9
 - 1 - Chapter 4  Polynomial Functions n n  x a  x a a  x  P    ... ) (  1 1 0  is a polynomial in x where n a a a  ,..., , 1 0 are the coefficients. If n n  x a n  , 0  is the leading term and the degree of the polynomial is n. Eg. 1 2 5 3 ) (  2 3 4  x  x  x  x  P  is a degree 4 polynomial or a quartic function. We will consider cubic and quartic functions in this chapter. Firstly we investigate expansions of the expressions of the form n b ax . Summation Notation   n m i n m m i  n m and  J n m where a a a a  , , ..... 1  Expanded form Also known as sigma notation since is the upper case form of the Greek letter sigma. Eg1. Write 5 1 2 i i in expanded form and evaluate. Eg2. Write 2 2 2 30 .... 2 1    using summation notation. Ex A2 pg 699 all Binomial Theorem The expanded form of n b ax can be written in summation notation.        n k k k n n b ax k n b ax 0  For example, the first, second and (r+1)th term are,  r r n r n n b ax r n t b ax n t ax n t                         1 1 2 1  , 1 , 0  Eg3. Find the coefficient of 20  x  in the expansion of 30 2  x .

Chapter 4mm34 Cas

Embed Size (px)

Citation preview

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 1/9

  - 1 -

Chapter 4 – Polynomial Functions

n

n xa xaa x P      ...)(  1

10  is a polynomial in x where naaa   ,...,, 10 are the

coefficients. If n

n xan   ,0  is the leading term and the degree of the

polynomial is n.

Eg. 1253)(   234   x x x x P   is a degree 4 polynomial or a quartic function.

We will consider cubic and quartic functions in this chapter.

Firstly we investigate expansions of the expressions of the form nbax .

Summation Notation

  n

mi

nmmi   nmand  J nmwhereaaaa   ,,.....1  

Expanded form

Also known as sigma notation since ∑ is the upper case form of the Greek

letter sigma.

Eg1. Write

5

1

2

i

i

in expanded form and evaluate.

Eg2. Write 222 30....21    using summation notation.

Ex A2 pg 699 all

Binomial Theorem

The expanded form of nbax can be written in summation notation.

 

 

 

 

n

k k nn

baxk 

n

bax0

 

For example, the first, second and (r+1)th term are,

  r r n

nnbax

nt bax

nt ax

nt 

 

 

  

 

 

  

 

 

  

    1

1

21   ,1

,0

 

Eg3. Find the coefficient of 20 x  in the expansion of 302 x .

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 2/9

  - 2 -

Eg4. Expand 532    x .

Eg5. Find the 8th term in the expansion of 1042    x .

Ex A3 pg 702 Q1(1/2), Q2(1/2), Q3, Q6(1/2), Q8

Equating Coefficients

If n

n

n

n   xb xb xbb xQ xa xa xaa x P      ....)(and.....)(   2

210

2

210  are

equal then their corresponding coefficients are equal.

i.e. nn   babababa     ,....,,,221100  

Eg6. If   R x for b xa x x     22 346  , find the values of a and b.

Eg7. Show that 866   23   x x x  cannot be written in the form   bc xa     3  

for real numbers a, b and c.

Division of polynomials

This was studied last year. In general for non-zero polynomials,

)()(   x Dand  x P  , if )( x P  (the dividend) is divided by )( x D  (the divisor),

then there are unique polynomials, )( xQ (the quotient) and )( x R (the

remainder), such that;

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 3/9

  - 3 -

)()()()(   x R xQ x D x P     

Either the degree of 0)(,)()(     x Ror  x D x R  

When 0)(    x R  then )( x D  is called a divisor of )( x P  .

Eg8. Divide 82793   24   x x x  by 2 x .

The Remainder Theorem

If a polynomial )( x P  is divided by bax  the remainder is  

  

 

a

b P  .

The Factor Theorem

bax  is a factor of the polynomial )( x P   if and only if 0 

  

 

a

b P  .

Eg9. Find the remainder when 123)(  23

  x x x x P   is divided by 12    x .

Eg10. Given 1 x  and 2 x  are factors of b xax x x     66   234 , find the

values of a and b.

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 4/9

  - 4 -

Ex 4A: 2ac, 3ac, 4, 6, 8, 11, 12(1/2), 13(1/2), 14, 16(1/2)

Quadratic Functions (Parabolas)General rule cbxax y     2 , to sketch on:

  If 0a  it has a minimum turning point.

