60
Chapter 4 Electron Configurations

Chapter 4 Electron Configurations - Wikispaces 04 General-EC-ppt.pdf... · Bohr’s Model (cont.) • Energy of the atom is quantized • Atom can only have certain specific energy

Embed Size (px)

Citation preview

Chapter 4 Electron Configurations

Atom Structure The  Atom  

 -­‐  the  smallest  part  of  an  element  that    still  retains  the  properties  of  that    element  

Subatomic  particles      protons      (p+)  1.674  x  10-­‐24      =    1  amu  neutron      (n0)  1.674  x  10-­‐24      =    1  amu  electron      (e-­‐)  9.11  x  10-­‐28          =    0  amu    

The  History  of  the  Development  of  the  Human  Understanding  of  the  Atom.  aka  History  of  Atomic  Theory  

Dalton

+ + + +

+

+ -

-

- - -

-

Thomson

+ + + + + +

-

-

- - -

-

Rutherford

+ + + + + + - -

- - -

-

Bohr

4

1913  -­‐  Niels  Bohr  •  Hydrogen  atoms  were  known  to  emit  specific  wavelengths  of  light  a8er  being  excited.  

•  Focusing  on  the  par>cle  proper>es  of  electrons,  Bohr  constructed  a  quantum  model  to  explain  this  emission  phenomenon.  

•  He  proposed  that  electrons  orbited  the  nucleus  at  specific  radii,  also  called  energy  levels.  

+ + + + + + - -

- - -

-

Bohr

Electromagnetic Waves •  c = λ x ν • Velocity = c = speed of light

•  2.997925 x 108 m/s •  All types of light energy travel at the same speed.

• Amplitude = A = measure of the intensity of the wave, i.e.“brightness”

•  Magnitude of the change

amplitude

Electromagnetic Waves (cont.) • Velocity = c = speed of light

•  2.997925 x 108 m/s

• Wavelength = λ = distance between two consecutive peaks or troughs in a wave •  Generally measured in nanometers

(1 nm = 10-9 m) •  Same distance for troughs

Lower frequency

Higher frequency

•  Frequency = ν = the number of waves that pass a point in space in one second –  Generally measured in Hertz (Hz), –  1 Hz = 1 wave/sec = 1 sec-1

•  c = λ x ν

wavelength

Electromagnetic Radiation

• Electromagnetic radiation is given off by atoms when they have been excited by any form of energy

Types of Electromagnetic Radiation

high energy

http://www.youtube.com/watch?v=cfXzwh3KadE

Max Planck’s Revelation • Showed that for certain applications light energy could be thought of as particles or photons

Planck’s Revelation (cont.)

• The energy of the photon is directly proportional to the frequency of light.

• Wavelength and frequency are inversely related

λ

ν

Emission of Energy by Atoms/Atomic Spectra

• Atoms that have gained extra energy release that energy in the form of light.

Atomic Spectra

• Atomic Emission Spectra: the set of frequencies of the electromagnetic spectrum emitted by excited elements of an atom

• Line spectrum: very specific wavelengths

of light that atoms give off or gain

• Each element has its own line spectrum, which can be used to identify that element.

Atomic Spectra (cont.)

Atomic Spectra (cont.)

Atomic Spectra (cont.)

• The line spectrum must be related to energy transitions in the atom

Atomic Spectra (cont.)

• The atom is quantized, i.e. only certain energies are allowed.

(a) Varies continuously (b) certain elevations i.e steps

Bohr’s Model

• Explained spectrum of hydrogen • Energy of atom is related to the distance

of electron from the nucleus

+ + + + + + - -

- - -

-

Bohr’s model

Bohr’s Model (cont.)

• Energy of the atom is quantized • Atom can only have certain specific energy

states called quantum levels or energy levels.

• When atom gains energy, electron “moves” to a higher quantum level

• When atom loses energy, electron “moves” to a lower energy level

• Lines in spectrum correspond to the difference in energy between levels

Bohr’s Model (cont.)

