144
CE211 Digital Systems CE211 Digital Systems Gate Level Minimization

Chapter 3_Logic circuits

  • Upload
    z-pac7

  • View
    27

  • Download
    4

Embed Size (px)

DESCRIPTION

Logic circuits course

Citation preview

  • CE211 Digital SystemsCE211 Digital SystemsGate Level Minimization

  • 11 / / 143143

    KarnaughKarnaugh

    MapMap

    Adjacent Squares

    Number of squares = number of combinations

    Each square represents a minterm

    2 Variables 4 squares

    3 Variables 8 squares

    4 Variables 16 squares

    Each two adjacent squares differ in one variable

    Two adjacent minterms

    can be combined together

    Example: F = x y + x y

    = x ( y + y )

    = x

  • 22 / / 143143

    TwoTwo--variable Mapvariable Map

    m0 m1

    m2 m3

    x y Minterm

    0 0 0 m01 0 1 m12 1 0 m23 1 1 m3

    yxyxyxyx

    yx 0 1

    0

    1

    yx yx

    yx yx

    Note: adjacent squares horizontally and vertically NOT diagonally

  • 33 / / 143143

    TwoTwo--variable Mapvariable Map

    Examplex y F Minterm

    0 0 0 0 m01 0 1 0 m12 1 0 0 m23 1 1 1 m3

    yx 0 1

    0

    1

    m0 m1

    m2 m3

    y

    0 0

    x 0 1

    yxyxyxyx

    yx yx

    yx yx

  • 44 / / 143143

    TwoTwo--variable Mapvariable Map

    Examplex y F Minterm

    0 0 0 0 m01 0 1 1 m12 1 0 1 m23 1 1 1 m3

    yx 0 1

    0

    1

    m0 m1

    m2 m3

    y

    0 1

    x 1 1

    yxyxyxF ++=

    yxx )( + )( yyx +xyF +=

    yxyxyxyx

    yx yx

    yx yx

  • 55 / / 143143

    ThreeThree--variable Mapvariable Map

    m0 m1 m3 m2

    m4 m5 m7 m6

    x y z Minterm

    0 0 0 0 m01 0 0 1 m12 0 1 0 m23 0 1 1 m34 1 0 0 m45 1 0 1 m56 1 1 0 m67 1 1 1 m7

    zyx

    y zx 00 01 11 10

    0

    1

    zyxzyxzyxzyxzyxzyxzyx

    zyx zyx zyxzyx

    zyx zyx zyxzyx

  • 66 / / 143143

    ThreeThree--variable Mapvariable Map

    m0 m1 m3 m2m4 m5 m7 m6x y z F Minterm

    0 0 0 0 0 m01 0 0 1 0 m12 0 1 0 1 m23 0 1 1 1 m34 1 0 0 1 m45 1 0 1 1 m56 1 1 0 0 m67 1 1 1 0 m7

    y zx 00 01 11 10

    0

    1

    Example

    y

    0 0 1 1

    x 1 1 0 0z

    =F yxyx +

    zyxzyxzyxzyxzyxzyxzyxzyx

    zyx zyx zyxzyxzyx zyx zyxzyx

  • 77 / / 143143yx

    ThreeThree--variable Mapvariable Map

    m0 m1 m3 m2m4 m5 m7 m6x y z F Minterm

    0 0 0 0 0 m01 0 0 1 0 m12 0 1 0 0 m23 0 1 1 1 m34 1 0 0 1 m45 1 0 1 0 m56 1 1 0 1 m67 1 1 1 1 m7

    y zx 00 01 11 10

    0

    1

    Example

    y

    0 0 1 0

    x 1 0 1 1z

    =F zyzx + +Extra

    zyxzyxzyxzyxzyxzyxzyxzyx

    zyx zyx zyxzyxzyx zyx zyxzyx

  • 88 / / 143143

    ThreeThree--variable Mapvariable Map

    x y z F Minterm

    0 0 0 0 0 m01 0 0 1 1 m12 0 1 0 0 m23 0 1 1 1 m34 1 0 0 0 m45 1 0 1 1 m56 1 1 0 0 m67 1 1 1 1 m7

