85
Chapter 4 The Fourier Transfor EE 207 Dr. Adil Balghonaim

Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Embed Size (px)

Citation preview

Page 1: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Chapter 4 The Fourier Transform

EE 207 Dr. Adil Balghonaim

Page 2: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0

0

sinc 2

nA nXT

0

0

| | sinc 2n

A nXT

0

0

0

180

nsinc > 0

2

nsinc < 0

2

n

o

0 0Frequency incremen (t )n

0

0

2The spacing between spectrum lines is T

Page 3: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0( ) jn t

p n

n

Xx t e

0

00

1 ( ) jn t

T

n x t e dtT

X

Let xp(t) be a periodical wave, then expanding the periodical function

Rewriting xp(t) and Xn

00

0

( )) (n jn t

pn

x nt eX

00

( ) nX nf X

0

00

0( )jn

n

n te nX

0

0

0( )2

jn to x t e dt

0

0

01 ( )2

jn tx t e dt

Page 4: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

f

f

f

1T

1

1T

2

1T

1T

1T

period 0 T

0T 0 0 n

0 Continuous Variable n

Page 5: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0 0( )n 0

00

0( )( ) jn tn

pn

Xx t e n

0T

0

0

00

0

1( ) ( )2

jn tnX n x t e dX t

( ) x t Aperiodic Signal

( ) p

x t Periodic Signal

( ) p

x t Periodic Signal

0

00 0( ) ( ) ( ) jn

n

t

px t X e nn

Page 6: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0T

( ) p

x t Periodic Power Signal( ) x t Aperiodic Energy Signal

( ) ( ) j tx t X e d

1( ) ( )

2j tX x t e dt

Fourier Transform Pairs

0

00 0( ) ( ) ( ) jn

n

t

px t X e nn

0

0

00

0

1( ) ( )2

jn tnX n x t e dX t

0 0 0n 0( ) n d

Page 7: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( ) ( ) j tx t X e d

1( ) ( )2

j tX x t e dt

Fourier Transform Pairs

Sufficient conditions for the existence of the Fourier transform are

On any finite interval, a. ( ) is bounded; b. ( ) has a finite number of maxima

f tf t

( Dirichlet conditions )

1.

and minima; and c. ( ) has a finite number of discontinuities.

f (t) is absolutely integrable; that is, ( )

Note that these are conditions and not condi

f t

f t dt

2.

sufficient necessary tions

you can have a function that is not absolutely integrable however it has Fourier Transform like cos( ) (will be shown later)tNote

Page 8: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( ) ( ) j tx t X e d

1( ) ( )2

j tX x t e dt

Fourier Transform Pairs

absolutely integrable; that is, ( ) f t dt

Examples of functions that is not absolutely integrable

e , cos( ), sin( ), ( )t t t u t

cos( ), sin( ), ( ) has Fourier Transform (will be shown later)t t u t

e does not have Fourier Transform however e ( ) does havet tu t

Page 9: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0)()( atuetx at

( )

0( ) ( )at j t a j tX j e u t e dt e dt

Finding the Fourier Transform

1a

( )

0

1

( )a j te

a j

1

( )a j

0)()( atuetx at 1( )

( )X j

a j

Page 10: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0)()( atuetx at 1( )

( )X j

a j

Page 11: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Example Find the Fourier Transform for the following function

aa( ) ( ) j tX x t e dt

1

1

j te dt

1

1

j tej

2sinc( )

j je ej

22

j je ej

2 sin( )

sin( )2

(1) ( 1)j je ej

Page 12: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

a ( ) 2sinc( )X

2

a( )X

22

Page 13: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

a ( ) 2sinc( )X

aa

( )| ( )|( ) jXX e

2

0

a| ( )|X

22

0

( )f

2 2

2

a( )X

22

Page 14: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Example

0

b( )x t

t1 1

1

1bb( ) ( ) j tX x t e dt

0 1

1 0

(1) ( 1) j t te dt e dt

2sinc

2j

bb

( )| ( )|( ) jXX e

b2sin| |

2) c(X

Page 15: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0

b( )x t

t1 1

1

1

2b ( ) sinc

2X j

bb

( )| ( )|( ) jXX e

0

1

b| ( )|X

b22 sin|

2) c| (X

2 2

Page 16: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0

b( )x t

t1 1

1

1

2b ( ) sinc

2X f j

2

f0

( )f

2

2

2b ( ) sinc

2X j

bb

( )| ( )|( ) jXX e

oAlways 0  it add no angle (0 )