•  Ground state: minimum energy of an atom •  Therefore electrons do

not crash into the nucleus

•  The ground state of hydrogen corresponds to having its one electron in the n=1 level

•  Excited states: energy levels higher than the ground state

Flame  test  

Glowing pickel: http://www.youtube.com/watch?v=5FO0IKUTkJ0

Understanding  the  Arrangement  of  Electrons  Inside  Atoms       •   Electron  configura>on  

•   Orbital  Nota>on  

Heisenberg  Uncertainty  Principle  

+ + + + + + - -

- - -

-

Bohr’s model

•  Can not determine the exact position and momentum of moving objects

•  Probability of finding electrons in certain regions of the atom described by orbitals

•  Orbitals have particular shapes, sizes, and energies

•  Orbital: s, p, d, and f

Suppose  you  needed  to  communicate  the  seating  in  the  auditorium  by  email  without  the  use  of  the  picture  with  just  letters  and/or  numbers.  You  might  symbolize  the  seats  in  the  following  manner:  

•  Sec>ons  •  Rows  •  Seat  numbers  •  etc  

24

First  Row  -­‐  Electron  ConZiguration  • H:  1s1  

• s  orbitals  are  sphere-­‐shaped  and  there  is  one  on  each  and  every  energy  level,  each  orbital  can  hold  2  electrons    

• He:  1s2   25

first energy level

1 electron

“s” orbital

Second  Row  -­‐    Electron  ConZiguration  •  Li:  1s2      2s1  •  Be:  1s2      2s2  •  B:  1s2      2s2  2p1  

• There  are  3  “p”  orbitals  on  any  given  energy  level,  each  can  hold  2  e-­‐    

•   They  are  lobe-­‐shaped,  oriented  in  the  x,  y,  z  planes.  

26

1A" 2A" 8A"

3A" 4A" 5A" 6A" 7A"

Li"Be" B"1B" 2B" 3B" 4B" 5B" 6B" 7B" 8B" 9B" 10B"

Second  Row,  continued....  

•  Li:  1s2      2s1  

•  Be:  1s2      2s2  

•  B:  1s2      2s2  2p1  

•  C:  1s2      2s2  2p2  

•  N:  1s2      2s2  2p3  

•  O:  1s2      2s2  2p4  

•  F:  1s2      2s2  2p5  

•  Ne:  1s2      2s2  2p6  27

1A" 2A" 8A"

3A" 4A" 5A" 6A" 7A"

Li" Be" B" C" N" O" F" Ne"1B" 2B" 3B" 4B" 5B" 6B" 7B" 8B" 9B" 10B"

The  Periodic  Table  is  Shaped  to  Help  You  

• s  -­‐  two  columns,  2  electrons  maximum,  1  orbital  • p  -­‐  six  columns,  6  electrons  maximum,  3  orbitals  

28

1A" 2A" 8A"

3A" 4A" 5A" 6A" 7A"

1B" 2B" 3B" 4B" 5B" 6B" 7B" 8B" 9B" 10B"

s orbitals

p orbitals

Third  Row  -­‐  Electron  ConZiguration  •  Na:  1s2      2s2  2p6    3s1  

•  Mg:  1s2      2s2  2p6    3s2  

•  Al:  1s2      2s2  2p6      3s2  3p1  

•  Si:  1s2      2s2  2p6      3s2  3p2  

•  P:  1s2      2s2  2p6          3s2  3p3  

•  S:  1s2      2s2  2p6      3s2  3p4  

•  Cl:  1s2      2s2  2p6      3s2  3p5  

•  Ar:  1s2      2s2  2p6      3s2  3p6  

29

1A" 2A" 8A"

3A" 4A" 5A" 6A" 7A"

Na"Mg" 1B" 2B" 3B" 4B" 5B" 6B" 7B" 8B" 9B" 10B" Al" Si" P" S" Cl" Ar"

⨂ ⊘⊘〇

⨂ ⊘⊘⊘ ⨂ ⨂⊘⊘ ⨂ ⨂⨂⊘ ⨂ ⨂⨂⨂

Orbital Notation Useful to ID paired and unpaired electrons

⨂ 〇〇〇

⨂ ⊘〇〇

Fourth  Row  

• K:  1s2  2s2  2p6      3s2  3p6      4s1  • Ca:  1s2  2s2  2p6  3s2  3p6      4s2  •  Sc:  1s2      2s2  2p6      3s2  3p6      4s2  3d1  • There  are  five  “d”  orbitals  on  any  (allowed)  energy  level.  