    Example y0 1 1 0

    x 0 1 1 0z

    zx zx

    zyxzyxzyxzyxF +++=

    )( yyzx + )( yyzx +

    y

    0 1 1 0

    x 0 1 1 0z

    zyxzyxzyxzyxzyxzyxzyxzyx

    z

  • 99 / / 143143

    ThreeThree--variable Mapvariable Map

    m0 m1 m3 m2m4 m5 m7 m6x y z F Minterm

    0 0 0 0 1 m01 0 0 1 0 m12 0 1 0 1 m23 0 1 1 0 m34 1 0 0 1 m45 1 0 1 1 m56 1 1 0 1 m67 1 1 1 0 m7

    y zx 00 01 11 10

    0

    1

    Example

    y

    1 0 0 1

    x 1 1 0 1z

    =F z yx+

    zyxzyxzyxzyxzyxzyxzyxzyx

    zyx zyx zyxzyxzyx zyx zyxzyx

  • 1010 / / 143143

    FourFour--variable Mapvariable Map

    m0 m1 m3 m2m4 m5 m7 m6m12 m13 m15 m14m8 m9 m11 m10

    w x y z Minterm0 0 0 0 0 m01 0 0 0 1 m12 0 0 1 0 m23 0 0 1 1 m34 0 1 0 0 m45 0 1 0 1 m56 0 1 1 0 m67 0 1 1 1 m78 1 0 0 0 m89 1 0 0 1 m9

    10 1 0 1 0 m1011 1 0 1 1 m1112 1 1 0 0 m1213 1 1 0 1 m1314 1 1 1 0 m1415 1 1 1 1 m15

    y zwx 00 01 11 10

    00

    01

    11

    10

    zyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxw

    zyxw zyxw yzxw zyxw

    zyxw zyxw xyzw zxyw

    zyxw zyxw yzxw zyxw

    zywx zywx wxyz zwxy

  • 1111 / / 143143

    FourFour--variable Mapvariable Map

    w x y z F Minterm0 0 0 0 0 1 m01 0 0 0 1 1 m12 0 0 1 0 1 m23 0 0 1 1 0 m34 0 1 0 0 1 m45 0 1 0 1 1 m56 0 1 1 0 1 m67 0 1 1 1 0 m78 1 0 0 0 1 m89 1 0 0 1 1 m910 1 0 1 0 0 m1011 1 0 1 1 0 m1112 1 1 0 0 1 m1213 1 1 0 1 1 m1314 1 1 1 0 1 m1415 1 1 1 1 0 m15

