26
CHAPTER 5 FUZZY NUMBER 5.1 CONCEPT OF FUZZY NUMBER 5.1.1 INTERVAL OF CONFIDENCE 5.1.2 FUZZY NUMBER 5.1.3 OPERATION OF INTERVAL 5.2 OPERATION OF FUZZY NUMBER 5.2.1 OPERATION OF αCUT INTERVAL 5.2.2 OPERATION OF FUZZY NUMBER 5.2.3 EXAMPLES OF FUZZY NUMBER OPERATION 5.3 TRIANGULAR FUZZY NUMBER 5.3.1 DEFINITION OF TRIANGULAR FUZZY NUMBER 5.3.2 OPERATION OF TRIANGULAR FUZZY NUMBER 5.3.3 OPERATION BASED ON MEMBERSHIP FUNCTION 5.3.4 APPROXIMATION OF TRIANGULAR FUZZY NUMBER 5.4 OTHER TYPES OF FUZZY NUMBER 5.4.1 TRAPEZOIDAL FUZZY NUMBER 5.4.2 OPERATIONS OF TRAPEZOIDAL FUZZY NUMBER 5.4.3 BELL SHAPE FUZZY NUMBER

CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

  • Upload
    lamthuy

  • View
    233

  • Download
    5

Embed Size (px)

Citation preview

Page 1: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

CHAPTER 5 FUZZY NUMBER

5.1 CONCEPT OF FUZZY NUMBER 5.1.1 INTERVAL OF CONFIDENCE 5.1.2 FUZZY NUMBER 5.1.3 OPERATION OF INTERVAL

5.2 OPERATION OF FUZZY NUMBER

5.2.1 OPERATION OF α�CUT INTERVAL 5.2.2 OPERATION OF FUZZY NUMBER 5.2.3 EXAMPLES OF FUZZY NUMBER OPERATION

5.3 TRIANGULAR FUZZY NUMBER 5.3.1 DEFINITION OF TRIANGULAR FUZZY NUMBER 5.3.2 OPERATION OF TRIANGULAR FUZZY NUMBER 5.3.3 OPERATION BASED ON MEMBERSHIP FUNCTION 5.3.4 APPROXIMATION OF TRIANGULAR FUZZY NUMBER

5.4 OTHER TYPES OF FUZZY NUMBER 5.4.1 TRAPEZOIDAL FUZZY NUMBER 5.4.2 OPERATIONS OF TRAPEZOIDAL FUZZY NUMBER 5.4.3 BELL SHAPE FUZZY NUMBER

Page 2: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

Chapter 5 Fuzzy Number

This chapter describes fuzzy numbers. First of all, we�ll look into interval, the fundamental concept of

fuzzy number, and then operation of fuzzy numbers. In addition, we�ll introduce special kind of fuzzy

number such as triangular fuzzy number and trapezoidal fuzzy number.

5.1 Concept of Fuzzy Number

5.1.1 Interval When interval is defined on real number ℜ, this interval is said to be a subset of ℜ. For instance, if

interval is denoted as A = [a1, a3] a1, a3 ∈ ℜ , a1 < a3, we may regard this as one kind of sets.

Expressing the interval as membership function is shown in the following (Fig 5.1) :

>≤≤

<=

3

31

1

,0,1,0

)(ax

axaax

xAµ

If a1 = a3, this interval indicates a point. That is, [a1, a1] = a1

1

x

µA(x)

a3a1

Fig 5.1 Interval A = [a1, a3]

5.1.2 Fuzzy Number Fuzzy number is expressed as a fuzzy set defining a fuzzy interval in the real number . Since the

boundary of this interval is ambiguous, the interval is also a fuzzy set. Generally a fuzzy interval is

represented by two end points a

1 and a3 and a peak point a2 as [a1, a2, a3 ] (Fig 5.2). The a-cut

operation can be also applied to the fuzzy number. If we denote a-cut interval for fuzzy number A as

Page 3: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

Aα, the obtained interval Aα is defined as

Aα = [a1(α), a3

(α)]

We can also know that it is an ordinary crisp interval (Fig 5.3). We review here the definition of fuzzy

number given in section 1.5.4.