• 21  protons  is  enough  +  aZrac>on  to  pull  the  electrons  closer  to  the  nucleus  to  the  3rd  energy  level.  

• Thus  you  need  to  remember  that  when  you  are  in  the  4th  row  of  the  table,  you  are  filling  the  3d  orbitals.  

• Lets  con>nue....   30

Why is it 3d not 4d?

Fourth  Row  

•  K:  1s2  2s2  2p6      3s2  3p6      4s1  •  Ca:  1s2  2s2  2p6  3s2  3p6      4s2  •  Sc:  1s2      2s2  2p6      3s2  3p6      4s2  3d1  •  Ti:  1s2      2s2  2p6      3s2  3p6      4s2  3d2  •  V:  1s2      2s2  2p6      3s2  3p6      4s2  3d3  •  Cr:  1s2      2s2  2p6      3s2  3p6      4s2  3d4  • Mn:  1s2      2s2  2p6      3s2  3p6    4s2  3d5  •  Fe:  1s2      2s2  2p6      3s2  3p6      4s2  3d6  •  Co:  1s2      2s2  2p6      3s2  3p6      4s2  3d7  •  Ni:  1s2      2s2  2p6      3s2  3p6      4s2  3d8  •  Cu:  1s2      2s2  2p6      3s2  3p6      4s2  3d9  •  Zn:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  

31

Zinish  the  Fourth  Row  s  (d)  &  p  

•  K:  1s2  2s2  2p6      3s2  3p6      4s1  •  Ca:  1s2  2s2  2p6  3s2  3p6      4s2  •  (Transi(on  Metals  -­‐  “d”  group)  •  Ga:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p1  •  Ge:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p2  •  As:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p3  •  Se:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p4  •  Br:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p5  •  Kr:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6  

32

What  are  the  shape  of  “d”  orbitals?  

• yikes  !  You  do  not  need  to  know  these  shapes.  

33

Fifth  Row      s  &  d  •  Rb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s1  •  Sr:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  •  Y:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d1  •  Zr:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d2  •  Nb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d3  •  Mo:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d4  

•  Tc:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6        5s2  4d5  •  Ru:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d6  •  Rh:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d7  •  Rd:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d8  •  Ag:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d9  •  Cd:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  

34

Fifth  Row  Representative  Elements  s  (d)  &  p  • Rb:  1s2      2s1  3s2      3s2  3p6      4s2  3d10  4p6      5s1  •  Sr:  1s2      2s2  3s2      3s2  3p6      4s2  3d10  4p6      5s2  • Finish the transition Metals - “d” group Cd:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10

•  In:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p1  • This  is  sooooo  tedius,  we  o8en  write  “condensed”  electron  configura>ons  

•                 Sn:  [Kr]    5s2  4d10  5p2  

•  Sb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p3  •                     Te:  [Kr]    5s2  4d10  5p4  

•                               I:  [Kr]    5s2  4d10  5p5  

• Xe:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  35

Fifth  Row  Representative  Elements  s  (d)  &  p  • Rb:  1s2      2s1  3s2      3s2  3p6      4s2  3d10  4p6      5s1  •  Sr:  1s2      2s2  3s2      3s2  3p6      4s2  3d10  4p6      5s2  •  Transi(on  Metals  -­‐  “d”  group  •  In:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p1  •  Sn:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p2  •  Sb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p3  •  Te:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p4  •  I:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6        5s2  4d10  5p5  • Xe:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  

36

Sixth  Row  •  Cs:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6  5s2  4d10  5p6  6s1  •  Ba:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6  5s2  4d10  5p6  6s2  •  so  pause  to  note  where  we  are  in  the  periodic  table  •  clearly  we  need  a  new  orbital  type  as  we  are  headed  into  a  new  “block”  on  the  table.  

