502

Chapter 5_PV Systems_April 11- 2011.pdf

Embed Size (px)

Citation preview

Page 1: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 1/585

Page 2: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 2/585

Page 3: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 3/585

A material or device that is capable of converting theenergy contained in photons of light into an electricalvoltage and current is said to be photovoltaic.

A photon with short enough wavelength and high enoughenergy can cause an electron in a photovoltaic material to

break free of the atom that holds it.

If a nearby electric field is provided, those electrons can beswept toward a metallic contact where they can emerge asan electric current.

The driving force to power photovoltaics comes from thesun, and it is interesting to note that the surface of theearth receives something like 6000 times as much solarenergy as our total energy demand.

Page 4: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 4/585

Spurred on by the emerging energy crises of the 1970s, thedevelopment work supported by the space program began topay off back on the ground.

By the late 1980s, higher efficiencies (Fig. 8.1) and lowercosts (Fig. 8.2) brought PVs closer to reality, and they beganto find application in many offgrid terrestrial applicationssuch as pocket calculators, off-shore buoys, highway lights,signs and emergency call boxes, rural water pumping, andsmall home systems.

• While the amortized cost ofphotovoltaic power did dropdramatically in the 1990s, adecade later it is still aboutdouble what it needs to be tocompete without subsidies inmore general situations.

 Figure 8.1 Best laboratory PV cell efficiencies for various technologies.

(From National Center for Photovoltaics, www.nrel.gov/ncpv 2003

Page 5: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 5/585

By 2002, worldwideproduction of

photovoltaics hadapproached 600 MWper year and wasincreasing by over 40%per year (bycomparison, global

wind power sales were10 times greater).

 Figure 8.3 World production of photovoltaics is growing rapidly, but the U.S. share of the market is

decreasing. Based on data from Maycock (2004).

Critics of this decline point to thegovernment’s lack of enthusiasm to fund PVR&D. By comparison, Japan’s R&D budget is

almost an order of magnitude greater.

 Figure 8.2 Possible evolution of turn-key PV system

 prices

Page 6: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 6/585

Before we can talk about solar power, we needto talk about the sun

Need to know how much sunlight is available

Can predict where the sun is at any time

Insolation : in cident so l ar radiation

Want to determine the average daily insolationat a site

Want to be able to chose effective locations andpanel tilts of solar panels

Page 7: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 7/585

The sun

◦ 1.4 million km in diameter

◦ 3.8 x 1020 MW of radiated electromagnetic energy

Blackbodies

◦ Both a perfect emitter and a perfect absorber

◦ Perfect emitter – radiates more energy per unit ofsurface area than a real object of the same

temperature◦ Perfect absorber – absorbs all radiation, none is

reflected

Page 8: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 8/585

Plank’s law – wavelengths emitted by ablackbody depend on temperature

8

5

3.74 10  (7.1)

14400exp 1

 E 

 

  

•λ = wavelength (μm)

•  E  λ = emissive power per unit area ofblackbody (W/m2-μm)

•T = absolute temperature (K)

Page 9: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 9/585

Source: en.wikipedia.org/wiki/Electromagnetic_radiation

Visible light has a wavelength of between 0.4 and 0.7 μm, withultraviolet values immediately shorter, and infrared immediately longer  

Page 10: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 10/585

The earth as a blackbody

Figure 7.1Area under curve is the total radiant power emitted

Page 11: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 11/585

Total radiant power emitted is given by theStefan –Boltzman law of radiation

4

  (7.2) E A T s 

• E = total blackbody emission rate (W)

• σ  = Stefan-Boltzmann constant = 5.67x10-8 W/m2-K4

•T = absolute temperature (K)

•A = surface area of blackbody (m2)

Page 12: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 12/585

The wavelength at which the emissive powerper unit area reaches its maximum point

max

2898  (7.3)T    

•T = absolute temperature (K)

•  λ = wavelength (μm)

•  λmax =0.5 μm for the sun , T  = 5800 K

•  λmax = 10.1 μm for the earth (as a blackbody), T  = 288 K

Page 13: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 13/585

Page 14: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 14/585

• h 1 = path length through atmosphere with sundirectly overhead

• h 2  = path length through atmosphere to spot onsurface

• β  = altitude angle of the sun

Figure 7.3

As sunlight passes through theatmosphere, less energy arrives at the

earth’s surface 

Page 15: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 15/585

Air mass ratio of 1 (―AM1‖) means sun is directlyoverhead

AM0 means no atmosphere

AM1.5 is assumed average at the earth’s surface 

2

1

1air mass ratio = (7.4)

sin

hm

h    

Figure 7.3

Page 16: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 16/585

Page 17: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 17/585

• m increases as the sun

appearslower inthe sky.

• Notice there is a large

loss towards the blue endfor higher m, which is why

the sun appears reddish at

sun rise and sun set

Page 18: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 18/585

One revolution every 365.25 days Distance of the earth from the sun

n  = day number (Jan. 1 is day 1) d  (km) varies from 147x106 km on Jan. 2 to

152x106 km on July 3 (closer in winter, further

in summer) Note that the angles in this chapter are in

degrees

8 360( 93)1.5 10 1 0.017sin km (7.5)

365

nd 

 

Page 19: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 19/585

In one day, the earth rotates 360.99˚ The earth sweeps out what is called the ecliptic

plane

Earth’s spin axis is currently 23.45˚ 

Equinox – equal day and night, on March 21and September 21

Winter solstice – North Pole is tilted furthest

from the sun Summer solstice – North Pole is tilted closest to

the sun

Page 20: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 20/585

Page 21: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 21/585

Figure 7.5For solar energy applications, we’ll consider the characteristics of

the earth’s orbit to be unchanging 

Page 22: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 22/585

Solar declination δ  – the angle formed betweenthe plane of the equator and the line from thecenter of the sun to the center of the earth

δ  varies between +/- 23.45˚ 

Assuming a sinusoidal relationship, a 365 dayyear, and n =81 is the spring equinox, theapproximation of δ  for any day n  can be foundfrom

360

23.45sin 81 (7.6)365

n  

Page 23: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 23/585

Predict where the sun will be in the sky at any time

Pick the best tilt angles for photovoltaic (PV) panels

Figure 7.6

•Another perspective-

Solar declination

Page 24: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 24/585

Solar noon – sun is

directly over thelocal line oflongitude

Rule of thumb forthe NorthernHemisphere - asouth facingcollector tilted at anangle equal to thelocal latitude

• During solar noon, the sun’s rays are perpendicular tothe collector face

Figure 7.8

Page 25: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 25/585

Find the optimum tilt angle for a south-facingPV module located at in Tucson (latitude 32.1˚)at solar noon on March 1

From Table 7.1, March 1 is day n = 60

Page 26: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 26/585

The solar declination δ  is

The altitude angle is

To make the sun’s rays perpendicular to thepanel, we need to tilt the panel by

360 360

23.45sin 81 = 23.45sin 60 81 = -8.3365 365

n  

90 = 90 32.1 8.3 49.6 N    L   

90 = 40.4 N tilt     

Page 27: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 27/585

Altitude angle at solar noon β N – angle betweenthe sun and the local horizon

Zenith – perpendicular axis at a site

90 (7.7) N    L   

Figure 7.9

Page 28: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 28/585

Find the optimum tilt angle for a south-facingPV module located at in Tucson (latitude 32.1˚)at solar noon on March 1

From Table 7.1, March 1 is day n = 60

Page 29: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 29/585

Described in terms of altitude angle β   andazimuth angle of the sun ϕ S

β  and ϕ S  depend on latitude, day number, andtime of day

Azimuth angle (ϕ S  ) convention◦ positive in the morning when sun is in the east

◦ negative in the evening when sun is in the west

◦ reference in the Northern Hemisphere (for us) is true

south

Hours are referenced to solar noon

Page 30: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 30/585

Figure 7.10

Azimuth Angle

Altitude Angle

Page 31: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 31/585

Hour angle H - the number of degrees the earthmust rotate before sun will be over your line oflongitude

If we consider the earth to rotate at 15˚/hr,

then

At 11 AM solar time, H  = +15˚ (the earthneeds to rotate 1 more hour)

At 2 PM solar time, H  = -30˚ 

15

hour angle hours before solar noon (7.10)hour 

 H   

Page 32: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 32/585

sin cos cos cos sin sin (7.8) L H L    cos sin

sin (7.9)cos

 H   

  

•H = hour angle

•  L = latitude (degrees)

• Test to determine if the angle magnitude is less thanor greater than 90˚ with respect to true south-

tanif cos , then 90 , else 90 (7.11)

tan  S S  H 

 L

   

Page 33: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 33/585

Find altitude angle β  and azimuth angle ϕ S  at 3 PMsolar time in Boulder, CO (L = 40˚) on the summersolstice

At the solstice, we know the solar declination δ  ˚ =23.45

Hour angle H  is found from (7.10)