Definition(Fuzzy number) It is a fuzzy set the following conditions :

- convex fuzzy set

- normalized fuzzy set

- it�s membership function is piecewise continuous.

- It is defined in the real number. □

Fuzzy number should be normalized and convex. Here the condition of normalization implies that

maximum membership value is 1.

∃x ∈ ℜ, µA(x) = 1

The convex condition is that the line by α-cut is continuous and α-cut interval satisfies the following

relation.

Aα = [a1(α), a3

(α)]

(α′ < α) ⇒ (a1(α′) ≤ a1

(α), a3(α′) ≥ a3

(α))

a2

1

x

µA(x)

a3a1

Fig 5.2 Fuzzy Number A = [a1, a2, a3]

The convex condition may also be written as,

(α′ < α) ⇒ (Aα ⊂ Aα′)

Page 4: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

Aα = [a1(α), a3

(α)]

A

a3(0)a3

(α′)a3(α)a1

(α)a1(α′)

α′

α

1

x

µA(x)

a1(0)

Aα′ = [a1(α′), a3

(α′)]

Fig 5.3 α-cut of fuzzy number (α’ < α) ⇒ (Aα ⊂ Aα′)

5.1.3 Operation of Interval Operation of fuzzy number can be generalized from that of crisp interval. Let�s have a look at the

operations of interval.

∀a1, a3, b1, b3 ∈ ℜ

A = [a1, a3], B = [b1, b3]

Assuming A and B as numbers expressed as interval, main operations of interval are

i) Addition

[a1, a3] (+) [b1, b3] = [a1 + b1, a3 + b3]

ii) Subtraction

[a1, a3] (�) [b1, b3] = [a1 � b3, a3 � b1]

iii) Multiplication

[a1, a3] (•) [b1, b3] = [a1 • b1 ∧ a1 • b3 ∧ a3 • b1 ∧ a3 • b3, a1 • b1 ∨ a1 • b3 ∨ a3 • b1 ∨ a3 • b3]

Page 5: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

iv) Division

[a1, a3] (/) [b1, b3] = [a1 / b1 ∧ a1 / b3 ∧ a3 / b1 ∧ a3 / b3, a1 / b1 ∨ a1 / b3 ∨ a3 / b1 ∨ a3 / b3]

excluding the case b1 = 0 or b3 = 0

v) Inverse interval

[a1, a3]�1 = [1 / a1 ∧ 1 / a3, 1 / a1 ∨ 1 / a3]

excluding the case a1 = 0 or a3 = 0

When previous sets A and B is defined in the positive real number ℜ +, the operations of

multiplication, division, and inverse interval are written as,

iii′) Multiplication

[a1, a3] (•) [b1, b3] = [a1 • b1, a3 • b3]

iv′) Division

[a1, a3] (/) [b1, b3] = [a1 / b3, a3 / b1]

v) Inverse Interval

[a1, a3]�1 = [1 / a3, 1 / a1]

vi) Minimum

[a1, a3] (∧) [b1, b3] = [a1 ∧ b1, a3 ∧ b3]

vii) Maximum

[a1, a3] (∨) [b1, b3] = [a1 ∨ b1, a3 ∨ b3]

Example 5.1 There are two intervals A and B,

A = [3, 5], B = [�2, 7]

Then following operation might be set.

]12,1[]75,23[)( =+−=+ BA

]7,4[])2(5,73[)( −=−−−=− BA

]35,10[])2(3,75)2(573)2(3[)(

−=∨−••∧−•∧•∧−•=• LBA

Page 6: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

]7/5,5.2[])2/(3,7/5)2/(57/3)2/(3[(/)

−=∨−∧−∧∧−= LBA

−=

−∧

−=−= −−

71,

21

71

)2(1,

71

)2(1]7,2[ 11B □

Page 7: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

5.2 Operation of Fuzzy Number

5.2.1 Operation of α-cut Interval We referred to α-cut interval of fuzzy number A = [a1, a3] as crisp set.

Aα = [a1(α), a3

(α)], ∀α ∈ [0, 1], a1, a3, a1(α), a3

(α) ∈ ℜ

So Aα is a crisp interval. As a result, the operations of interval reviewed in the previous section can be

applied to the α-cut interval Aα.