•  This  type  is  called  “f”  •  La:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f1  •  Ce:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f2  •  Pr:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f3  •  Nd:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f4  •  Pm:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6        5s2  4d10  5p6  6s2  4f5  

•  Sm:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f6  

•  Etc,  etc,  etc  through  •  Yb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14   37

So  what  shape  are  “f”  orbitals?  •  7  different  orbitals,  each  of  which  is  4-­‐lobed  •  you  do  NOT  need  to  know  these  shapes  

38

Sixth  Row  continued.....  •  Yb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14  •  So  where  do  we  go  from  here?  •  on  to  the  “d”  orbitals  •  Lu:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f14  5d1  •  Hf:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f14  5d2  •  Ta:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f14  5d3  •  Etc,  etc,  etc  through  •  Hg:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14  5d10    •  Tl:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f14  5d10  6p1  •  Pb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14  5d10  6p2  •  Bi:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14  5d10  6p3  •  Etc,  etc,  etc  

39

Sixth  Row  •  Cs:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6  5s2  4d10  5p6  6s1  •               Ba:  [Xe]  6s2  

•  so pause to note where we are in the periodic table •  clearly we need a new orbital type as we are headed into a new “block” on the table.

•  This type of orbital is called “f” •  La:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f1  •               Ce:  [Xe]  6s2  4f2  

•  Pr:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f3  •  Nd:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f4  • We  could  even  represent  the  next  element  by  just  wri>ng  the  “last  orbital”  filled,  assuming  all  lower  energy  orbitals  filled  up.  

•                   Pm:  4f5  

•  Sm:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f6  

•  Etc,  etc,  etc  through  •  Yb:  4f14  

40

Sixth  Row  continued.....  •  Yb:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14  •  So  where  do  we  go  from  here?  •  on  to  the  “d”  orbitals  •  Lu:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f14  5d1  •   Hf:  (condensed  version)  [Xe]  5d2  

•  Ta:  (single  highest  orbital)  5d3  

•  Etc,  etc,  etc  through  •  Hg:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14  5d10    •  Tl:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6    5s2  4d10  5p6  6s2  4f14  5d10  6p1  •  Pb:  (condensed  version)  [Xe]  6p2  

•  Bi:  1s2      2s2  2p6      3s2  3p6      4s2  3d10  4p6      5s2  4d10  5p6  6s2  4f14  5d10  6p3  •  Po:  (single  highest  orbital)  6p4  •  At:  (condensed  version)  [Xe]  6p5  

•  Rn:  (single  highest  orbital)  6p6  

41

Write  the  entire  electron  conZiguration  •  16S  

•  1s22s22p63s23p4  

•  28Ni  •  1s22s22p63s23p64s23d8  

•  60Nd  •  1s22s22p63s23p64s23d104p65s24d105p66s24f4  

42

Turn  these  entire  e.c.  into  the  condensed  version  of  e.c.  

•  16S  •  1s22s22p63s23p4  •               [Ne]  3s23p4  

•  28Ni  •  1s22s22p63s23p64s23d8  •                                     [Ar]  4s23d8  

•  60Nd  •  1s22s22p63s23p64s23d104p65s24d105p66s24f4  •                                                                                                         [Xe]  6s24f4  

43

Orbital  Notation  •  Electrons  spin  just  like  a  clock  (clockwise  or  counterclockwise)  

•  Electrons  will  fill  up  the  orbitals  one  at  a  >me  THEN  double  up  in  an  orbital  

• Draw  the  electron  out  as  an  arrow  up  and  down  

Orbital  notation…Lets  Try!!  

• H  • He  • Li  • Be  • B  • F  

Lets  Continue!!  

• 24Cr  • 30Zn  • 59Pr  • 64Gd  

Rules  for  orbital  notation  

• Au#au  Principle:  Electrons  are  added  one  at  a  >me  to  Lowest  orbitals  available  first  un>l  filled  Rule  violated  below!!!  

!

Rules  for  orbital  notation  

• Pauli  Exclusion  Principle:  Orbital  can  hold  2  electrons  and  spins  must  be  opposite.    Rule  violated  below!!!  

Rules  for  orbital  notation  

• Hund’s  Rule:  Electrons  like  to  be  unpaired  (or  alone!!)  so  each  orbital  will  fill  up  with  one  electron  un>l  you  have  to  double  them  up  Rule  violated  below!!!  

!