    y zwx 00 01 11 10

    00011110

    zyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxwzyxw

    zyxw zyxw yzxw zyxwzyxw zyxw xyzw zxyw

    zyxw zyxw yzxw zyxwzywx zywx wxyz zwxy

    Example

    y1 1 0 11 1 0 1

    xw

    1 1 0 11 1 0 0

    z

    =F y zw+ + zx

  • 1212 / / 143143

    FourFour--variable Mapvariable Map

    ExampleSimplify: F = A B C + B C D + A B C D + A B C

    C

    BA

    D

  • 1313 / / 143143

    FourFour--variable Mapvariable Map

    ExampleSimplify: F = A B C + B C D + A B C D + A B C

    C

    BA

    D

    1 1

  • 1414 / / 143143

    FourFour--variable Mapvariable Map

    ExampleSimplify: F = A B C + B C D + A B C D + A B C

    C

    BA

    D

    1

    1

  • 1515 / / 143143

    FourFour--variable Mapvariable Map

    ExampleSimplify: F = A B C + B C D + A B C D + A B C

    C

    BA

    D

    1

  • 1616 / / 143143

    FourFour--variable Mapvariable Map

    ExampleSimplify: F = A B C + B C D + A B C D + A B C

    C

    BA

    D1 1

  • 1717 / / 143143

    FourFour--variable Mapvariable Map

    ExampleSimplify: F = A B C + B C D + A B C D + A B C

    C1 1 1

    1B

    A1 1 1

    D

    =F DB CB+ + DCA

  • 1818 / / 143143

    FiveFive--variable Mapvariable Map

    DE DBC 00 01 11 10

    00 m0 m1 m3 m2

    01 m4 m5 m7 m6C

    B11 m12 m13 m15 m14

    10 m8 m9 m11 m10

    E

    A = 0

    DE DBC 00 01 11 10

    00 m16 m17 m19 m18

    01 m20 m21 m23 m22C

    B11 m28 m29 m31 m30

    10 m24 m25 m27 m26

    E

    A = 1

  • 1919 / / 143143

    FiveFive--variable Mapvariable Map

    A = 0

    A = 1

  • 2020 / / 143143

    ImplicantsImplicants

    C

    1

    1 1 1B

    A1 1 1

    1

    D

    Implicant:Gives F = 1

  • 2121 / / 143143

    Prime Prime ImplicantsImplicants

    C

    1

    1 1 1B

    A1 1 1

    1

    D

    Prime Implicant:Cant grow beyond this size

  • 2222 / / 143143

    Essential Prime Essential Prime ImplicantsImplicants

    C

    1

    1 1 1B

    A1 1 1

    1

    D

    Essential Prime Implicant:No other choice

    Not essential

    8 Implicants5 Prime

    implicants

    4 Essential

    prime

    implicants

  • 2323 / / 143143

    Product of Sums SimplificationProduct of Sums Simplification

    w x y z F F0 0 0 0 0 1 01 0 0 0 1 1 02 0 0 1 0 1 03 0 0 1 1 0 14 0 1 0 0 1 05 0 1 0 1 1 06 0 1 1 0 1 07 0 1 1 1 0 18 1 0 0 0 1 09 1 0 0 1 1 010 1 0 1 0 0 111 1 0 1 1 0 112 1 1 0 0 1 013 1 1 0 1 1 014 1 1 1 0 1 015 1 1 1 1 0 1

    y1 1 0 11 1 0 1

    xw

    1 1 0 11 1 0 0

    z =Fy zw+ + zx

    y1 1 0 11 1 0 1

    xw

    1 1 0 11 1 0 0

    z

    =F zy + yxw

    yxwzyF +=

    )()( yxwzyF +++=

    F

    ywz

    zx

    y

    wzxy

  • 2424 / / 143143

    DonDontt--Care ConditionCare Condition

    Example

    otherwiseC

    0depositedisnicleaif1{=

    otherwiseB

    0depositedisdimeaif1{=

    otherwiseA

    0depositedisquarteraif1{=

    A B C $ Value0 0 0 $ 0.000 0 1 $ 0.050 1 0 $ 0.100 1 1 Not possible1 0 0 $ 0.251 0 1 Not possible1 1 0 Not possible1 1 1 Not possible

    You can only drop one coin at

    a time.

    Used as dont care

    http://www.vending101.com/snacks.htm
  • 2525 / / 143143

    DonDontt--Care ConditionCare Condition

    Example

    A B C F0 0 0 00 0 1 10 1 0 10 1 1 x1 0 0 11 0 1 x1 1 0 x1 1 1 x

    F

    Dont care what value F may take

    Logic Circuit

    =

    =

    )7,6,5,3(),,(

    )4,2,1(),,(

    CBAd

    CBAF

    A

    B

    C

    http://www.vending101.com/snacks.htm
  • 2626 / / 143143

    DonDontt--Care ConditionCare Condition

    Example

    F

    B

    0 1 x 1

    A 1 x x xC

    BCAFCBACBACBAF

    ++=++=

    A

    B

    C

  • 2727 / / 143143

    DonDontt--Care ConditionCare Condition

    Example

    y

    x 1 1 x

    x 1x

    w1

    1z

    F (w, x, y, z) = (1, 3, 7, 11, 15)

    d (w, x, y, z) = (0, 2, 5)

    zwzyF +=

    x = 0

    x = 1

    y

    x x

    0 x 0x

    w0 0 0

    0 0 0z

    ywzF +=

    x = 0x = 1

  • 2828 / / 143143

    QuineQuineMcCluskey Tabular Method MotivationMcCluskey Tabular Method Motivation

    Karnaugh maps are effective for the minimizationof expressions with up to 5 or 6 inputs

    difficult to use and error prone for circuits with many inputs.

    Karnaugh maps depend on our ability to visually identify prime implicants and select a set of prime implicants that cover all minterms.

    They do not provide a direct algorithm to be implemented in a computer.

    For larger systems, we need a programmable method!!