  If 0a  it has a maximum turning point.

  c gives the y intercept.

  Axis of symmetry has equationa

b x

2

.

  Solve 02   cbxax  for x for x intercepts. This may be done by

factorising, completing the square or the quadratic formula,

a

acbb x

2

42

.

  Remember - if discriminant 042   acb  graph has 2 x intercepts.

- if discriminant 042   acb  graph has 1 x intercept.

- if discriminant 042   acb  graph has no x intercepts.

Eg11. Sketch 7123)(   2   x x x f    showing all intercepts and turning point.

Ex 4B: Q1-4(1/2), 5, 6, 7, 9Ex 4C: Q1(1/2), 3

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 5/9

  - 5 -

  k h xa x f       3)(

)1(

)(

2

3

 x x

 x x x f  

)1)(1(

)(   3

 x x x

 x x x f  

y

x

y

x

Cubic Functions of the form

Consider 3)(   x x f     . It has a zero gradient at (0,0).

We will look at cubics with a dilation and/or

translation applied to 3)(   x x f     .

Eg12. Sketch   12)(  3

  x x f     Eg13. Sketch   21)(  3

  x x f    

Eg14. The graph of   k h xa x f       3

)(  has zero gradient at (1,1) and

passes through (0,4). Find a, h, k.

Ex 4D: Q1(1/3), 2, 4

Cubics of the form d cxbxax x f       23)(  

For now we will look at the various shapes of graphs of cubic functions of

this form. Later on Calculus will be required to determine turning points,

since they do not occur symmetrically between x intercepts as for

quadratics.

Eg15. Eg16.

y

x

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 6/9

  - 6 -

)2()1(

23)(

2

3

 x x

 x x x f  

)2()1(

23)(

2

3

 x x

 x x x f  

y

x

y

x

Eg17. Eg18.

Cubic Equations

You need to be able to solve cubics to find x intercepts. Use remainder

and factor theorems to find factors, then you may need to divide to fullyfactorise.

Eg19. Solve 301140   23   x x x  

Ex 4E: Q1-2(1/2), 3

Determining rules for graphs of cubic functions

Eg20. Find the rule for:

Eg21. Find the rule for the cubic function whose graph passes through

(0,1) , (1,4) , (2,17) , (-1,2) of the form d cxbxax x f       23)( .

y

x

4

-3   1   4

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 7/9

  - 7 -

Using TI-Nspire

  Or you can set up simultaneous equations first and then solve for a,b, c and d.

Ex 4G: Q1, 2, 3a, 4bd, 5a

Quartic Functions

The general form is edxcxbxax x f       234)( . Here are some graphs of

quartic functions.

y

x

y  =   x 4 

y

x

y  =   x 4+   x 

y

x

y  =   x 4 –   x 

y

x

y  = (x    – 1)2(x  + 2)

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 8/9

  - 8 -

Positive quartics will look like or .

Negative quartics will look like or .

Remember if )( x f    has factor; 1a x  , graph cuts x axis at a x   .

2a x , graph bounces off x axis at a x   .

3a x , graph has inflection point on x

axis ata x  

.Eg22. If 1 x  and 2 x  are factors of b xax x x x f       66)(   234 , find

a and b.

Ex 4F: 1 (CAS), 2: Ex 4G: Q6: Ex 4D Q3, 5(1/2)

y

x

y  = (x    – 1)3(x  + 2)

y

x

y  = (1   –   x )(2x  + 1)2(4x    – 2)

y

x

y  = (x  + 2)(x  + 1)(x   – 1)(x   – 4)

7/27/2019 Chapter 4mm34 Cas

http://slidepdf.com/reader/full/chapter-4mm34-cas 9/9

  - 9 -

Solving Literal Equations (Non-Linear)

Note: If n is an odd natural number, then

i)  if nnn aor abab

1

 

ii)  if q p  are integers, then

q   p p

q

q

 p

aor abab    

Eg 23. Solve for x

a)  a x   7

5

  b) ad bx   3  

c) 0127   223   xaax x   d) 02   k kx x  

Simultaneous Equations

Eg 24. Find the coordinates of the points of intersection of each of the

following,

a)    b)      

Ex 4H Q1 (1/2) 2, 3ac, 4(1/2), 5(1/2), 7, 8, 11, 14a, 15, 17

Review 4 - Odds