Thermodynamics

    59/59

    5

    Figure $

    4! Consider an ordinary shower where hot water at ',:C is mi;ed with cold

    water at 1,:C! (f it is desired that a steady stream of warm water at 45:C "e su..lied determine the ratio of the mass flow rates of the hot to cold

    water! $ssume the heat losses from the mi;ing cham"er to "e negligi"le

    and the mi;ing to tae .lace at a .ressure of 15, a!

    5! 0efrigerant?134a is to "e cooled "y water in a condenser! The refrigerant

    enters the condenser with a mass flow rate of ' g#min at 1 Ma and -,PC

    and leaves at 35:C! The cooling water enters at 3,, a and 15:C and

    leaves at 25PC! eglecting any .ressure dro.s determine +a* the mass

    flow rate of the cooling water re)uired and +"* the heat transfer rate from

    the refrigerant to water!