  • 2929 / / 143143

    QuineQuine--McCluskeyMcCluskey

    Quine, Willard, A way to simplify truth functions.American Mathematical Monthly, vol. 62, 1955.

    Quine, Willard, The problem of simplifying truth functions.American Mathematical Monthly, vol. 59, 1952.

    Willard van Orman Quine 1908-2000, Edgar Pierce Chair of Philosophy at Harvard University.http://members.aol.com/drquine/wv-quine.html

    McCluskey Jr., Edward J. Minimization of Boolean Functions.Bell Systems Technical Journal, vol. 35, pp. 1417-1444, 1956

    Edward J. McCluskey, Professor of ElectricalEngineering and Computer Science at Stanfordhttp://www-crc.stanford.edu/users/ejm/McCluskey_Edward.html

  • 3030 / / 143143

    Outline of the QuineOutline of the Quine--McCluskey MethodMcCluskey Method

    1. Produce a minterm expansion (standard sum-of-products form) for a function F

    2. Eliminate as many literals as possible bysystematically applying XY + XY

    = X.

    3. Use a prime implicant chart to select aminimum set of prime implicants

    that

    when ORed together produce F, and thatcontains a minimum number of literals.

  • 3131 / / 143143

    Determination of Prime ImplicantsDetermination of Prime Implicants

    ABCD

    + ABCD = ABC

    1 0 1 0 + 1 0 1 1 = 1 0 1 -(The dash indicates a missing variable)

    ABCD + ABCD

    0 1 0 1 + 0 1 1 0

    We can combine the minterms above because theydiffer by a single bit.

    The minterms below wont combine

  • 3232 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    1. Find all the prime implicants

    = )14,10,9,8,7,6,5,2,1,0(),,,( mdcbaf

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Group the minterms according to the numberof 1s in the minterm.

    This way we only have tocompare minterms fromadjacent groups.

  • 3333 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    Combininggroup 0 and

    group 1:

  • 3434 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-

    Combininggroup 0 and

    group 1:

  • 3535 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-0

    Combininggroup 0 and

    group 1:

  • 3636 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -000

    Does it makesense tocombine group 0with group 2 or 3?

    No, there are atleast two bits thatare different.

  • 3737 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -000

    Does it makesense to nocombine group 0with group 2 or 3?

    No, there are atleast two bits thatare different.

    Thus, next we combine group 1and group 2.

  • 3838 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-01

    Combine group 1and group 2.

  • 3939 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-01

    Combine group 1and group 2.

  • 4040 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -001Combine group 1

    and group 2.

  • 4141 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -001Combine group 1

    and group 2.

  • 4242 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -001Combine group 1

    and group 2.

  • 4343 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -001Combine group 1

    and group 2.

  • 4444 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    Combine group 1and group 2.

  • 4545 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    Combine group 1and group 2.

  • 4646 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -010

    Combine group 1and group 2.

  • 4747 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -010

    Combine group 1and group 2.

  • 4848 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -010

    Combine group 1and group 2.

  • 4949 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    Combine group 1and group 2.

  • 5050 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-0

    Again, there isno need to tryto combine group1 with group 3.

    Lets try to combinegroup 2 with group 3.

  • 5151 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-1

    Combine group 2and group 3.

  • 5252 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-1

    Combine group 2and group 3.

  • 5353 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    Combine group 2and group 3.

  • 5454 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -110

    Combine

    group 2and group 3.

  • 5555 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -110

    Combine group 2and group 3.

  • 5656 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -110

    Combine group 2and group 3.

  • 5757 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -110

    Combine group 2and group 3.

  • 5858 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    We have nowcompleted thefirst step. Allminterms in column I wereincluded.

    We can dividecolumn II intogroups.

  • 5959 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

  • 6060 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

  • 6161 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

  • 6262 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

  • 6363 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

  • 6464 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

  • 6565 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-

  • 6666 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-

  • 6767 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-

  • 6868 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-

  • 6969 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-

  • 7070 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-

  • 7171 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-

  • 7272 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

  • 7373 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

  • 7474 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-

  • 7575 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-

  • 7676 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

  • 7777 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

  • 7878 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

  • 7979 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

  • 8080 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

  • 8181 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

    2,6,10,14 --10

  • 8282 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

    2,6,10,14 --102,10,6,14 --10

  • 8383 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

    2,6,10,14 --102,10,6,14 --10

  • 8484 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

    2,6,10,14 --102,10,6,14 --10

  • 8585 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

    2,6,10,14 --102,10,6,14 --10

    No more combinationsare possible, thus westop here.