Page 17: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

It was shown previously

aa( ) ( ) j tX x t e dt

1

1

j te dt

1

1

j tej

2sinc( )

j je ej

22

j je ej

2 sin( )

sin( )2

(1) ( 1)j je ej

Page 18: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

The Fourier Transform for the following function

( ) ( ) j tX x t e dt

2

2

j te dt

2

2

j tej

4sinc(2 )

2 2j je ej

2 24

2 2

j je ej

4 sin(2 )

2

sin(2 )42

(2) ( 2)j je ej

Page 19: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

2sinc( )

4sinc(2 )

(2 )sinc( )A T T

Page 20: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

trect function defintion

T

2 2T T

u t u t

Page 21: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 22: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Example Find the Fourier Transform for the delta function x(t) = d(t)

( ) ( ) j tX x t e dt

( ) j tt e dt

0

( )j t

te t

(1) ( )t dt

1

( )t 1

Page 23: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

1 1 1 11 1 1 1[ ( ) ( ) ] [ ( ) ( ) ] j tF a x t a x t a x t a x t e dt

1 1 2 2( ) + ( )j t j ta x t e dt a x t e dt

1 21 2( ) + ( )j t j ta x t e dt a x t e dt

1 21 2( ) + ( )a X a X

1 21 1 1 1 1 2[ ( ) ( ) ] ( ) + ( )F a x t a x t a X a X 1-Linearity

Proof

Properties of the Fourier Transform

Page 24: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( ) ( ) j tX x t e dt

2 0 2 4

4 2 0 2

(1) (2) + (2) (1)j t j t j t j te dt e dt e dt e dt

Direct Method

Page 25: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( )X 1( )X 2( )X

(1)(4)sinc(4 ) (2)(2)sinc(2 ) +

( )sinc( )A T T

4sinc(4 ) 4sinc(2 )+

Using Fourier Transform Properties

Page 26: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Let ( ) ( )x t X Then1( ) ta

aax X

Proof

Let 0 > a ( ) ( ) j tF x t x t e ta da

Change of variable 't ta

''

'( ) ( )a

jt

tdea tt

aF x x

'

' '1 ( )j

at

x e tdta

'

' '1 ( )j t

ax e dt ta

2-Time-Scaling (compressing or expanding)

Page 27: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

'

' '1( ) ( )j

at

F x t x e ta t da

Let ' a

'' '1( ) ( ) jF x t x e dt ta

a

'( )X

'

1( ) ( )F x t Xaa

1aa

X

Page 28: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Now Let 0 < a

( ) ( | | ) j tF x t x ta e dta

Change of variable ' | |t ta

|' |

''

( ) ( )| |

aj

t

dF x t x eta

ta

| |a at t

| |

'' '1 ( )

| |

ja

t

t te da

x

'

| |ddtat

'

'

= =

tt

tt

| |aX

1( )| || |

F x t Xaaa

Since | | a a 0 < a 1( )| || |

F x t Xaaa

Page 29: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

) 2sinc( )(aX

2(2sinc(2 ))

what is the fourier transform of

Let

11

21 2 ( ) aX X

since ( )1 2

a

tx t x

2 2 )(aX

4sinc(2 )

Page 30: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

00 Let ( ) Then ( ) ( ) ( )e tjx t x t tX X

Proof

( ) ( ) j tY y t e dt

0Let ( ) ( )y t x t t

0( ) j tx t e dtt

' 0Change of variable t tt 0' ( )'

( ) ( ) j t tY tx e dt

0

''( ) ( ) t jj ttY x e e dt

0''( )t tjje x e dtt

( )X

0

0( ) ( )e tjt tx X

3-Time-Shifting

Page 31: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Example Find the Fourier Transform of the pulse function

0

( )x t

t2

1

Solution

From previous Example

a ( ) 2sin (2 )X c

Since ( ) ( )1ax t x t 1( )

2sinc(2 ) = e j

2sinc(2 ) = e j

0 ( ) ( )e a

tjX X

Page 32: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

4-Time Transformation

0

0 1Let ( ) Then ( ) | |

( ) e aj t

x t x ata

ta

X X

Proof

0 0 Let > 0 ( ) ( ) j ta F x at xt ttat e d

' 0Change of variable t tat

0

0

'