The altitude angle is found from (7.8)

15

-3 h 45

h

 H  

sin cos 40cos 23.45cos 45 sin 40sin 23.45 0.7527   

1sin 0.7527 48.8    

Page 34: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 34/585

The sin of the azimuth angle is found from (7.9)

Two possible azimuth angles exist

Apply the test (7.11)

cos 23.45 sin 45sin = -0.9848

cos 48.8S  

1 = sin -0.9848 80S    

1 = 180 -sin -0.9848 260 or 100S    

cos cos 45 0.707 H   tan tan 23.45

0.517tan tan 40 L

   

 = 80 (80 west of south)S    

Page 35: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 35/585

Now we know how to locate the sun in the skyat any time

This can also help determine what sites will bein the shade at any time

Sketch the azimuth and altitude angles of trees,buildings, and other obstructions

Sections of the sun path diagram that are

covered indicate times when the site will be inthe shade

Page 36: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 36/585

Trees to the southeast, small building to the

southwest Can estimate the amount of energy lost to

shading

Figure 7.15

Page 37: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 37/585

The shading of solar collectors has been an area oflegal and legislative concern (e.g., a neighbor’s treeis blocking a solar panel)

California has the Solar Shade Control Act (1979) toaddress this issue◦ No new trees and shrubs can be placed on neighboring

property that would cast a shadow greater than 10 percent ofa collector absorption area between the hours of 10 am and 2pm.

◦ Exceptions are made if the tree is on designated timberland,

or the tree provides passive cooling with net energy savingsexceeding that of the shaded collector

◦ First people were convicted in 2008 because of theirredwoods

Page 38: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 38/585

Source: NYTimes, 4/7/08

Page 39: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 39/585

Most solar work deals only in solar time (ST) Solar time is measured relative to solar noon Two adjustments – 

◦ For a longitudinal adjustment related to time zones◦

For the uneven movement of the earth around the sun Problem with solar time –two places can only

have the same solar time is if they are directlynorth-south of each other

Solar time differs 4 minutes for 1˚ of longitude  Clock time has 24 1-hour time zones, each

spanning 15˚ of longitude 

Page 40: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 40/585

Source: http://aa.usno.navy.mil/graphics/TimeZoneMap0802.pdf

Page 41: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 41/585

Time Zone Local Time Meridian

Eastern 75˚ 

Central 90˚ 

Mountain 105˚ 

Pacific 120˚ 

Eastern Alaska 135˚ 

Alaska andHawaii

150˚ 

Page 42: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 42/585

The earth’s elliptical orbit causes the length ofa solar day to vary throughout the year

Difference between a 24-h day and a solar dayis given by the Equation of Time E

n is the day number

9.87sin 2 7.53 1.5sin minutes (7.12) E B B B

360

-81 (degrees) (7.13)

364

 B n

Page 43: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 43/585

Combining longitude correction and theEquation of Time  we get the following:

CT – clock time ST – solar time LT Meridian – Local Time Meridian During Daylight Savings, add one hour to the

local time

Solar Time (ST) Clock Time (CT) +

4 min LT Meridian Local Longitude + (min)degree

 E 

 (7.14)

Page 44: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 44/585

Find Eastern Daylight Time for solar noon inBoston (longitude 71.1˚ W) on July 1 

 July 1 corresponds to n  = 182

From the Equation of Time  (7.12) and (7.13) weobtain

360 360 = ( 81) (182 81) 99.89

364 364

 B n

= 9.87sin 2 7.53cos 1.5sin = 3.5 min E B B B

Page 45: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 45/585

The local time meridian for Boston is 75˚, sothe difference is 75 ˚-71.7 ˚, and we know thateach degree corresponds to 4 minutes

Using (7.14)

But we need to adjust it for Daylight Savings, soadd 1 hour

= 4 min/ 75 71.1 ( 3.5min)CT ST     = 12:00 12.1min 11:49.9 AM ESTCT   

 = 12: 49.9 AM EDTCT 

Page 46: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 46/585

Can approximate the sunrise and sunset times Solve (7.8) for where the altitude angle is zero

+ sign on HSR indicates sunrise, - indicatessunset

sin cos cos cos sin sin (7.8) L H L   

sin cos cos cos sin sin 0 (7.15) L H L    sin sin

cos = tan tan (7.16)cos cos

 L H L

 L

  

 

1

cos ( tan tan ) (7.17)SR H L    

Hour angle of sunrise

Sunrise (geometric) 12 :00 (7.18)

15 /

SR H 

h

Page 47: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 47/585

Page 48: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 48/585

Direct beam radiation I BC – passes in a straightline through the atmosphere to the receiver

Diffuse radiation I DC – scattered by molecules inthe atmosphere

•Reflectedradiation I  RC – bounced off asurface near thereflector

Figure 7.18

Page 49: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 49/585

Starting point for clear sky radiation calculations I 0  passes perpendicularly through an imaginary

surface outside of the earth’s atmosphere 

I 0  depends on distance between earth and sun and

on intensity of the sun which is fairly predictable Ignoring sunspots, I 0  can be written as

SC = solar constant = 1.377 kW/m2

n  = day number

2

0

360SC 1 0.034cos (W/m ) (7.20)

365

n I 

   

These changes are due to the variation in

earth’s distance from the sun 

Page 50: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 50/585

In one year, less than half of I 0  reaches earth’ssurface as a direct beam

On a sunny, clear day, beam radiation mayexceed 70% of I 0  

Figure 7.19

Page 51: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 51/585

Can treat attenuation as an exponential decayfunction

(7.21)km

 B I Ae

• I B  = beam portion of the radiation thatreaches the earth’s surface

•A = apparent extraterrestrial flux• k = optical depth

• m = air mass ratio from (7.4)

Page 52: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 52/585

  (7.21)km

 B I AeFrom curve fits of the table data, A and k are 

approximately 23601160 75sin 275 (W/m ) (7.22)365

 A n

360

0.174 0.035sin 100 (7.23)365

k n

Page 53: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 53/585

Direct-beam radiation is just a function of the anglebetween the sun and the collecting surface (i.e., theincident angle q:

Diffuse radiation is assumed to be coming fromessentially all directions to the angle doesn’t matter; itis typically between 6% and 14% of the direct value.

Reflected radiation comes from a nearby surface, anddepends on the surface reflectance, r, ranging down

from 0.8 for clean snow to 0.1 for a shingle roof. 

cos BC B I I    q 

Page 54: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 54/585

1 cos

2 RC BH DH  I I I  r 

   

Page 55: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 55/585

Most residential solar systems have a fixedmount, but sometimes tracking systems arecost effective

Tracking systems are either single axis (usually

with a rotating polar mount [parallel to earth’saxis of rotation), or two axis (horizontal[altitude, up-down] and vertical [azimuth, east-west]

Ballpark figures for tracking system benefitsare about 20% more for a single axis, and 25 to30% more for a two axis

Page 56: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 56/585

For a fixed system the total annual output issomewhat insensitive to the tilt angle, but there is asubstantial variation in when the most energy isgenerated

Page 57: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 57/585

Page 58: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 58/585

In 2007 worldwide PV peak was about 7800 MW, with almost half

(3860 MW) in Germany, 1919 MW in Japan, 830 in USA and

655 in Spain

Page 59: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 59/585

Photovoltaic definition- a material or device that is capable

of converting the energy contained in photons of light intoan electrical voltage and current

Rooftop PVmodules on a

village health

center in West

Bengal, India

http://www1.eere.energy.gov/solar/pv_use.html

"Sojourner"

exploring Mars,1997

University of Illinois 2009

Solar Decathalon House –  2nd 

 place overall

http://www.solardecathlon.uiuc.edu/gallery.html#

Page 60: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 60/585

Edmund Becquerel(1839)

Adams and Day (1876)

Albert Einstein (1904)

Czochralski (1940s) Vanguard I satellite(1958)

Today… 

http://www.nrel.gov/pv/pv_manufacturing/cost_capacity.htm

Cost/Capacity Analysis(Wp is peak Watt)

Page 61: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 61/585

Page 62: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 62/585

Page 63: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 63/585

Page 64: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 64/585

Page 65: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 65/585

Page 66: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 66/585

Shadows

• Solar cell is a diode• Photopower coverted to DC

• Shadows & defects convert

generating areas to loads• DC is converted to AC by an

inverter

• Loads are unpredictable• Storage helps match

generation to load

Page 67: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 67/585

When Prof. Chapman built a new house inUrbana in 2007 he added some solar PV.

His system has 14 moduleswith 205 W each, for a

total of 2870W. He hasa 3300 W inverter.