If α-cut interval Bα of fuzzy number B is given

B = [b1, b3], b1, b3, ∈ ℜ

Bα = [b1(α), b3

(α)], ∀α ∈ [0, 1], b1(α), b3

(α) ∈ ℜ ,

operations between Aα and Bα can be described as follows :

[a1(α), a3

(α)] (+) [b1(α), b3

(α)] = [a1(α) + b1

(α), a3(α) + b3

(α)]

[a1(α), a3

(α)] (�) [b1(α), b3

(α)] = [a1(α) � b3

(α), a3(α) � b1

(α)]

These operations can be also applicable to multiplication and division in the same manner.

5.2.2 Operation of Fuzzy Number

Previous operations of interval are also applicable to fuzzy number. Since outcome of fuzzy number

(fuzzy set) is in the shape of fuzzy set, the result is expressed in membership function.

∀x, y, z ∈ ℜ

i) Addition: A (+) B

))()(()()( yxz BAyxzBA µµµ ∧∨=+=+

ii) Subtraction: A (�) B

))()(()()( yxz BAyxzBA µµµ ∧∨=−=−

iii) Multiplication: A (•) B

Page 8: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

))()(()()( yxz BAyxzBA µµµ ∧∨=•=•

iv) Division: A (/) B

))()(()(/(/) yxz BAyxzBA µµµ ∧∨=

=

v) Minimum: A (∧) B

))()(()()( yxz BAyxzBA µµµ ∧∨=∧=∧

vi) Maximum: A (∨) B

))()(()()( yxz BAyxzBA µµµ ∧∨=∨=∨

We can multiply a scalar value to the interval. For instance, multiplying a ∈ ℜ ,

a[b1, b3] = [a • b1 ∧ a • b3, a • b1 ∨ a • b3]

Example 5.2

There is a scalar multiplication to interval. Note the scalar value is negative.

�4.15 [�3.55, 0.21] = [(�4.15) • (�3.55) ∧ (�4.15) • 0.21, (�4.15) • (�3.55) ∨ (�4.15) • 0.21]

= [14.73 ∧ �0.87, 14.73 ∨ �0.87]

= [�0.87, 14.73] □

We can also multiply scalar value to α-cut interval of fuzzy number.

∀α ∈ [0, 1], b1(α), b3

(α) ∈ ℜ

a[b1(α), b3

(α)] = [a • b1(α) ∧ a • b3

(α), a • b1(α) ∨ a • b3

(α)]

5.2.3 Examples of Fuzzy Number Operation

Example 5.3 : Addition A(+)B

For further understanding of fuzzy number operation, let us consider two fuzzy sets A and B. Note that

Page 9: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

these fuzzy sets are defined on discrete numbers for simplicity.

A = {(2, 1), (3, 0.5)}, B = {(3, 1), (4, 0.5)}

First of all, our concern is addition between A and B. To induce A(+)B, for all x ∈ A, y ∈ B, z ∈ A(+)B,

we check each case as follows(Fig 5.4) :

i) for z < 5,

µA(+)B(z) = 0

ii) z = 5

results from x + y = 2 + 3

µA(2) ∧ µB(3) = 1 ∧ 1 = 1

1)1()5(325)( =∨=+=+ BAµ

iii) z = 6

results from x + y = 3 + 3 or x + y = 2 + 4

µA(3) ∧ µB(3) = 0.5 ∧ 1 = 0.5

µA(2) ∧ µB(4) = 1 ∧ 0.5 = 0.5

5.0)5.0,5.0()6(426336)( =∨=+=+=+ BAµ

iv) z = 7

results from x + y = 3 + 4

µA(3) ∧ µB(4) = 0.5 ∧ 0.5 = 0.5

5.0)5.0()7(437)( =∨=

+=+ BAµ

v) for z > 7

µA(+)B(z) = 0

So A(+)B can be written as

A(+)B = {(5, 1), (6, 0.5), (7, 0.5)} □

Page 10: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

µA(x)

1

0.5

2 3

(a) Fuzzy set A

µB(x)

1

0.5

3 4

(b) Fuzzy number B

µA (+) B(x)

1

0.5

75 6

(c) Fuzzy set A (+) B

Fig 5.4 Add operation of fuzzy set

Example 5.5 : Subtraction A(−)B

Let�s manipulate A(−)B between our previously defined fuzzy set A and B. For x ∈ A, y ∈ B, z ∈