  • 8686 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    0,8,1,9 -00-0,8,2,10 -0-0

    2,6,10,14 --102,10,6,14 --10

    We can eliminate repeatedcombinations

  • 8787 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    2,6,10,14 --10

    f = acd

    Now we form f with theterms not checked

  • 8888 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    2,6,10,14 --10

    f = acd + abd

  • 8989 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    2,6,10,14 --10

    f = acd + abd + abc

  • 9090 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    2,6,10,14 --10

    f = acd + abd + abc + bc

  • 9191 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    2,6,10,14 --10

    f = acd + abd + abc + bc+ bd

  • 9292 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    Column I Column II

    group 0

    group 1

    group 2

    group 3

    0 0000

    1 00012 00108 1000

    5 01016 01109 100110 1010

    7 011114 1110

    0,1 000-0,2 00-00,8 -0001,5 0-011,9 -0012,6 0-10

    2,10 -0108,9 100-

    8,10 10-05,7 01-16,7 011-

    6,14 -11010,14 1-10

    Column III

    0,1,8,9 -00-0,2,8,10 -0-0

    2,6,10,14 --10

    f = acd + abd + abc + bc+ bd

    + cd

  • 9393 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    b

    c

    d1

  • 9494 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    1

    b

    c

    d1

  • 9595 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    1

    1

    b

    c

    d1

  • 9696 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    1

    1

    1

    1

    1

    b

    c

    d1

  • 9797 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    1

    1

    1

    1

    1

    1 1

    b

    c

    d1

  • 9898 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized. Using a Karnaugh map we can obtain:

    a

    1

    1

    1

    1

    1

    1

    1 1 1

    b

    c

    d1

  • 9999 / / 143143

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    1

    1

    1

    1

    1

    1 1 1

    b

    c

    d1

    F = abd

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

  • 100100 / / 143143

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    1

    1

    1

    1

    1

    1 1 1

    b

    c

    d1

    F = abd + cd

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

  • 101101 / / 143143

    f = acd + abd + abc + bc

    + bd

    + cd

    But, the form below is not minimized, using a Karnaugh map we can obtain:

    a

    1

    1

    1

    1

    1

    1

    1 1 1

    b

    c

    d1

    F = abd + cd

    + bc

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

  • 102102 / / 143143

    QuineQuine--McCluskey Method An ExampleMcCluskey Method An Example

    f = acd + abd + abc + bc

    + bd

    + cd

    What are the extra terms in the solution obtainedwith the Quine-McCluskey method?

    a

    1

    1

    1

    1

    1

    1

    1 1 1

    b

    c

    d1

    F = abd + cd

    + bc

    Thus, we need a method to eliminate this redundant termsfrom the Quine-McCluskey solution.

  • 103103 / / 143143

    The Prime Implicant ChartThe Prime Implicant Chart

    The prime implicant chart is the second part ofthe Quine-McCluskey procedure.

    It is used to select a minimum set of prime implicants.

    Similar to the Karnaugh map, we first selectthe essential prime implicants, and then weselect enough prime implicants to cover allthe minterms of the function.

  • 104104 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    Question: Given the prime implicant chart above,how can we identify the essential primeimplicants of the function?

    mintermsP

    rime

    Impl

    ican

    ts

  • 105105 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    Similar to the Karnaugh map, all we have to do is to look for minterms that are covered by a singleterm.

    mintermsP

    rime

    Impl

    ican

    ts

  • 106106 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    Once a term is included in the solution, all theminterms covered by that term are covered.