Total cost was about $27,000,but tax credits reduced it

to $16,900. He should be getting about 3700 kWh per year

Source: www.patrickchapman.com/solar.htm

Solar Intensity: Atmospheric Effects

Page 68: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 68/585

Solar Intensity: Atmospheric Effects

Sun photosphere

“AM” means “air mass” 

   I  n   t  e  n  s   i   t  y

Extraterestrialsunlight (AM0)

Sunlight at sea level

at 40° N Lattitude atnoon (AM1.5)

Page 69: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 69/585

• The device •Efficiency, cost, manufacturability

automation, testing

• Encapsulation 

•Cost, weight, strength,yellowing, etc.

• Accelerated lifetime testing •30 year outdoor test is difficult•Damp heat, light soak, etc.

• Inverter & system design •Micro-inverters, blocking diodes, reliability 

Load

Page 70: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 70/585

   C  u

  r  r  e  n   t

Voltage

Open-circuit

voltage

Short-circuit

current

Maximum

Power Point

  n  -   t  y  p  e

  p  -   t  y  p  e

-+

Load

• Solar cells are diodes

• Light (photons) generatefree carriers (electronsand holes) which arecollected by the electricfield of the diode junction

• The output current is afraction of thisphotocurrent

•The output voltage is afraction of the diodebuilt-in voltage

Standard Equivalent Circuit Model

Page 71: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 71/585

Standard Equivalent Circuit Model

   P   h  o   t  o  c  u

  r  r  e  n   t

  s  o  u  r  c  e   D   i  o   d

  e

   S   h  u  n   t

  r  e  s   i  s   t  a

  n  c  e

   L  o  a   d

Series

resistance

Where does the power go?

(minimize)

   (  m  a  x   i  m

   i  z  e   )

Page 72: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 72/585

Electrons in solids fill states until you run out of them

Conduction band – top band, here electrons contributeto current flow, empty at absolute zero forsemiconductors

Valence band – highest energy band where electrons arenormally present at absolute zero

An electron must acquire the band gap energy to jumpacross to the conduction band, measured in electron-

volts eV

Silicon band gap energy is 1.12 eV

Page 73: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 73/585

http://upload.wikimedia.org/wikipedia/commons/c/c7/Isolator-

metal.svg

•The probability of finding an electron in astate is the Fermi distribution

•The Fermi energy is the energy at which theprobability of finding an electron is 0.5

Page 74: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 74/585

Page 75: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 75/585

Photons are characterized by their wavelength(frequency) and their energy

(8.1)c v 

  (8.2)hc

 E hvv

Quantity Si GaAs CdTe InP

Band gap (eV) 1.12 1.42 1.5 1.35

Cut-off wavelength(μm)

1.11 0.87 0.83 0.92

Table 8.2 Band Gap and Cut-off Wavelength Above Which Electron

Excitation Doesn’t Occur  

•The gaps between allowable energy bands are called forbiddenb d th t i t t f hi h i th ti th

Page 76: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 76/585

bands, the most important of which is the gap separating theconduction band from the highest filled band below it.

•The energy that an electron must acquire to jump across theforbidden band to the conduction band is called the band-gapenergy, designated Eg.

•The units for band-gap energy are usually electron-volts (eV),

where one electron-volt is the energy that an electron acquireswhen its voltage is increased by 1 V (1 eV = 1.6 × 10−19 J). 

•The band-gap Eg for silicon is 1.12 eV, which means an electronneeds to acquire that much energy to free itself from the

electrostatic force that ties it to its own nucleus—that is, to jumpinto the conduction band.

When a photon with more than 1.12 eV of energy is absorbed by a solar cell, a singleelectron may jump to the conduction band

Page 77: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 77/585

electron may jump to the conduction band.

When it does so, it leaves behind a nucleus with a +4 charge that now

has only three electrons attached to it.

That is, there is a net positive charge, called a hole, associated with that nucleus asshown in Fig. 8.7a. Unless there is some way to sweep the electrons away from theholes, they will eventually recombine, obliterating both the hole and electron as inFig. 8.7b.

When recombination occurs, the energy that had been associated with the electron

in the conduction band is released as a photon, which is the basis for light-emittingdiodes (LEDs).

 Figure 8.7 A photon with sufficient energy can create

a hole – electron pair as in (a).The electron can

recombine with the hole, releasing a photon of energy

(b).

 Figure 8.8 When a hole is filled by a nearby valence

electron, the hole appears to move

Example 8.1 Photons to Create Hole – Electron Pairs in Silicon . What maximum

l h h h h l l i i ili h

Page 78: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 78/585

wavelength can a photon have to create hole – electron pairs in silicon? What

minimum frequency is that? Silicon has a band gap of 1.12 eV and 1 eV = 1.6 ×

10−19

 J.

Solution. From (8.2) the wavelength must be less thanλ ≤ hc/ E= = [6.626 × 10−34 J · s × 3 × 108 m/s]/ [1.12 eV × 1.6 × 10−19J/eV] 

= 1.11 × 10−6 m = 1.11 μm 

and from (8.1) the frequency must be at least ν ≥ c λ  = 3 × 108 m/s /1.11 × 10−

6 m

= 2.7 × 1014

 Hz

For a silicon photovoltaic cell, photons with wavelength greater than 1.11 μm  

have energy hν less than the 1.12-eV band-gap energy needed to excite an

Page 79: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 79/585

have energy hν  less than the 1.12 eV band gap energy needed to excite an

electron. None of those photons create hole–electron pairs capable of carrying

current, so all of their energy is wasted. It just heats the cell. On the other

hand, photons with wavelengths shorter than 1.11 μm  have more than enough

energy to excite an electron. Since one photon can excite only one electron, anyextra energy above the 1.12 eV needed is also dissipated as waste heat in the

cell. Figure 8.9 uses a plot of (8.2) to illustrate this important concept. The band

gaps for other photovoltaic materials—gallium arsenide (GaAs), cadmium telluride

(CdTe), and indium phosphide (InP), in addition to silicon—are shown in

Table 8.2.

 Figure 8.9 Photons with

wavelengths above 1.11 μm

don’t have the 1.12 eV needed

to excite an electron, and this

energy is lost. Photons with

 shorter wavelengths have morethan enough energy, but any

energy above 1.12 eV is wasted

as well

Page 80: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 80/585

Upper bound on the efficiency of a silicon solarcell:

Band gap: 1.12 eV, Wavelength: 1.11 μm

This means that photons with wavelengthslonger than 1.11 μm cannot send an electron tothe conduction band.

Photons with a shorter wavelength but moreenergy than 1.12 eV dissipate the extra energyas heat

Page 81: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 81/585

For an Air MassRatio of 1.5, 49.6%is the maximumpossible fractionof the sun’senergy that can becollected with asilicon solar cell

Air mass ratio of 1 (designated ―AM1‖) means that the sun is directly overhead. By convention, AM0

means no atmosphere; that is it is the extraterrestrial solar spectrum For most photovoltaic work an air

Page 82: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 82/585

means no atmosphere; that is, it is the extraterrestrial solar spectrum. For most photovoltaic work, an air

mass ratio of 1.5, corresponding to the sun being 42 degrees above the horizon, is assumed to be the

standard.

The solar spectrum at AM 1.5 is shown in Fig. 8.10. For an AM 1.5 spectrum, 2% of the incoming solar

energy is in the UV portion of the spectrum, 54% is in the visible, and 44% is in the infrared.

8.2.3 Band-Gap Impact on Photovoltaic

Efficiency Solar spectrum at AM 1.5. Photons with wavelengths

longer than 1.11 μm don’t have

enough energy to excite

electrons (20.2% of the

incoming solar energy); those

with shorter wavelengths can’t

use all of their energy, which

accounts for another 30.2%

unavailable to a silicon

 photovoltaic cell. Spectrum is

based on ERDA/NASA (1977).

If we know the solar spectrum, we can calculate the energy loss due

Page 83: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 83/585

p , gy

to these two fundamental constraints. Figure 8.10 shows the results

of this analysis, assuming a standard air mass ratio AM 1.5.

As is presented there, 20.2% of the energy in the spectrum is lost

due to photons having less energy than the band gap of silicon (hν

< Eg), and another 30.2% is lost due to photons with hν > Eg.

The remaining 49.6% represents the maximum possible fraction of

the sun’s energy that could be collected with a silicon solar cell.

That is, the constraints imposed by silicon’s band gap limit theefficiency of silicon to just under 50%.

•Even this simple discussion gives some insight into the trade-off between choosing a photovoltaic

material that has a small band gap versus one with a large band gap

Page 84: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 84/585

material that has a small band gap versus one with a large band gap.

•With a smaller band gap, more solar photons have the energy needed to excite electrons, which is

good since it creates the charges that will enable current to flow.

•However, a small band gap means that more photons have surplus energy above the threshold needed

to create hole – electron pairs, which wastes their potential.

•High band-gap materials have the opposite combination. A high band gap means that fewer photons

have enough energy to create the current carrying electrons and holes, which limits the current that can

 be generated.

•On the other hand, a high band gap gives those charges a higher voltage with less leftover surplus

energy.