A(−)B, fuzzy set A(−)B is defined as follows (Fig5.5).

i) for z < −2,

µA(−)B(z) = 0

Page 11: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

ii) z = −2

results from x − y = 2 − 4

µA(2) ∧ µB(4) = 1 ∧ 0.5 = 0.5

5.0)2()( =−− BAµ

iii) z = −1

results from x − y = 2 − 3 or x − y = 3 − 4

µA(2) ∧ µB(3) = 1 ∧ 1 = 1

µA(3) ∧ µB(4) = 0.5 ∧ 0.5 = 0.5

1)5.0,1()1(431321)( =∨=−

−=−−=−− BAµ

iv) z = 0

results from x − y = 3 − 3

µA(3) ∧ µB(3) = 0.5 ∧ 1 = 0.5

µA(−)B(0) = 0.5

v) for z ≥ 1

µA(−)B(z) = 0

So A(−)B is expressed as

A(−)B = {(-2, 0.5), (-1, 1), (0, 0.5)} □

0.5

1

µA (−) B(x)

0−2 −1

Fig 5.5 Fuzzy number A (−) B

Page 12: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

Example 5.6 : Max operation A(∨)B

Let�s deal with the operation Max A(∨)B between A and B.

For x ∈ A, y ∈ B, z ∈ A(∨)B, fuzzy set A(∨)B is defined by µA(∨)B (z).

i) z ≤ 2

µA(∨)B(z) = 0

ii) z = 3

From x ∨ y = 2 ∨ 3 and x ∨ y = 3 ∨ 3

µA(2) ∧ µB(3) = 1 ∧ 1 = 1

µA(3) ∧ µB(3) = 0.5 ∧ 1 = 0.5

1)5.0,1()3(333323)( =∨=

∨=∨=∨ BAµ

iii) z = 4

From x ∨ y = 2 ∨ 4 and x ∨ y = 3 ∨ 4

µA(2) ∧ µB(4) = 1 ∧ 0.5 = 0.5

µA(3) ∧ µB(4) = 0.5 ∧ 0.5 = 0.5

5.0)5.0,5.0()4(434424)( =∨=

∨=∨=∨ BAµ

v) z > 5

Impossible

µA(∨)B(z) = 0

So A(∨)B is defined to be

A(∨)B = {(3, 1), (4, 0.5)} □

So far we have seen the results of operations are fuzzy sets, and thus we come to realize that the

extension principle is applied to the operation of fuzzy number.

Page 13: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

5.3 Triangular fuzzy number

5.3.1 Definition of triangular fuzzy number Among the various shapes of fuzzy number, triangular fuzzy number(TFN) is the most popular one.

Definition(Triangular fuzzy number) It is a fuzzy number represented with three points

as follows :

A = (a1, a2, a3)

This representation is interpreted as membership functions(Fig5.6).

>

≤≤−−

≤≤−−

<

=

,0

,

,

,0

)(

3

32

23

3

21

12

1

1

)(

ax

axaaaxa

axaaaax

ax

xAµ

a2

1

x

µA(x)

a3a1

Fig 5.6 Triangular fuzzy number A = (a1, a2, a3)

Now if you get crisp interval by α-cut operation, interval Aa shall be obtained as follows ∀α ∈ [0, 1].

From

αα

=−−

12

1)(

1

aaaa , α

α

=−−

23

)(33

aaaa

we get

a1(α) = (a2 � a1)α + a1

a3(α) = −(a3 − a2)α + a3

Page 14: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

Thus

Aα = [a1(α), a3

(α)]

= [(a2 − a1)α + a1, −(a3 − a2)α + a3]

Example 5.7 In the case of the triangular fuzzy number A = (−5, −1, 1) (Fig 5.7), the

membership function value will be,

>

≤≤−−

−≤≤−+

−<

=

1,0

11,2

1

15,4

5

5,0

)()(

x

xx

xx

x

xAµ

0.5

1

0 1 2−1−2−3−4−5−6

A0.5

Fig 5.7 α = 0.5 cut of triangular fuzzy number A = (−5, −1, 1)

α-cut interval from this fuzzy number is

122

1

544

5

+−=⇒=−

−=⇒=+

αα

αα

xx

xx

Aα = [a1(α), a3

(α)] = [4α − 5, −2α + 1]

If α = 0.5, substituting 0.5 for α, we get A0.5

A0.5 = [a1(0.5), a3

(0.5)] = [−3, 0] □

Page 15: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

5.3.2 Operation of Triangular Fuzzy Number

Same important properties of operations on triangular fuzzy number are summarized.