    Therefore we may now mark the covered mintermsand find terms that are no longer useful.

    mintermsP

    rime

    Impl

    ican

    ts

  • 107107 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    mintermsP

    rime

    Impl

    ican

    ts

  • 108108 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    As we have not covered all the minterms withessential prime implicants, we must chooseenough non-essential prime implicants to cover the remaining minterms.

    mintermsP

    rime

    Impl

    ican

    ts

  • 109109 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    What strategy should we use to find a minimumcover for the remaining minterms?

    mintermsP

    rime

    Impl

    ican

    ts

  • 110110 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    We choose first prime implicants that cover themost minterms. Should this strategy always work??

    mintermsP

    rime

    Impl

    ican

    ts

  • 111111 / / 143143

    Prime Implicant Chart (Example)Prime Implicant Chart (Example)

    0 1 2 5 6 7 8 9 10 14(0,1,8,9) bc X X X X (0,2,8,10) bd X X X X (2,6,10,14) cd X X X X (1,5) acd X X (5,7) abd X X (6,7) abc X X

    Therefore our minimum solution is:

    f(a,b,c,d) = bc

    + cd

    + abd

    mintermsP

    rime

    Impl

    ican

    ts

  • 112112 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Which ones are the essential prime implicants in this chart?

    There is no essential prime implicants, how we proceed?

    minterms

    Prim

    e Im

    plic

    ants

  • 113113 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Also, all implicants cover the same number of minterms. We will have to proceed by trial and error.

    minterms

    Prim

    e Im

    plic

    ants

    F(a,b,c) = ab

  • 114114 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Also, all implicants cover the same number of minterms. We will have to proceed by trial and error.

    minterms

    Prim

    e Im

    plic

    ants

    F(a,b,c) = ab

    + bc

  • 115115 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Thus, we get the minimization:

    F(a,b,c) = ab

    + bc

    + ac

    minterms

    Prim

    e Im

    plic

    ants

  • 116116 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Lets try another set of prime implicants.

    minterms

    Prim

    e Im

    plic

    ants

  • 117117 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Lets try another set of prime implicants.

    minterms

    Prim

    e Im

    plic

    ants

    F(a,b,c) = ac

  • 118118 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Lets try another set of prime implicants.

    minterms

    Prim

    e Im

    plic

    ants

    F(a,b,c) = ac + bc

  • 119119 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    Lets try another set of prime implicants.

    minterms

    Prim

    e Im

    plic

    ants

    F(a,b,c) = ac + bc+ ab

  • 120120 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    F(a,b,c) =

    m(0, 1, 2, 5, 6, 7)

    0 000 1 001 2 010 5 101 6 110 7 111

    0,1 00-0,2 0-01,5 -012,6 -105,7 1-16,7 11-

    0 1 2 5 6 7(0,1) ab X X (0,2) ac X X (1,5) bc X X (2,6) bc X X (5,7) ac X X(6,7) ab X X

    This time we obtain:

    F(a,b,c) = ac + bc+ ab

    minterms

    Prim

    e Im

    plic

    ants

  • 121121 / / 143143

    Cyclic Prime Implicant ChartCyclic Prime Implicant Chart

    Which minimal form is better?

    F(a,b,c) = ab

    + bc

    + ac

    F(a,b,c) = ac + bc+ ab

    Depends on what terms we must form for otherfunctions that we must also implement.

    Often we are interested in examining all minimalforms for a given function.

    Thus we need an algorithm to do so.

  • 122122 / / 143143

    PetrickPetricks Methods Method

    S. R. Petrick. A direct determination of the irredundantforms of a boolean function from the set of prime implicants. Technical Report AFCRC-TR-56-110, Air Force Cambridge Research Center, Cambridge, MA, April, 1956.

    Goal: Given a prime implicant chart, determineall minimum sum-of-products solutions.

  • 123123 / / 143143

    PetrickPetricks Methods Method An ExampleAn Example

    0 1 2 5 6 7P1 (0,1) ab X X P2 (0,2) ac X X P3 (1,5) bc X X P4 (2,6) bc X X P5 (5,7) ac X XP6 (6,7) ab X X

    Step 1: Label all the rows in the chart.