•In other words, low band gap gives more current with less voltage while high band gap results in less

current and higher voltage.

•Since power is the product of current and voltage, there must be some middle-ground band gap,

usually estimated to be between 1.2 eV and 1.8 eV, which will result in the highest power and

efficiency.

 Notice that the efficiencies in Fig. 8.11 are roughly in the 20 – 25% range — well

below the 49 6% we found when we considered only the losses caused by

Page 85: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 85/585

 below the 49.6% we found when we considered only the losses caused by

(a) photons with insufficient energy to push electrons into the conduction band

and(b) photons with energy in excess of what is needed to do so.

(c) Other factors that contribute to the drop in theoretical efficiency include:

1. Only about half to two-thirds of the full band-gap voltage across the terminals

of the solar cell.

2. Recombination of holes and electrons before they can contribute to current

flow.

3. Photons that are not absorbed in the cell either because they are reflected offthe face of the cell, or because they pass right through the cell, or because they are

 blocked by the metal conductors that collect current from the top of the cell.

4. Internal resistance within the cell, which dissipates power.

Limitations to Solar Cell Performance

Page 86: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 86/585

   I  n

   t  e  n  s   i   t  y   (  m   W   /  m   2  -     m  m   )

Photons used

Maximum energycollected = Egap 

Usablepower 24%

UnusedPhotons 19%

31% Loss forEnergyabove Egap 

Voc < Egap 16%

Fill Factor 5%Other Losses 5%

Other losses:

Absorption

CollectionReflection

Series R

Shunts

Analysis for a 24%-efficient Si solar cell

All photon energy above Voc is lost.Energy (eV)

Page 87: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 87/585

Two regions: ―n-type‖ whichdonate electrons and ―p-type‖which accept electrons

p-n junction- diffusion of

electrons and holes, currentwill flow readily in onedirection (forward biased) butnot in the other (reverse

biased), this is the diode

Page 88: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 88/585

Making a connection from an n-type semiconductor(doped with impurities with extra electrons) to a p-

type material (extra holes) induces an electric field This field is what separates charges generated by light

The depletion width is the region where carriers havediffused

http://en.wikipedia.org/wiki/File:Pn-junction-equilibrium.png

Page 89: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 89/585

  Voltage-Current (VI) characteristics for a diode/

0 ( -1) (8.3)d qV kT 

d  I I e38.9

0 ( -1) (at 25 C)d V 

d  I I e

Figure 8.15

Page 90: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 90/585

where :

Id is the diode current in the direction of the arrow (A),

Vd is the voltage across the diode terminals from the p-side to

the n-side (V),

Io is the reverse saturation current (A),

q is the electron charge (1.602 × 10−19C),

k is Boltzmann’s constant (1.381 × 10−23 J/K), and

T is the junction temperature (K).

Example 8.2 A p – n Junction Diode. Consider a p – n junction diode at 25◦C

ith t ti t f 10 9 A Fi d th lt d th

Page 91: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 91/585

with a reverse saturation current of 10−9 A. Find the voltage drop across the 

diode when it is carrying the following:

a. no current (open-circuit voltage)

 b. 1 A

c. 10 A

Solution

Page 92: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 92/585

Page 93: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 93/585

Current in the Device:

Page 94: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 94/585

J0: Reverse saturation current

V: Junction voltage

k: Boltzmann constantT: Temperature (K)

a: Ideality factor

1: ideal

2: non-ideal

Photocurrent:Diode (dark) current:

Voltage (V)

Calculating Cell Parameters:

Page 95: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 95/585

Open circuit voltage from current equation atzero current:

Solving for Voc gives:

Notes:This is for an ideal diode!!gop is proportional to light fluxVoc increases logarithmically with light flux.

Lp, Ln: Minority carrier diffusion lengths

pn, np: Minority carrier concentrations

Page 96: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 96/585

The previous equations in terms of the book’snotation are (just use the book equations andnotation when working your problems)

Setting I  to zero, the open circuit voltage is

/

0 ( -1) (8.8)qV kT 

SC  I I I e

0

ln 1 (8.9)SC OC 

 I kT V 

q I 

+-

IV+

-

LoadPV

Page 97: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 97/585

 Figure 8.19 Two important parameters for photovoltaics are the short-circuit current

 ISC and the open-circuit voltage VOC

Two important parameters for photovoltaics are the short-

circuit current ISC and the open-circuit voltage VOC

Page 98: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 98/585

Add impact of parallel leakage resistance RP (want

RP to be high)

Add impact of series resistance RS (want RS to besmall) due to contact between cell and wires andsome from resistance of semiconductor

( ) (8.12)SC d 

 P 

V  I I I 

 R

  (8.14)d S V V I R

Figure 8.22. PV Cell with parallel resistance

Vd

Page 99: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 99/585

Considering both RS and RP

0 exp 1 - (8.17)S    S 

SC 

 P 

q V I R   V I R I I I 

kT R

   

 

 Figure 8.26. Equivalent circuit for a PV Cell including series and parallel resistance

Series and Shunt Resistance Effects:Al b i ll

Page 100: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 100/585

Algebraically:

J JL  J0 e qVJRseries / akT 1 VRshunt

Series resistance dropssome voltage (reducesoutput voltage)

Shunt resistance drops

some current (reducesoutput current)

Voltage & Current are coupled

   P   h  o   t  o  c

  u  r  r  e  n   t

  s  o  u  r  c  e    D   i

  o   d  e

   S   h  u  n

   t

  r  e  s   i  s   t  a  n  c  e

   L  o  a   d

Seriesresistance

(minimize)

   (  m  a  x   i  m   i  z  e   )

Equivalent Circuit

Page 101: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 101/585

Parallel (RP) – 

current drops byΔI=V/RP

Series (RS) – voltage drops by

ΔV=IRS

Figure 8.23

Figure 8.25

Fill Factor andC ll Effi i

Page 102: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 102/585

Cell Efficiency

Fill Factor(FF) =

Jmax•V

max 

Pabs = Jsc•Voc 

CellEfficiency

(h) =

Jsc•Voc•FF 

IncidentPower

Jmax•Vmax 

Incident

Power

=

“AM 1.5” IncidentSolar Power~100 mW/cm2 

JSC

Page 103: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 103/585

Absorption coefficient: 

Thicker is better.You need at least 2

absorption lengths evenwith a back surfacereflector.

Carrier diffusion length: Thinner is better.

Need to be able to diffuseto the contacts.

Optimal performance: 

10 nm for organics

1-2 microns for CdTe,CIS, a-Si:H

2-10 microns for GaAs

20-100 microns for Si, Ge

Material Lifetime (usec) Mobility (cm2/V-sec) Ln  Lp (um)

x-Si ~ 100 1350 480 590 340

CdTe ~ 0.001 3 500 0.12 1.6

GaAs ~ 0.1 8500 400 50 10

CuInSe2  ~ 0.01 800 200 3 1

a-Si ~ 0.001 1 0.05

organics ~ 0.001 10-3  0.002

Absorption of Light in the Solar Cell

Page 104: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 104/585

Light trapping can be used to extend thepath length of the light in the absorber,allowing a thinner layer to be used.

No light trappingabsorption orreflection atback surface

Back surfacepatterned toreflect & scatterlight

Front & backsurface patternedto refract &scatter light

Page 105: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 105/585

 Figure 8.20 Photovoltaic current  – voltage relationship for

“dark” (no sunlight) and “light” (an illuminated cell). The

dark curve is just the diode curve turned upside-down. The

light curve is the dark curve plus ISC

Page 106: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 106/585

Example 8.3 The I V Curve for a Photovoltaic

Cell. Consider a 100-cm2 photovoltaic cellwith reverse saturation current Io = 10

−12

A/cm2. In full sun, it produces a short-circuit

current of 40 mA/cm2 at 25◦C. Find theopen-circuit voltage at full sun and again for50% sunlight. Plot the results.

Page 107: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 107/585

Page 108: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 108/585

 Figure 8.21 The simple equivalent circuit of a

 string of cells in series suggests no current can

 flow to the load if any cell is in the dark

(shaded).

 Figure 8.22 The simple PV equivalent circuit

with an added parallel resistance

PV Shading Phenomenon

Page 109: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 109/585

 Figure 8.23 Modifying the idealized PV equivalent

circuit by adding parallel resistance causes the current

at any given voltage to drop by V/RP

 Figure 8.24 A PV equivalent circuit with series resistance

For a large cell, ISC 

might be around 7 A and

VOC might be about 0.6

V, which says its parallel

resistance should be

greater than about 9

ohms.

For a cell to have less than 1% losses due to the

Page 110: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 110/585

For a cell to have less than 1% losses due to theseries resistance, RS will need to be less than about

RS

 < 0.01 VOC

/ISC

which, for a large cell with ISC = 7 A and VOC = 0.6 V,would be less than 0.0009 ohms.