(1) The results from addition or subtraction between triangular fuzzy numbers result also triangular

fuzzy numbers.

(2) The results from multiplication or division are not triangular fuzzy numbers.

(3) Max or min operation does not give triangular fuzzy number.

But we often assume that the operational results of multiplication or division to be TFNs as

approximation values.

1) Operation of triangular fuzzy number

First, consider addition and subtraction. Here we need not use membership function. Suppose

triangular fuzzy numbers A and B are defined as,

A = (a1, a2, a3), B = (b1, b2, b3)

i) Addition

),,(),,)()(,,()(

332211

321321

babababbbaaaBA

+++=+=+ : triangular fuzzy number

ii) Subtraction

),,(),,)()(,,()(

132231

321321

babababbbaaaBA−−−=

−=− : triangular fuzzy number

iii) Symmetric image

−(A) = (−a3, −a2, −a1) : triangular fuzzy number

Example 5.8 Let�s consider operation of fuzzy number A, B(Fig 5.8).

A = (−3, 2, 4), B = (−1, 0, 6)

A (+) B = (−4, 2, 10)

A (−) B = (−9, 2, 5) □

Page 16: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

B

A

0.5

1

60 2 4−3 −1

(a) Triangular fuzzy number A, B

A (+) B0.5

1

100 2−4

(b) A (+) B of triangular fuzzy numbers

A (−) B 0.5

1

50 2−9

(c) A (−) B triangular fuzzy numbers

Fig 5.8 A (+) B and A (−) B of triangular fuzzy numbers

2) Operations with α-cut

Example 5.9 α-level intervals from α-cut operation in the above two triangular fuzzy numbers A

and B are

]66,1[])(,)[(],[

]42,35[])(,)[(],[

323112)(

3)(

1

323112)(

3)(

1

+−−=+−−+−==

+−−=+−−+−==

αααα

αααα

ααα

ααα

bbbbbbbbB

aaaaaaaaA

Performing the addition of two α-cut intervals Aα and Bα,

Aα (+) Bα = [6α − 4, −8α + 10]

Page 17: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

Especially for α = 0 and α = 1,

A0 (+) B0 = [−4, 10]

A1 (+) B1 = [2, 2] = 2

Three points from this procedure coincide with the three points of triangular fuzzy number (-4, 2, 10)

from the result A(+)B given in the previous example.

Likewise, after obtaining Aα(−)Bα, let�s think of the case when α = 0 and α = 1.

Aα (−) Bα = [11α − 9, −3α + 5]

Substituting α = 0 and α = 1 for this equation,

A0 (−) B0 = [−9, 5]

A1 (−) B1 = [2, 2] = 2

These also coincide with the three points of A(−)B = (−9, 2, 5). □

Consequently, we know that we can perform operations between fuzzy number using α-cut interval.

5.3.3 Operation of general fuzzy numbers Up to now, we have considered the simplified procedure of addition and subtraction using three points

of triangular fuzzy number. However, fuzzy numbers may have general form, and thus we have to deal

the operations with their membership functions.

Example 5.10 Addition A (+) B

Here we have two triangular fuzzy numbers and will calculate the addition operation using their

membership functions.

A = (−3, 2, 4), B = (−1, 0, 6)

>

≤≤−−

≤≤−++

−<

=

4,0

42,24

4

23,323

3,0

)()(

x

xx

xx

x

xAµ

Page 18: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

>

≤≤−−

≤≤−++

−<

=

6,0

60,06

6

01,101

1,0

)()(

y

yy

yy

y

yBµ

For the two fuzzy number x ∈ A and y ∈ B, z ∈ A (+) B shall be obtained by their membership

functions.