''( ) ( )

tj

a

t

F x dat xt eatt

0

'

t at t

'

dt adt

'

'

= =

tt

tt

0 '

' '

( )

tj

a jtae x e d

at t

Page 33: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0

0

' '

' '0

'

'

( ) ( ) ( )

jj a ja a

tttt

eF x at x e x ea a

t dtt t dt

0

'

' '( )j

a ja

tt

e x et ta

d

Xa

0

tj

ae X aa

0

0Similarly < 0 ( ) | |

tjaeF x at X aa

a t

0

01( ) | |

e atj

x tataa

X

Page 34: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Find the Fourier Transform for the Rect function g(t)

From Fourier Transform Pairs (Table 5.2)

sinc2T

T

Page 35: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

sinc2

= 3rect 0.5 2t

0

01( ) | |

e atj

x tataa

X

(2)0.5

1( )=3 sinc

0.5 0.5e

jG

4=6sinc0.5

e j

Page 36: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

If ( ) ( ) ( ) 2 ) (Xx t tX x then

2W

2W

2W

t

2 sinc(2 ) W Wt

Find the   of 2 sinc(2 ) W WtF.T

5-Duality ازدواجية

Page 37: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

2W

2W

2W

t

12 sinc(2 ) ( ) ( 4 )2

W Wt X t W

2

sinc2

( ) = X

2

Step 1 from Known transform from the F.T Table

Step 2

t

2

0

1

t

( ) = rectt

x t

2

2W0

1

rect4W

2W

rect4W

Even Function

( ) 2 ( )tX x

1 ( ) ( )2

2 x x

Page 38: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

2 21 1( ) ( ) ( ( ) )x t x t X X

Multiplication in Frequency Convolution in Time

Proof

1 21 2( ) ( ) = ( ) ( ) x t x t x x t d

221( ) ( )

2j tx t X e d

( )

221( ) ( )

2 j tx t X e d

2

1 ( )2

j t jX e e d

6- The convolution Theorem

Page 39: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

1 21 2( ) ( ) = ( ) ( ) x t x t x x t d

Now substitute x2(t-l) ( as the inverse Fourier Transform) in the convolution integral

1 21 2

1( ) ( ) = ( ) ( )

2

j t j

x t x x X e e d dt

221( ) ( )

2j t jx t X e e d

Page 40: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Exchanging the order of integration , we have

2 11 21( ) ( ) = ( ) ( )

2j

j tx t x t X x e e dd

1

( )X

2 11 21( ) ( ) = ( ) ( )

2 j tx t x t X X e d

Inverse Fourier Transform

2 21 1( ) ( ) ( ( ) )x t x t X X

1 21 2

1( ) ( ) = ( ) ( )

2

j t j

x t x x X e e d dt

Page 41: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

2 21 11( ) ( ) ) ( )

2( Xx t x t X

Proof

Similar to the convolution theorem , left as an exercise

The multiplication Theorem

1 2 1 21Applying (the multiplication Theorem ( ) ( ) ( ) )

2 x t t Xx X

Applying the multiplication Theorem

Page 42: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

rect rectt t

Find the Fourier Transform of following

Solution

Since rect

t

t

2

2 0

rect

t

t

2

2 0

trit

t 0

convolution

Time

sinc( )f sinc( )f 2 2sinc ( )f Frequencymultiplication

Page 43: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

System Analysis with Fourier Transform

= ( ) ( ) x h t d

( )x t

( )h ty(t) = ( ( ) )x t h t

( )X ( )H ( )Y ( ) ( )X H

( ) ) ) ( (Y X H y(t) = ( ( ) )x t h t

convolution in time

multiplication in Frequency

impulse response

convolution in timemultiplication in Frequency

Page 44: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Proof

( ) ( ) j tY y t e dt

0

Let ( ) ( )e tjy t x t

0( )e j t j tx t e dt

' 0Change of variable

0( )( ) j tx t e dt

'