Write  the  orbital  notation  for  these  condensed  electron  conZigurations  

•  16S  •  [Ne]  3s23p4  •                   ⊗    ⊗WW  

•  28Ni  •  [Ar]  4s23d8  •               ⊗    ⊗⊗⊗WW  

•  60Nd  •  [Xe]  6s24f4  •               ⊗    WWWW���

50

Name  the  element  described  by  the  condensed  version  of  e.c.  

•  [Ne]  3s23p3  

• 15P  •  [Ar]  4s23d104p5  

• 35Br  •  [Xe]  6s24f145d3  

• 73Ta  •  [Rn]  7s25f8  

• 96Cm  51

Name  the  element  described  by  the  single  highest  energy  orbital.  (Assume  all  lower  orbitals  are  Zilled.)  •  2p1  

• 5B  

•  4d2  • 40Zr  

•  6p5  • 85At  

•  5f2  • 90Th  

•  4p8  •  No  such  element  

52

Write  the  single  highest  energy  orbital  to  describe  the  element.  (Assume  all  lower  orbitals  are  Zilled.)  

•  12Mg  •  3s2  

•  43Tc  •  4d5  

•  65Tb  •  4f9  

•  82Pb  •  6p2  

53

Electron  conZigurations  and  Valance  electrons  • Now  you  now  where  all  the  electrons  reside  (electron  config.)  

• Valence  electrons  are  the  electrons  found  in  the  outermost  energy  level  (s  and  p  orbitals)  

•  These  valence  electrons  are  where  bonding  happens!  

• ALL  elements  want  a  FULL  outer  energy  level  (just  like  Halogens)  and  they  will  gain  or  lose  electrons  to  get  it!!!  

• MAGIC  NUMBER  in  outer  shell  is  8  :  Octet  Rule  

Valence  electrons  continued  •  All  elements  want  to  be  like  the  Halogens!  •  Reason  for  what  type  of  ion  they  become  •  For  examples  below,  write  the  condensed  E.C.,  how  many  valence  electrons?  Will  it  want  to  gain  or  lose  electrons  to  achieve  octet  rule?    

•  16S  •  8O  •  17Cl  •  13Al  •  20Ca  •  85At  •  86Rn  

Other  Periodic  trends  

• Atomic  Size  • Ioniza>on  Energy  • Electronega>vity  

57

The Size of Atoms • The size of atoms

increases down the chart. •  due to more energy levels

• The size of atoms decreases across to the right on the chart. •  due to increased + pull on

electrons •  electrons are not further

away from the nucleus. •  and the shielding does not

increase

58

Ionization Energy • The amount of energy required to forcibly remove

an electron from an atom (from outermost energy level)

• How  strongly  an  atom  holds  onto  its  outermost  electron  

• High  ioniza>on  energy  =  hold  onto  electron  >ghtly!  •  Low  ioniza>on  energy  =  will  lose  an  electron  easily  (become  a  ca>on)

+

Energy in electron out

-

atom becomes a positively charged ion

59

First Ionization Energy (The energy required to remove only one electron from an atom.)

•  IE decreases down the chart. •  Larger size of atom

(∴ e- further from protons) makes it easier to remove a valence electron.

•  IE increases across to the right on the chart. •  The smaller size and the

increased effective nuclear charge of the atom makes it harder to remove an electron.

Fi rs t Ioni zati on Energ ies (k J/mole)

1 H 1311

He 2370 1

2 Li 521

Be 899

B 799

C 1087

N 1404

O 1314

F 1682

Ne 2080 2

3 Na 496

Mg 737

Al 576

Si 786

P 1052

S 1000

Cl 1245

Ar 1521 3

4 K 419

Ca 590

Ga 579

Ge 762

As 944

Se 941

Br 1140

Kr 1351 4

5 Rb 403

Sr 550

In 558

Sn 709

Sb 832

Te 869

I 1009

Xe 1170 5

6 Cs 376

Ba 503

Tl 589

Pb 716

Bi 703

Po 812

At Rn 1037 6

7 Fr Ra 7

IE decreases down

IE increases across

Electronegativity  •  The ability to attract

electrons in a chemical bond

•  EN increases as you move to the right of the periodic table (i.e. easier to gain e- to have a full outer energy level)

•  EN decreases go down (i.e. increase size so further away from nucleus)