Equation for current and voltage:

 Figure 8.25 Adding series resistance to

the PV equivalent circuit causes thevoltage at any given current to shift to

the left by  ΔV = IRS

Under the standard assumption of a 25◦C cell

Page 111: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 111/585

 Figure 8.26 A more complex equivalent circuit for a

 PV cell includes both parallel and series resistances.

The shaded diode reminds us that this is a “real”

diode rather than an ideal one.

temperature, (8.17) becomes

Page 112: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 112/585

 Figure 8.27 Series and parallel resistances in the PV equivalent circuit

decrease both voltage and current delivered. To improve cell performance, high

 RP and low RS are needed.

Page 113: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 113/585

Since an individual cell produces only about 0.5 V, it is a rareapplication for which just a single cell is of any use. Instead, the basicbuilding block for PV applications is a module consisting of a number

of pre-wired cells in series, all encased in tough, weather-resistantpackages.

A typical module has 36 cells in series and is often designated as a―12-V module‖ even though it is capable of delivering much higher

voltages than that. Some 12-V modules have only 33 cells, which, aswill be seen later may, be desirable in certain very simple batterycharging systems.

Large 72-cell modules are now quite common, some of which have allof the cells wired in series, in which case they are referred to as 24-V

modules.

Some 72-cell modules can be field-wired to act either as 24-Vmodules with all 72 cells in series or as 12-V modules with twoparallel strings having 36 series cells in each.

Page 114: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 114/585

 Figure 8.28 Photovoltaic cells,

modules, and arrays. 

 Figure 8.29 For cells wired in series,

their voltages at any given current add.

 A typical module will have 36 cells

Page 115: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 115/585

Example 8.4 Voltage and Current from a PV Module

. A PVmodule is made up of 36 identical cells, all wired in series.With 1-sun insolation (1 kW/m2), each cell has short-circuitcurrent ISC = 3.4 A and at 25◦C its reverse saturation

current is Io = 6 × 10−10 A. Parallel resistance RP = 6.6 Ω  andseries resistance RS = 0.005 Ω.

a. Find the voltage, current, and power delivered when the junction voltage of each cell is 0.50 V.

b. Set up a spreadsheet for I and V and present a few lines ofoutput to show how it works.

Page 116: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 116/585

Page 117: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 117/585

Figure 8 32 Two ways to wire an

Page 118: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 118/585

 Figure 8.32 Two ways to wire an

array with three modules in series

and two modules in parallel.

 Although the I – V curves forarrays are the same, two strings of

three modules each (a) is

 preferred. The total I – V curve of

the array is shown in (c).

The maximum power point (MPP) is that spot near the knee of the I –V curve at

Page 119: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 119/585

p p ( ) pwhich the product of current and voltage reaches its maximum.

The voltage and current at the MPP are sometimes designated as Vm and Im forthe general case and designated VR and IR (for rated voltage and rated current)under the special circumstances that correspond to idealized test conditions.

 Figure 8.34 The I – V curve and power output

 for a PV module. At the maximum power point

(MPP) the module delivers the most power that

it can under the conditions of sunlight and

temperature for which the I – V curve has been

drawn

 Figure 8.35 The maximum power point

(MPP) corresponds to the biggest rectangle

that can fit beneath the I – V curve. The fill

 factor (FF) is the ratio of the area (power) at

 MPP to the area formed by a rectangle with

 sides VOC and ISC.

Fill factors around 70–75% for crystalline silicon solar modules

Page 120: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 120/585

Fill factors around 70 75% for crystalline silicon solar modulesare typical, while for multijunction amorphous-Si modules, it iscloser to 50–60%.

Fill factor (FF) = Power at the maximum power point/VOC ISC =V R  I R / V OC I SC  

Page 121: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 121/585

 Figure 8.36 Current-voltage

characteristic curves under various cell

temperatures and irradiance levels for

the Kyocera KC120-1 PV module

As can be seen in Fig. 8.36, as cell temperature

increases, the open-circuit voltage decreasessubstantially while the short-circuit current increases

only slightly.

Photovoltaics, perhaps surprisingly, therefore

 perform better on cold, clear days than hot ones.

For crystalline silicon cells, VOC drops by about

0.37% for each degree Celsius increase intemperature and ISC increases by approximately

0.05%.

The net result when cells heat up is the MPP slides

slightly upward and toward the left with a decrease in

maximum power available of about 0.5%/◦C. Given

this significant shift in performance as celltemperature changes, it should be quite apparent that

temperature needs to be included in any estimate of

module performance.

Cells vary in temperature not only because ambient

temperatures change, but also because insolation on

the cells changes.

Page 122: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 122/585

To help system designers account for changes in cell performancewith temperature, manufacturers often provide an indicatorcalled the NOCT, which stands for nominal operating celltemperature.

The NOCT is cell temperature in a module when ambient is 20◦C,

solar irradiation is 0.8 kW/m2, and windspeed is 1 m/s.

To account for other ambient conditions, the following expressionmay be used:

where Tcell is cell temperature (◦C), Tamb is ambient

temperature, and S is solar insolation (kW/m2).

Page 123: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 123/585

Example 8.5 Impact of Cell Temperature on Power

for a PV Module.

Estimate cell temperature, open-circuit voltage,and maximum power output for the 150-W

BP2150S module under conditions of 1-suninsolation and ambient temperature 30◦C. Themodule has a NOCT of 47◦C.

Page 124: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 124/585

Page 125: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 125/585

When the NOCT is not given, another approach to

estimating cell temperature is based on thefollowing:

Tcell = Tamb + γ  ( Insolation/1 kW/m2)

where γ is a proportionality factor that dependssomewhat on windspeed and how well ventilatedthe modules are when installed.

Typical values of γ range between 25◦C and 35◦C;that is, in 1 sun of insolation, cells tend to be 25–35◦C hotter than their environment.

Page 126: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 126/585

 Figure 8.37 A module with n cells in which the

top cell is in the sun (a) or in the shade (b).

Page 127: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 127/585

Consider the case when the bottom n − 1 cells still have full sun and still somehow carry their original current I so they will still produce their original voltage

Vn−1. This means that the output voltage of the entire module VSH with onecell shaded will drop to

With all n cells in the sun and carrying I , the output voltage was V so thevoltage of the bottom n − 1 cells will be 

Combining (8.26) and (8.27) gives

The drop in voltage V at any given current I , caused by the shaded cell, isgiven by

Since the parallel resistance RP is so much greater than the series resistance RS, (8.30) simplifies to

At any given current, the I –V curve for the module with one shaded cell dropsby ΔV.

Page 128: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 128/585

 Figure 8.38 Effect of shading one cell in an n-cell module. Atany given current, module voltage drops from V to V − ΔV

Page 129: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 129/585

Example 8.6 Impacts of Shading on a PV Module. The 36-cell PV

module described in Example 8.4 had a parallel resistance percell of RP = 6.6 Ω. In full sun and at current I = 2.14 A theoutput voltage was found there to be V = 19.41 V. If one cellis shaded and this current somehow stays the same, then:

a. What would be the new module output voltage and power?

b. What would be the voltage drop across the shaded cell?c. How much power would be dissipated in the shaded cell?

Solution

 

Page 130: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 130/585

Page 131: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 131/585

Page 132: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 132/585

 Figure 8.40 In full sun a cell may

contribute around 0.5 V to the

module output; but when a cell is shaded, it can have a large voltage

drop across it.

 Figure 8.41 Mitigating the shade

 problem with a bypass diode. In the

 sun (a), the bypass diode is cut offand all the normal current goes

through the solar cell. In shade (b),

the bypass diode conducts current

around the shaded cell, allowing just

the diode drop of about 0.6 V to

occur.

To see how bypass diodes wired in parallel with modules can help mitigateshading problems, consider Fig. 8.42, which shows I –V curves for a string offive modules (the same modules that were used to derive Fig. 8.39).

Page 133: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 133/585

The graph shows the modules in full sun as well as the I –V curve that resultswhen one module has two cells completely shaded. Imagine the PVs delivering

charging current at about 65 V to a 60-V battery bank. As can be seen, in fullsun about 3.3 A are delivered to the batteries. However, when just two cells inone module are shaded, the current drops by one-third to about 2.2 A. With abypass diode across the shaded module, however, the I –V curve is improvedconsiderably as shown in the figure.

 Figure 8.42 Impact of bypassdiodes. Drawn for five modules in

 series delivering 65 V to a battery

bank. With one module having two

 shaded cells, charging current

drops byalmost one-third when

there are no bypass diodes. With

the module bypass diodes there

is very little drop.

Page 134: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 134/585

Figure 8.43 helps explain how the bypass diodes do their job.

Imagine five modules, wired in series, connected to a battery thatforces the modules to operate at 65 V. In full sun the modulesdeliver 3.3 A at 65 V.

When any of the cells are shaded, they cease to produce voltage and

instead begin to act like resistors (6.6 Ω per cell in this example)that cause voltage to drop as the other modules continue to try topush current through the string.