( ) ( ) j tY x t e dt

'( )X 0( )X

0

0 Let ( ) Then ( ) ( ) ( e ) tjx t x tX X

6- Frequency Shifting

0

0 Let ( ) Then ( ) ( ) ( e ) tjx t x tX X

0

0Similarly ( ) e ) (tjx t X 0

0( ) e ( )tjx t X

Page 45: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0 0

e e2

j t j t

0 01 12 2

( ) = .j t j t

e eX FT

0

0 ( ) e ( ) tjx t X Since

Example Find the Fourier Transform for 0( ) cos(2 )x t A t

0( ) cos(2 )x t t 0 01 12 2

j t j te e

0 0[ ]1 12 2

[ ]= . .j t j te eFT FT

( ) 1t Since 1 2 ( ) duality

0

0[ ]. (1) 2 ( )j teFT

0 01 1

2 ( ) 2 ( )2 2

( ) = X

0 00cos(2 ) ( ) ( )t

Page 46: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Find the Fourier Transform of the function

0( ) rect cos( )2t

x t t

0co s ( ) t

t0

r e c t 2t

t11

0

X

0( ) r e c t co s ( )

2t

x t t

t11 0

Page 47: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0( ) r e c t co s ( )

2t

x t t

t12

12

0

0( ) r e c t c o s ( t )

2t

x t

0 0t t

r e c t

2 2

j jt e e

0 01 1( ) r e c t r e c t

2 22 2

j t j tt tx t e e

0

0( )e ( )j t

x t X

rect 2sinc(2 )2t

Since and

0 00( ) r e c t c o s ( )

2 s (inc(2 )) ( )s inc(2 )t

x t t

Therefore

Method 1

Page 48: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Method 2

0( ) r e c t co s ( )

2t

x t t

t12

12

0

0( ) r e c t c o s ( t )

2t

x t

1 1 221( ) ( ) ( ) ( )

2x t Xt Xx

Since

rect 2sinc(2 )2t

0 00cos(2 ) ( ) ( )t

0( ) r e c t c o s ( t )

2t

x t

0rect cos( t)2

( )= . .t

X FT FT

0 01 2sinc(2 ) ( ) ( )

2( )= X

0 0( )s inc(2 ) s inc(2( ))( )X

Page 49: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

7-Differentiation

Let ( ) ( ) ( ) ( )( ) d

dtx t x t j XX

in general ( ) ( ) ( )n

nn

d

dtx t j X

( ) ( ) j tdx t dx t

dt dtF e dt

Proof

Page 50: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( ) ( ) j tdx t dx t

dt dtF e dt

Using integration by parts

j tu e ) ( )(dx tdt

dv dt dx t j tdu j e

( )v x t

b b

b

aa a

udv uv vdu

( ) ( ) + ( )

j tj tdx t

dtF x t e j x t e dt

( ) ( ) ( )nn

nd

dtx t j X

Proof

( ) ( ) ( )d

dtx t j X

Page 51: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( ) ( ) + ( )

j tj tdx t

dtF x t e j x t e dt

( ) x t dt

Since x(t) is absolutely integrable

( ) ( ) ( ) ( ) + ( ) j j j tx e x e j f x t e dt

( ) 0 ( ) 0

xx

( )

( )( ) ( ) 0j jx e x e

( )

( ) j tdx t

dtF j x t e dt

( )j X

( ) ( )dx t

dtj X ( ) ( ) ( )n

n

nd x t

dt

j X

Page 52: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

1( ) ( ) (0) ( )t

x d X Xj

Example Find the Fourier Transform of the unit step function u(t)

( ) = ( ) t

u t d 0

(1)1 () )1 (j

( ) 1 t

1 ( ) ( )u tj

7- Integration

Page 53: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

? 0

Page 54: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Proof

Page 55: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

[ ( )] ( ) j tF.T t t e dt

If ( ) ( ) t X ?

0

( )j t

t

e t dt

(1) ( )t dt

1

( ) 1 t

(DC) 1 2 ( )

2 ( ) k k

From duality

Page 56: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

2 ( )

2j

Page 57: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 58: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

1

0

1 22

0

1Applying the multiplication Theorem ( ) ( ) ( )( ) 2

and ( ) we ha ve

( ) ( )

x t x t X X

G G

Page 59: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

0 0( )( ) ( )G G

Page 60: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( ) ( ) j tF f t e dt

Since 1 ) 2 (

Then

0

( )k

Page 61: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 62: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 63: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 64: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Find the Transfer Function for the following RC circuit