    Step 2: Form a logic function P with the logic variables P1

    , P2

    , P3

    that is true whenall the minterms in the chart are covered.

    minterms

    Prim

    e Im

    plic

    ants

  • 124124 / / 143143

    PetrickPetricks Methods Method An ExampleAn Example

    0 1 2 5 6 7P1 (0,1) ab X X P2 (0,2) ac X X P3 (1,5) bc X X P4 (2,6) bc X X P5 (5,7) ac X XP6 (6,7) ab X X

    The first column has an X in rows P1

    and P2

    . Therefore we must include one of these rowsin order to cover minterm 0. Thus the followingterm must be in P:

    (P1

    + P2

    )

    minterms

    Prim

    e Im

    plic

    ants

  • 125125 / / 143143

    PetrickPetricks Methods Method An ExampleAn Example

    0 1 2 5 6 7P1 (0,1) ab X X P2 (0,2) ac X X P3 (1,5) bc X X P4 (2,6) bc X X P5 (5,7) ac X XP6 (6,7) ab X X

    Following this technique, we obtain:

    P = (P1

    + P2

    ) (P1

    + P3

    ) (P2

    + P4

    ) (P3

    + P5

    ) (P4

    + P6

    ) (P5

    + P6

    )

    P = (P1

    + P2

    ) (P1

    + P3

    ) (P4

    + P2

    ) (P5

    + P3

    ) (P4

    + P6

    ) (P5

    + P6

    )

    P = (P1

    + P2

    ) (P1

    + P3

    ) (P4

    + P2

    ) (P4

    + P6

    ) (P5

    + P3

    ) (P5

    + P6

    )

    P = (P1

    + P2 P3

    ) (P4

    + P2 P6

    ) (P5

    + P3 P6

    )

    minterms

    Prim

    e Im

    plic

    ants

  • 126126 / / 143143

    PetrickPetricks Methods Method An ExampleAn Example

    P = (P1

    + P2

    ) (P1

    + P3

    ) (P2

    + P4

    ) (P3

    + P5

    ) (P4

    + P6

    ) (P5

    + P6

    )

    P = (P1

    + P2

    ) (P1

    + P3

    ) (P4

    + P2

    ) (P5

    + P3

    ) (P4

    + P6

    ) (P5

    + P6

    )

    P = (P1

    + P2

    ) (P1

    + P3

    ) (P4

    + P2

    ) (P4

    + P6

    ) (P5

    + P3

    ) (P5

    + P6

    )

    P = (P1

    + P2 P3

    ) (P4

    + P2 P6

    ) (P5

    + P3 P6

    )

    P = (P1 P4

    + P1

    P2 P6

    + P2 P3 P4

    + P2 P3 P6

    ) (P5

    + P3 P6

    )

    P = P1 P4 P5

    + P1

    P2 P5 P6

    + P2 P3 P4 P5

    + P2 P3 P5 P6+ P1 P3 P4 P6

    + P1

    P2 P3 P6

    + P2 P3 P4 P6

    + P2 P3 P6

    P = P1 P4 P5

    + P1

    P2 P5 P6

    + P2 P3 P4 P5

    + P1 P4 P3 P6

    + P2 P3 P6

  • 127127 / / 143143

    PetrickPetricks Methods Method

    An ExampleAn Example

    P = P1 P4 P5

    + P1

    P2 P5 P6

    + P2 P3 P4 P5

    + P1 P4 P3 P6

    + P2 P3 P6

    This expression says that to cover all the mintermswe must include the terms in line P1

    and line P4

    and line P5

    , or we must include line P1

    , and line P2

    , and line P5

    , and line P6

    , or

    Considering that all the terms P1

    , P2

    ,

    have the samecost, how many minimal forms the function has?

    The two minimal forms are P1 P4 P5 and P2 P3 P6:

    F = ab

    + bc

    + ac F = ac

    + bc + ab

  • 128128 / / 143143

    Universal GatesUniversal Gates

    One Type

    Use as many as you need (quantity), but one type only.

    Perform Basic Operations

    AND, OR, and NOT

    NAND Gate

    NOT-AND functions

    OR function can be obtained from AND by Demorgans

    NOR Gate

    NOT-OR functions (AND by Demorgans)

  • 129129 / / 143143

    Universal GatesUniversal Gates

    NAND Gate

    NOT:

    AND:

    OR: DeMorgans

  • 130130 / / 143143

    Universal GatesUniversal Gates

    NOR Gate

    NOT:

    OR:

    AND: DeMorgans

  • 131131 / / 143143

    NAND & NOR ImplementationNAND & NOR Implementation

    Two-Level Implementation

  • 132132 / / 143143

    NAND & NOR ImplementationNAND & NOR Implementation

    Two-Level Implementation

  • 133133 / / 143143

    NAND & NOR ImplementationNAND & NOR Implementation

    Multilevel NAND Implementation

    CDBABC

    F

    CDBABC

    F

  • 134134 / / 143143

    NAND & NOR ImplementationNAND & NOR Implementation

    Multilevel NOR Implementation

  • 135135 / / 143143

    Gate ShapesGate Shapes

    AND

    OR

    NAND

    NOR

  • 136136 / / 143143

    Other ImplementationsOther Implementations

    AND-OR-Invert

    OR-AND-Invert

  • 137137 / / 143143

    Implementations SummaryImplementations Summary

    Sum Of Products:

    AND-OR

    AND-OR-Invert ==

    AND-NOR ==

    NAND-AND

    Products Of Sums

    OR-AND

    OR-AND-Invert ==

    OR-NAND ==

    NOR--OR

  • 138138 / / 143143

    ExclusiveExclusive--OROR

    XORF = x

    y = x y + x y

    XNORF = x

    y =

    x y = x y + x y

  • 139139 / / 143143

    ExclusiveExclusive--OROR

    Identities

    x

    0 =

    x

    x

    1 =

    x

    x

    x =

    0

    x

    x =

    1

    x

    y =

    x

    y =

    x

    y

    Commutative & Associative

    x

    y =

    y

    x

    ( x

    y )

    z =

    x

    ( y

    z ) =

    x

    y

    z

    x y XOR0 0 00 1 11 0 11 1 0

  • 140140 / / 143143

    ExclusiveExclusive--OR FunctionsOR Functions

    Odd FunctionF = x

    y

    z

    F = (1, 2, 4, 7)

    Even FunctionF = x

    y

    z

    F = (0, 3, 5, 6)

    x y z XOR XNOR0 0 0 0 10 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 0

    y zx 00 01 11 10

    0 0 1 0 1

    1 1 0 1 0

  • 141141 / / 143143

    ParityParity

    1010

    1010

    1000

    10101

    10101

    10001

    Parity Generator

    Parity Checker

  • 142142 / / 143143

    Parity GeneratorParity Generator

    Odd Parity

    Even Parity

    1010

    1

    Odd number of 1s

    1010

    0

    Even number of 1s

    1010

    1010

  • 143143 / / 143143

    Parity CheckerParity Checker

    Odd Parity

    Even Parity

    ErrorCheck

    1010

    1

    1010

    0Error

    Check

    CE211 Digital SystemsKarnaugh MapTwo-variable MapTwo-variable MapTwo-variable MapThree-variable MapThree-variable MapThree-variable MapThree-variable MapThree-variable MapFour-variable MapFour-variable MapFour-variable MapFour-variable MapFour-variable MapFour-variable MapFour-variable MapFour-variable MapFive-variable MapFive-variable MapImplicantsPrime ImplicantsEssential Prime ImplicantsProduct of Sums SimplificationDont-Care ConditionDont-Care ConditionDont-Care ConditionDont-Care ConditionQuineMcCluskey Tabular Method MotivationQuine-McCluskeyOutline of the Quine-McCluskey MethodDetermination of Prime ImplicantsQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleQuine-McCluskey Method An ExampleSlide Number 100Slide Number 101Slide Number 102Quine-McCluskey Method An ExampleThe Prime Implicant ChartPrime Implicant Chart (Example)Prime Implicant Chart (Example)Prime Implicant Chart (Example)Prime Implicant Chart (Example)Prime Implicant Chart (Example)Prime Implicant Chart (Example)Prime Implicant Chart (Example)Prime Implicant Chart (Example)Cyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartCyclic Prime Implicant ChartPetricks MethodPetricks MethodAn ExamplePetricks MethodAn ExamplePetricks MethodAn ExamplePetricks MethodAn ExamplePetricks MethodAn ExampleUniversal GatesUniversal GatesUniversal GatesNAND & NOR ImplementationNAND & NOR ImplementationNAND & NOR ImplementationNAND & NOR ImplementationGate ShapesOther ImplementationsImplementations SummaryExclusive-ORExclusive-ORExclusive-OR FunctionsParityParity GeneratorParity Checker