Let�s think when z = 8. Addition to make z = 8 is possible for following cases :

2 + 6, 3 + 5, 3.5 + 4.5, …

So

],25.0,6/1,0[],25.025.0,6/15.0,01[

]),5.4()5.3(),5()3(),6()2([8)(

L

L

L

∨=∧∧∧∨=

∧∧∧∨=+=

+ BABABAyxBA µµµµµµµ

If we go on these kinds of operations for all z ∈ A (+) B, we come to the following membership

functions, and these are identical to the three point expression for triangular fuzzy number A = (−4, 2,

10).

>

≤≤−

≤≤−+

−<

=+

10,0

102,8

10

24,6

4

4,0

)()(

z

zz

zz

z

zBAµ

There in no simple method using there point expression for multiplication or division operation. So it

is necessary to use membership functions.

Example 5.11 Multiplication A (•) B

Let triangular fuzzy numbers A and B be

A = (1, 2, 4), B = (2, 4, 6)

Page 19: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

<≤+−

<≤−

<

=

4,0

42,221

21,1

1,0

)()(

x

xx

xx

x

xAµ

<≤+−

<≤−

<

=

6,0

64,321

42,121

2,0

)()(

y

yy

yy

y

yBµ

Calculating multiplication A (•) B of A and B, z = x • y = 8 is possible when z = 2 • 4 or z = 4 • 2

1],00,11[

]),2()4(),4()2([8)(

=∧∧∨=

∧∧∨==•

L

LBABAyxBA µµµµµ

Also when z = x • y = 12, 3 • 4, 4 • 3, 2.5 • 4.8, � are possible.

6.0],6.0,0,5.0[

],6.075.0,5.00,15.0[

]),8.4()5.2(),3()4(),4()3([12)(

=∨=

∧∧∧∨=

∧∧∧∨==•

L

L

LBABABAyxBA µµµµµµµ

From this kind of method, if we come by membership function for all z ∈ A (•) B, we see fuzzy

number as in Fig 5.9. However, since this shape is in curve, it is not a triangular fuzzy number. For

convenience, we can express it as a triangular fuzzy number by approximating A (•) B.

)24,8,2()( ≅• BA

We can wee that two end points and one peak point are used in this approximation. □

B A

A (•) B

1

0.5

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Fig 5.9 Multiplication A (•) B of triangular fuzzy number

Page 20: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

5.3.4 Approximation of Triangular Fuzzy Number Since it is possible to express approximated values of multiplication and division as triangular fuzzy

numbers, we are now up to the fact that how to get this approximated value easily.

Example 5.12 Approximation of multiplication

First, α-cuts of two fuzzy numbers are our main concern.

A = (1, 2, 4), B=(2, 4, 6)

]62,22[]6)46(,2)24([

]42,1[]4)24(,1)12([

+−+=+−−+−=

+−+=+−−+−=

αααα

αααα

α

α

B

A

For all α ∈ [0, 1], multiply Aα with Bα which are two crisp intervals. Now in α ∈ [0, 1], we see that

elements of each interval are positive numbers. So multiplication operation of the two intervals is

simple.

]24204,242[])62)(42(),22)(1([

]62,22)[](42,1[)(

22 +−++=+−+−++=+−+•+−+=•

αααααααααααααα BA

When α = 0,

]24,2[)( 00 =• BA

When α = 1,

A0(•)B1 = [2+4+2, 4-20+24] = [8, 8] = 8

We obtain a triangular fuzzy number which is an approximation of A (•) B (Fig 5.9).

)24,8,2()( ≅• BA □

Example 5.13 Approximation of division

In the similar way, let�s express approximated value of A (/) B in a triangular fuzzy number. First,

divide interval Aα by Bα. We reconsider the sets A and B in the previous example. For α ∈ [0, 1], since

element in each interval has positive number, we get Aα (/) Bα as follows.

])22/()62(),62/()1([(/) ++−+−+= αααααα BA

When α = 0,

Page 21: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

]2,17.0[]2/4,6/1[(/) 00

==BA

When α = 1,

5.0]4/2,4/2[

])22/()42(),62/()11([(/) 11

==

++−+−+=BA

So the approximated value of A (/) B will be

)2,5.0,17.0((/) =BA □

Page 22: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

5.4 Other Types of Fuzzy Number

5.4.1 Trapezoidal Fuzzy Number Another shape of fuzzy number is trapezoidal fuzzy number. This shape is originated from the fact

that there are several points whose membership degree is maximum (α = 1).