C

R

( )x t

( )y t

( ) ( ) ( ) dy tRC y t x t t

dt

C

R

( )t

( )h t

( ) ( ) ( )dh tRC h t t

dt

1( ) ( )t

R Ch t e u tR C

we can find h(t) by solving differential equation as follows

Method 1

Page 65: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

C

R

( )x t

( )y t

( ) ( ) ( )dy tRC y t x t

dt

( )FT ( ) FT ( ) dy tRC y t x t

dt

( ) ( ) ( ) ( ) RC j Y Y X

( ) 1 ( ) ( ) j RC Y X

( )( )

( ) Y

HX

1( ) 1j RC

We will find h(t) using Fourier Transform Method rather than solving differential equation as follows

Method 2

Page 66: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

C

R

( )x t

( )y t

( ) ( ) ( )dy tRC y t x t

dt

( )( )

( ) Y

HX

1( ) 1j RC

(1/ )( ) (1/ )

RCj RC

1( ) ( ) > 0 tx t e u tj

1( ) ( )t

R Ch t e u tR C

From Table 4-2

Page 67: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Method 3

i(t)

RRV ( )t

RV ( ) ( )t Ri t

I(f)

RRV ( )f

RV ( ) ( )RI

i(t)

L LV ( )t

L

( )V ( )

di tt L

dt

I(f)

L LV ( )f

LV ( ) ( ) ( )L j I

i(t)

C CV ( )t

( )( ) CdV t

i t Cdt

I(f)

C CV ( )f

C( ) ( )V ( )I C j

C1

V ( ) ( )( )

f I fj C

( ) ( )j L I

In this method we are going to transform the circuit to the Fourier domain . However we first see the FT on Basic elements

Page 68: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Method 3

( )i t

( )v t

( )I f

( )V f

( )Z f

Resistor

( ) Inductor

1Capacitor

R

Z f j L

j C

Page 69: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

C

R

( )x t

( )y t

Method 3

R

( )X

( )Y

1j C

Fourier Transform

1

( ) ( )1

j CY f X

Rj C

1( )

1X

j RC

( ) 1( )

( ) 1

YH

X j RC

1( ) ( )t

R Ch t e u tR C

Page 70: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

C

R

( )x t

( )y t

R

( )X

( )Y

1j C

Fourier Transform

( ) 1( )

( ) 1

YH

X j RC

2

1| ( ) |

1 ( )H

RC

( )H | ( ) |H

( )H 1tan ( )RC

Page 71: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

2

1| ( ) |

1 ( )H

RC

( )H 1tan ( )RC

1( )

1H

j RC

Page 72: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

C

R

( )x t

( )y t

Find y(t) if the input x(t) is

( ) ( )tx t A e u t

Method 1 ( convolution method)

Using the time domain ( convolution method , Chapter 3)

y( ) = ( ) ) (t x t h t

1( ) ( )t

R Ch t e u tR C

Example

Page 73: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

C

R

( )x t

( )y t

( ) ( )tx t A e u t

/ ( )(1/ )

A RCj RC j

1 1( ) 1/1AY jRC jRC

Using partial fraction expansion (will be shown later)

From Table 5-2 /( ) ( )1

t RC tAy t e e u tRC

( ) AXj

1( ) ( )t

R Ch t e u tR C

(1/ )( )

(1/ ) ( )RCH

RC j

( ) ) ( ( )Y X H

Method 2 Fourier Transform

Sine Y(w) is not on the Fourier Transform Table 5-2

Page 74: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Example

Find y(t)

Method 1 ( convolution method) y( ) = ( ) ) (t x t h t

Page 75: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( ) ) ( ( )Y X H

Method 2 Fourier Transform

Page 76: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 77: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

( )F

Page 78: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

Therefor , to obtain the energy spectral density function of the signal t :f fE

2 2

2 | ( ) | | ( ) |t ( ) | ( ) | fold about =0

2

F Ff F F

Page 79: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

2| ( ) |

2

F 2

fold about =0

| ( ) | F

We find the energy contained in some band of frequencies of particular interest by

finding the area under the energy spectral density curve over that band of frequencies

Page 80: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 81: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 82: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim

power spctral density (PSD)

Page 83: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 84: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim
Page 85: Chapter 4 The Fourier Transform EE 207 Dr. Adil Balghonaim