Without a bypass diode to divert the current, the shaded moduleloses voltage and the other modules try to compensate by increasing

voltage, but the net effect is that current in the whole string drops.If, however, bypass diodes are provided, as shown in Fig. 8.43c,then current will go around the shaded module and the chargingcurrent bounces back to nearly the same level that it was beforeshading occurred.

Page 135: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 135/585

8.7.3 Blocking Diodes

Page 136: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 136/585

 Figure 8.44 Blocking

diodes prevent reverse

current from flowing

down malfunctioningor shaded strings.

Page 137: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 137/585

Page 138: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 138/585

On Monday US Environmental Protection

Agency (EPA) said that greenhouse gases are adanger to public health and welfare

This is a necessary first step to allow the EPAto regulate greenhouse gas emissions◦

Some industries are concerned these regulationsmay be more restrictive than a legislative approach

Some in Congress have called on EPA towithdraw its proposal because of recent emailreleases that question the underlying science

Page 139: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 139/585

  Grid-connected systems

Page 140: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 140/585

  Stand-alone systems which charge batteries

Page 141: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 141/585

  Stand-alone systems with directly-connectedloads

Page 142: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 142/585

PV panels have I-V curves and so do loads Use a combination of the two curves to tell

where the system is actually operating

Operating point – the intersection point at

which the PV and the load I-V curves aresatisfied

Page 143: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 143/585

Straight line with slope 1/R

As R  increases, operating point moves to the right

V IR1

(9.1) I V  R

 

• Can use a potentiometerto plot the PV module’sIV curve

• Resistance value that

results in maximumpower

(9.2)mm

m

V  R

 I 

Figure 9.5

Page 144: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 144/585

Maximumpower point(MPP) shouldoccur whenthe load

resistance R =VR/IR under 1-sun 25˚C, AM1.5 conditions

•A MPP tracker maintains PV system’s highestefficiency as the amount of insolationchanges

Page 145: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 145/585

Page 146: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 146/585

DC motors have an I-V curve similar to aresistor

e  = k ω  is back emf, R a  is armature resistance

(9.3)aV IR k   

Page 147: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 147/585

Energy is stored in batteries for most off-gridapplications

An ideal battery is a voltage source V B

A real battery has internal resistance R i

(9.4) B iV V R I  

Page 148: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 148/585

Charging– I-V line tilts right with a slope of1/R i , applied voltage must be greater than VB 

Discharging battery- I-V line tilts to the leftwith slope 1/R i , terminal voltage is less than VB 

Figure 9.12

Page 149: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 149/585

Page 150: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 150/585

A buck-boost converter used as a the heart of amaximum power tracker

The duty cycle D is the fraction of the time the switch is closed

(a). Examples: (b) 50% duty cycle; (c) D < 0.5; (d) D > 0.5.

While the switch is closed, from time t = 0 to t = DT, the voltage across the inductor

is a constant Vi . The average power put into the magnetic field of the inductor

during one complete cycle is given by

Page 151: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 151/585

Under the assumption that inductor current is constant, the average power into the

inductor is

When the switch opens, the inductor’s magnetic field begins to collapse, returning 

the energy it just acquired. The diode conducts, which means that the voltage

across the inductor VL is the same as the voltage across the load V0. The average

 power delivered by the inductor is therefore

Page 152: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 152/585

With good design, both V0 and IL are essentially constant, soaverage power from the inductor is

Over a complete cycle, average power into the inductor equals

average powerout of the inductor.

(*)

Page 153: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 153/585

Equation (*) is pretty interesting. It tells us we can bump

dc voltages up or down (there is a sign change) just byvarying the duty cycle of the buck-boost converter.

•Longer duty cycles allow more time for the capacitor to

charge up and less time for it to discharge, so the output

voltage increases as D increases.

•For a duty cycle of 1/2, the output voltage is the same as

the input voltage.

•A duty cycle of 2/3 results in a doubling of voltage,while D = 1/3 cuts voltage in half.

Page 154: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 154/585

A PV module has its maximum power point atVm = 17 V and Im = 6A.

What duty cycle should its MPPT have if themodule is delivering power to a 10Ω 

resistance?

Max power delivered by the PVs is 17V*6A =102W

2

31.9 R RV  P V V 

 R

The converter must boost the 17 V PV voltage to thedesired 31 9 V V

Page 155: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 155/585

desired 31.9 V

Solving gives

0 (9.9)

1i

V    D

V D

31.9

1.8817 1

 D

 D

0.65 D 

 Redrawing the PV I – V curves with

an MPPT

Page 156: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 156/585

Current at any

voltage isproportionalto insolation

V OC  drops asinsolationdecreases

Can justadjust the 1-sun I -V  curveby shifting itup or down

the dc motor has been well matched to the 1-sun I – V curve, but does

 poorly in the early morning and late afternoon.

Page 157: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 157/585

Hour-by-hour PV I – V curves with examples of three different load

types: dc motor, 12-V battery, MPPT

the 12-V battery is consistently somewhat below the maximum

 power point.

Page 158: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 158/585

 

Table 9.1 provides a compilation of the hourly performance of each of these

loads. The dc motor loses about 15% of the available daily energy because

it doesn’t operate at the maximum power point while the 12-V battery loses

17%.

Page 159: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 159/585

Can have a combiner box and a singleinverter or small inverters for each panel

Individual inverters make the system modular Inverter sends AC power to utility service

panel Power conditioning unit (PCU) may include

◦ MPPT◦ Ground-fault circuit interrupter (GFCI)◦ Circuitry to disconnect from grid if utility loses

power◦ Battery bank to provide back-up power

Page 160: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 160/585

Page 161: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 161/585

Easily allow expansion

Connections to house distribution panel aresimple

Less need for expensive DC cabling

Page 162: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 162/585

Net metering – customer only pays for the amount

of energy that the PV system is unable to supply

In the event of an outage, the PV system mustquickly and automatically disconnect from the grid

• A battery backupsystem can helpprovide power to thesystem’s owners during

an outage• Good grid-connectinverters haveefficiencies above 90% http://www.pasolar.ncat.org/lesson05.php

  The power conditioning unit absolutely must be designed to quickly and automaticallydrop the PV system from the grid in the event of a utility power outage. When there is anoutage, breakers automatically isolate a section of the utility lines in which the fault has

d ti h t i f d t ―i l d ‖

Page 163: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 163/585

occurred, creating what is referred to as an ―island.‖

A number of very serious problems may occur if, during such an outage, a self-generator, such as a grid-connected PV system, supplies power to that island.

Most faults are transient in nature, such as a tree branch brushing against the lines, andso utilities have automatic procedures that are designed to limit the amount of time theoutage lasts.

When there is a fault, breakers trip to isolate the affected lines, and then they areautomatically reclosed a few tenths of a second later. It is hoped that in the interim thefault clears and customers are without power for just a brief moment.

If that doesn’t work, the procedure is repeated with somewhat longer intervals until

finally, if the fault doesn’t clear, workers are dispatched to the site to take care of theproblem. If a self-generator is still on the line during such an incident, even for less thanone second, it may interfere with the automatic reclosing procedure, leading to a longer-than necessary outage.

And if a worker attempts to fix a line that has supposedly been disconnected from allenergy sources, but it is not, then a serious hazard has been created.

Page 164: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 164/585

Estimate the AC output power under varying

conditions

P dc,STC  - DC power of array from adding module

ratings under standard test conditions (STC) (1-sun,AM 1.5, 25˚C) 

Conversion efficiency – includes losses from inverter,dirty collectors, mismatched modules, and differences

in ambient conditions These losses can derate power output by 20-40%,

even in full sun

, (Conversion Efficiency) (9.10)ac dc STC   P P 

Page 165: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 165/585

Illustrates the impact of slight variations inmodule I -V  curves

Only 330 W is possible instead of 360 W

Page 166: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 166/585

As temperature increases, power decreases PVUSA test conditions (PTC) – 1-sun

insolation in plane of array, 20˚C ambienttemperature, wind-speed of 1 m/s

P ac(PTC)  AC output of an array under PTC test

conditions is a better indicator of actualpower delivered in full sun than the morecommonly used P dc(STC)  

Describing a system based on P dc(STC)  without

correcting for temperature and the inverter ismisleading

Page 167: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 167/585

VOC decreases by

~0.37% per ˚C forcrystalline silicon cells

ISC increases by about

0.05% per ˚C  NOCT – Normal

OperatingTemperature

20S (8.24)

0.8cell amb

 NOCT C T T 

 

Figure 8.36

S= insolation

A PV array has rating of 1 kW under standard test

Page 168: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 168/585

condtions (STC). Nominal operating temperature

(NOCT) from Chapter 8 is 47˚C  DC power output drops by 0.5%/ ˚C above the

STC temperature of 25˚C  Mismatched module loss= 3%

Dirt loss = 4% Inverter efficiency = 90%

Estimate P ac(PTC) , the AC output power under

PVUSA test conditions (PTC)Monitoring program called PVUSA: the PVUSA test conditions

(PTC) are defined as 1-sun irradiance in the plane of the array, 20◦C

ambient temperature, and a wind-speed of 1 m/s.