Definition(Trapezoidal fuzzy number) We can define trapezoidal fuzzy number A as

A = (a1, a2, a3, a4)

The membership function of this fuzzy number will be interpreted as follows(Fig 5.10).

>

≤≤−−

≤≤

≤≤−−

<

=

4

4334

4

32

2112

1

1

,0

,

,1

,

,0

)(

ax

axaaaxa

axa

axaaaax

ax

xAµ

µA(

a1

Fig 5.10 T

α-cut interval for this shape is writt

∀α ∈ [0, 1]

Aα = [(a2 � a1)α + a1, �(a4 � a3)α

When a2 = a3, the trapezoidal fuzzy

5.4.2 Operations of Trapezoidal FLet�s talk about the operations of tr

1) Addition and subtraction betwee

2) Multiplication, division, and inv

a3a2

1

x

x)

a4

rapezoidal fuzzy number A = (a1, a2, a3, a4)

en below.

+ a4]

number coincides with triangular one.

uzzy Number apezoidal fuzzy number as in the triangular fuzzy number,

n fuzzy numbers become trapezoidal fuzzy number.

erse need not be trapezoidal fuzzy number.

Page 23: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

3) Max and Min of fuzzy number is not always in the form of trapezoidal fuzzy number.

But in many cases, the operation results from multiplication or division are approximated trapezoidal

shape. As in triangular fuzzy number, addition and subtraction are simply defined, and multiplication

and division operations should be done by using membership functions.

i) Addition

),,,(),,,)()(,,,()(

44332211

43214321

bababababbbbaaaaBA++++=

+=+

ii) Subtraction

),,,()( 14233241 babababaBA −−−−=−

Example 5.14 Multiplication

Multiply two trapezoidal fuzzy numbers as following:

A = (1, 5, 6, 9)

B = (2, 3, 5, 8)

For exact value of the calculation, the membership functions shall be used and the result is described

in Fig 5.11. For the approximation of operation results, we use α-cut interval.

Aα = [4α + 1, �3α + 9]

Bα = [α + 2, �3α + 8]

Since, for all α ∈ [0, 1], each element for each interval is positive, multiplication between α-cut

intervals will be

]72519,294[])83)(93(),2)(14([)(

22 +−++=+−+−++=•

αααααααααα BA

If α = 0,

]72,2[)( 00 =• BA

If α = 1,

]30,15[]72519,294[)( 11

=+−++=• BA

So using four points in α = 0 and α = 1, we can visualize the approximated value as trapezoidal fuzzy

Page 24: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

number as Fig 5.11.

]72,30,15,2[)( ≅• BA □

µ

x

(2,15, 30, 72)

(1,5, 6, 9) (•) (2,3,5,8) = A (•) B

(2,3, 5, 8) = B

(1,5, 6, 9) = A

1.0 0.9

0.8 0.7

0.6 0.5 0.4 0.3 0.2

0.1

10 20 30 40 50 60 70

Fig 5.11 Multiplication of trapezoidal fuzzy number A (•) B

Generalizing trapezoidal fuzzy number, we can get flat fuzzy number. In other words, flat fuzzy

number is for fuzzy number A satisfying following.

∃m1, m2 ∈ ℜ, m1 < m2

µA(x) = 1, m1 ≤ x ≤ m2

In this case, not like trapezoidal form, membership function in x < m1 and x < m2 need not be a line as

shown in Fig 5.12.

m2m1

1

Fig 5.12 Flat fuzzy number

5.4.3 Bell Shape Fuzzy Number Bell shape fuzzy number is often used in practical applications and its function is defined as

follows(Fig 5.13)

Page 25: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First

−−

= 2

2

2)(

exp)(f

ff

mxx

δµ

where fµ is the mean of the function, is the standard deviation. fδ

Fig 5.13. Bell shape fuzzy number

Page 26: CHAPTER 5 FUZZY NUMBER ONCEPT OF FUZZY NUMBER …site.iugaza.edu.ps/mahir/files/2010/02/chap5-FuzzyNumbers.pdf · Chapter 5 Fuzzy Number This chapter describes fuzzy numbers. First