Page 169: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 169/585

The estimated cell temperature is

With DC losses at 0.5%/ ˚C above 25˚C,

Including inefficiencies, estimated AC rated powerat PTC is

20S (8.24)

0.8cell amb

 NOCT C T T 

  47 20

20 1 = 53.80.8cell 

T C 

,( ) 1 kW 1 0.005(53.8 25) = 0.856 kWdc PTC  P   

,( ) 8.56 kW 0.97 0.96 0.90 = 0.72 kWac PTC  P   

Page 170: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 170/585

1-sun is 1 kW/m2

We can say that 5.6 kWh/(m2-day) is 5.6hours of ―peak sun‖ 

If we know Pac, computed for 1-sun, just

multiply by hours of peak sun to get kWh If we assume the average PV system efficiency

over a day is the same as the efficiency at 1-sun, then

Energy (kWh/day) kW h/day of "peak sun" (9.14)ac P 

Page 171: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 171/585

Energy kWh/yr kW CF 8760 h/yr (9.15)ac P 

h/day of "peak sun"CF (9.16)

24 h/day

Figure 9.28

PV Capacity

Factors for

US cities

Page 172: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 172/585

When the grid isn’t nearby, the extra cost andcomplexity of a stand-alone power systemcan be worth the benefits

System may include batteries and a backup

generator

S d b h f h l d h

Page 173: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 173/585

PV System design begins with an estimate of the loads that

need to be served by the PV system

Tradeoffs between more expensive, efficient appliancesand size of PVs and battery system needed

Should you use more DC loads to avoid inverterinefficiencies or use more AC loads for convenience?

What fraction of the full load should the backup generatorsupply?

Power consumed while devices are off

Inrush current used to start major appliances

Page 174: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 174/585

Table 9.10 –  Power Requirements of some typical loads

 Note that these tables are useful for getting an idea of the average

values, but the best data comes from actual measurements!

Page 175: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 175/585

Consider the power when the device isactively used

Also consider the power consumed whendevice is in standby

Table 9.10 –  Power requirements of some consumer electronics

Page 176: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 176/585

Page 177: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 177/585

+ 2

2 4 4 2Positive Plate: PbO + 4H + SO + 2 PbSO 2H O (9.21)e

2

2 4 4 Negative Plate: PbO + SO PbSO 2e (9.22)

Page 178: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 178/585

• During discharge, voltage drops and specific gravity

drops• Sulfate adheres to the plates during discharge and

comes back off when charging, but some of it becomespermanently attached

Page 179: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 179/585

Battery capacity has tended to be specified in

179

Page 180: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 180/585

Battery capacity has tended to be specified in

amp-hours (Ah) as opposed to an energy value;multiply by average voltage to get watt-hours◦ Value tells how many amps battery can deliver over a

specified period of time.

◦ Amount of Ah a battery can delivery depends on its

discharge rate; slower is better

Figure shows

how capacity

degrades with

temperature

and rate

T D it C t C l Ch P

Page 181: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 181/585

Type Density,

Wh/kG

Cost

$/kWh

Cycles Charge

time,hours

Power

W/kg

Lead-acid,

deep cycle

35 50-100 1000 12 180

 Nickel-metal

hydride

50 350 800 3 625

Lithium Ion 170 500-100 2000 2 2500

The above values are just approximate; battery technology is rapidly changing,and there are many different types within each category. For stationary

applications lead-acid is hard to beat because of its low cost. It has about a 75%

efficiency. For electric cars lithium ion batteries appear to be the current front

runner

Page 182: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 182/585

l f l d

Page 183: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 183/585

Analysis of load◦ Determine daily demands for power and energy

◦ What fraction of the worst month ―design month‖ shouldyou cover with the PV system? How much should youcover with a backup generator?

What PV system voltage should you have?◦ Convert total DC load to amp hours @ system voltage

PV sizing◦ Pick a PV module based on insolation data for the site

for the design month

◦ Determine how many parallel strings of modules andhow many modules in each string

Page 184: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 184/585

Page 185: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 185/585

As the name implies a microgrid can be thought of as a

185

Page 186: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 186/585

p g gsmall electric grid with several generation sources◦ The microgrid can be configured to operate either connected

to the main grid or standalone

The military is a key proponent of microgrids, sincethey would like the ability to operate bases independentof any grid system for long periods of time

Renewable generation by be quite attractive because itdecreases the need to store large amounts of fossil fuel◦ Time magazine reported in Nov 2009 that average US solider

in Afghanistan requires 22 gallons of fuel per day at anaverage costs of $45 per gallon

Page 187: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 187/585

Dr. William J.Makofske

August 2004

S lid t t d i th t t i id t l

Page 188: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 188/585

Solid state device that converts incident solar

energy directly into electrical energy

Efficiencies from a few percent up to 20-30%

No moving parts

No noise Lifetimes of 20-30 years or more

Page 189: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 189/585

Th j ti f di i il t i l ( d

Page 190: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 190/585

The junction of dissimilar materials (n and p

type silicon) creates a voltage

Energy from sunlight knocks out electrons,creating a electron and a hole in the junction

Connecting both sides to an external circuitcauses current to flow

In essence, sunlight on a solar cell creates asmall battery with voltages typically 0.5 v. DC

S l ll b l t i ll t d i

Page 191: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 191/585

Solar cells can be electrically connected in

series (voltages add) or in parallel (currentsadd) to give any desired voltage and current(or power) output since P = I x V

Photovoltaic cells are typically sold inmodules (or panels) of 12 volts with poweroutputs of 50 to 100+ watts. These are thencombined into arrays to give the desired

power or watts.

Page 192: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 192/585

While a major component and cost of a PV

Page 193: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 193/585

While a major component and cost of a PV

system is the array, several other componentsare typically needed. These include:

The inverter – DC to AC electricity

DC and AC safety switches Batteries (optional depending on design)

Monitor – (optional but a good idea)

Ordinary electrical meters work as net meters

Page 194: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 194/585

Page 195: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 195/585

Page 196: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 196/585

Page 197: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 197/585

  Solar CalculatorsREMOTE POWER  Lighting

Buoys Communications Signs Water Pumping

Mountain Cabins

Page 198: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 198/585

Page 199: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 199/585

Page 200: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 200/585

Page 201: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 201/585

Page 202: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 202/585

Page 203: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 203/585

As prices dropped PV began to be used for

Page 204: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 204/585

As prices dropped, PV began to be used for

stand-alone home power. If you didn’t havean existing electrical line close to yourproperty, it was cheaper to have a PV system(including batteries and a backup generator)than to connect to the grid. As technologyadvanced, grid-connected PV with netmetering became possible.

In net metering when the PV system

Page 205: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 205/585

  In net metering, when the PV system

produces excess electricity, it is sent to thegrid system, turning the meter backwards. Ifyou are using more power than is beingproduced, or it is at night, the electricity isreceived from the grid system and the meterturns forwards. Depending on PV size andelectrical consumption, you may producemore or less than you actually use. Individualhouses may become power producers.

Page 206: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 206/585

Batteries can be used to provide long-term or

Page 207: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 207/585

Batteries can be used to provide long term or

short-term electrical supply in case of gridfailure. Many grid-connected houses chooseto have a small electrical battery system toprovide loads with power for half a day incase of outage. Larger number of batteriesare typically used for remote grid-independent systems.

If your load is 10 kw-hr per day, and you want

Page 208: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 208/585

If your load is 10 kw hr per day, and you want

to battery to provide 2.5 days of storage,then it needs to store 25 kw-hr of extractableelectrical energy. Since deep cycle batteriescan be discharged up to 80% of capacity

without harm, you need a battery with astorage of 25/0.8 = 31.25 kw-hr. A typicalbattery at 12 volts and 200 amp-hourcapacity stores 2.4 kw-hr of electrical energy.

The relationship between energy in kw-hr and

Page 209: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 209/585

  The relationship between energy in kw hr and

battery capacity isE(kw-hr) =capacity(amp-hr) x voltage/1000

E = 200 amp-hr x 12 volts/1000= 2.4 kw-hr

So for 31.25 kw-hr of storage we need31.25 kw-hr/2.4 kw-hr/battery = 13

batteries

If we are happy with one half day, we need only

2 or 3 batteries

Page 210: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 210/585

PV can be added to existing roofs. While

Page 211: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 211/585

PV can be added to existing roofs. While

south tilted exposure is best, flat roofs dovery well. Even east or west facing roofs thatdo not have steep slopes can work fairly wellif you are doing net metering since the

summer sun is so much higher and moreintense than the winter sun. The exactperformance of any PV system in anyorientation is easily predictable.

Page 212: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 212/585

Page 213: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 213/585

Page 214: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 214/585

Page 215: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 215/585

Page 216: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 216/585

Page 217: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 217/585

Page 218: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 218/585

Page 219: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 219/585

If it is impossible or you don’t want to put a

Page 220: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 220/585

p y p

PV system on your existing roof, it is possibleto pole mount the arrays somewhere near thehouse as long as the solar exposure is good.Pole mounted solar arrays also have the

potential to rotate to follow the sun over theday. This provides a 30% or more boost to theperformance.

Page 221: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 221/585

Page 222: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 222/585

Page 223: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 223/585

If you are doing new construction or a

Page 224: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 224/585

reroofing job, it is possible to make the roofitself a solar PV collector. This saves the costof the roof itself, and offers a more aestheticdesign. The new roof can be shingled or look

like metal roofing. A few examples follow.

Page 225: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 225/585

Page 226: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 226/585

Page 227: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 227/585

Page 228: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 228/585

Page 229: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 229/585

Page 230: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 230/585

Page 231: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 231/585

  Solar modules are typically sold by the peak watt.

Page 232: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 232/585

That means that when the sun is at its peakintensity (clear day around midday) of 1000 wattsper m2, a solar module rates at say 100 Wp (peakwatts) would put out 100 watts of power. The

climate data at a given site summarizes the solarintensity data in terms of peak sun hours, theeffective number of hours that the sun is at thatpeak intensity on an average day. If the averagepeak sun hours is 4.1, it also means that a kw of PV

panels will provide 4.1 kw-hr a day.

When the sky is clear and it is around midday,

Page 233: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 233/585

the solar intensity is about 1000 watts perm2 or 1 kw/m2

In one hour, 1 square meter of the earth’ssurface facing the sun will intercept about 1

kw-hr of solar energy.

What you collect depends upon surfaceorientation and collector efficiency

  A PV system can be sized to provide part or

Page 234: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 234/585

all of your electrical consumption. If youwanted to produce 3600 kw-hr a year at asite that had an average of 4.1 peak sunhours per day,

PV Size in KWp = 3600 kw-hr

4.1 kw-hr/day x 365 days/yr x 0.9 x0.98

= 2.7 KWp

Note: the 0.9 is the inverter efficiency and the0.98 represents the loss in the wiring.

  1 kW = 1000 watts = 1.34 hp (presumably

Page 235: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 235/585

the maximum sustained output of a horse)1 kW-hr = 3413 Btu is the consumption of a1 kW device operated for an hour (E=Pxt)

Now think about a Sherpa mountain guidecarrying a 90 lb pack up Mount Everest, about29,000 ft or 8,839 meters high, over a week,the typical time for such a trip

  Since we know that the energy in lifting is given by

Page 236: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 236/585

mgh or 40.8 kg x 9.8 m/s2 x 8839m = 3,539,000 joules or about 1 kw-hr, we can say that roughly1 kw-hr = 1 Sherpa-week. Typical U.S.household consumption is 600 kw-hr per month or

20 kw-hr per day, or every day it is like hiring 20Sherpa to carry the 90 lb packs up Mt. Everest. Atthe end of the week, we have 140 Sherpa climbingthe slopes so the equivalent power that weconsume is like having 140 Sherpa climbing Mt

Everest continually. We might want to considerreducing this number before adding PV to our roof.

  The actual area that you need depends on

Page 237: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 237/585

the efficiency of the solar cells that you use.Typical polycrystalline silicon with around12% efficiency will require about 100 ft2 ofarea to provide a peak kilowatt. Less efficient

amorphous silicon may need 200 ft2 toprovide the same output. Modules are sold interms of peak wattage and their areas aregiven so you can easily determine the total

roof area that is needed for a given size array.

  Assume it is a 100 Wp module and its area is

Page 238: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 238/585

0.8 m2. Remember that the peak powerrating is based on an intensity of 1000watts/m2. So the maximum output with 100%efficiency is P = I x A = 1000 w/m2 x 0.8 m2

= 800 wattsThe actual efficiency = Pactual peak/Pmaximum

peak

= 100 watts/800 watts = 0.125 or 12.5%

Of course you don’t have to stop with home

Page 239: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 239/585

based PV systems. They make equally goodsense for businesses and corporations whowant to reduce their cost of electricity byreducing their peak power consumption, or

who want to emphasize their greenness aspart of their image, or who need to operate ina grid failure.

Page 240: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 240/585

Page 241: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 241/585

Page 242: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 242/585

Page 243: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 243/585

Page 244: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 244/585

Page 245: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 245/585

Page 246: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 246/585

Page 247: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 247/585

Page 248: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 248/585

Page 249: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 249/585

Page 250: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 250/585

PV systems as an alternative energy resource

C l E i h b id

Page 251: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 251/585

Complementary Energy-resource in hybridsystems

Necessary:

high reliability

reasonable cost

user-friendly design

The standards

EN61000 3 2 IEEE1547

Page 252: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 252/585

EN61000-3-2, IEEE1547, U.S. National Electrical Code (NEC) 690

IEC61727

power quality, detection of islandingoperation, grounding

structure and the features of the present and

future PV modules.

 

Page 253: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 253/585

Page 254: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 254/585

PV Generator Converter AC-DC Local Loads

Grid

Solar-electric-energy growth consistently

20% 25% th t 20

Page 255: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 255/585

20%–25% per annum over the past 20 years

1) an increasing efficiency of solar cells

2) manufacturing-technology improvements

3) economies of scale

2001, 350 MW of solar equipment was sold

2003 574 MW f PV i t ll d

Page 256: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 256/585

2003, 574 MW of PV was installed. In 2004 increased to 927 MW

Significant financial incentives in Japan,Germany, Italy and France

triggered a huge growth in demand

In 2008, Spain installed 45% of allphotovoltaics, 2500 MW in 2008 to an drop

to 375 MW in 2009

World solar photovoltaic (PV) installations

ere 2 826 giga atts peak (GWp) in 2007

Page 257: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 257/585

were 2.826 gigawatts peak (GWp) in 2007,and 5.95 gigawatts in 2008

The three leading countries (Germany, Japanand the US) represent nearly 89% of the totalworldwide PV installed capacity.

2012 are and 12.3GW- 18.8GW expected

Page 258: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 258/585

Market leader in solar panel efficiency

(measured by energy conversion ratio) is

Page 259: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 259/585

(measured by energy conversion ratio) isSunPower, (San Jose USA) - 23.4

market average of 12-18%.

Efficiency of 42 achieved at the University of

Delaware in conjunction with DuPont(concentration) in 2007.

The highest efficiency achieved without

concentration is by Sharp Corporation at35.8 using a proprietary triple-junctionmanufacturing technology in 2009.

IGBT technology

Inverters must be able to detect an islanding

Page 260: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 260/585

Inverters must be able to detect an islandingsituation and take appropriate measures inorder to protect persons and equipment

PV cells - connected to the grid

PV cells - isolated power supplies

Page 261: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 261/585

Central inverters

Module oriented or module integrated

Page 262: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 262/585

Module-oriented or module-integratedinverters

String inverters

Integration of PV strings of different

technologies and orientations

Page 263: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 263/585

technologies and orientations

Page 264: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 264/585

Page 265: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 265/585

Page 266: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 266/585

Page 267: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 267/585

Decoupling is necessary

p instantaneous

Page 268: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 268/585

p  –instantaneous P  - average

Page 269: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 269/585

Voltage in the range from 23 to 38 V at a power generation of

approximate 160 W, and their open-circuit voltage is below 45

V.

 New technolgies - voltage range around 0.5 -1.0 V at several

hundred amperes per square meter cell

EX i l l h ld

Page 270: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 270/585

EX.: ripple voltage should

 be below 8.5% of the MPP

voltage in order to reach a

utilization ratio of 98%

Page 271: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 271/585

Page 272: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 272/585

 

Page 273: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 273/585

.

(a) Irradiation distribution for

a reference year.

(b) Solar energy distribution

for a reference year.

Total time of

irradiation equals 4686 h per

year.

Total potential energy is equal

to 1150 kWh=(m2 year) 130

W/m2

Page 274: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 274/585

Centralized Inverters

String Inverters

Page 275: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 275/585

String Inverters Multi-string Inverters

AC modules & AC cell technology

Page 276: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 276/585

Reduced version of the centralized

Page 277: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 277/585

Reduced version of the centralizedinverter

single string of PV modules isconnected to the inverter

no losses on string diodes

separate MPPTs

increases the overall efficiency

Page 278: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 278/585

Multi-String Inverters

AC Modules

Page 279: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 279/585

AC Modules AC Cells

… 

Flexible

Page 280: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 280/585

Flexible Every string can be controlled

individually.

One large PV cell

connected to a dc–i

Page 281: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 281/585

connected to a dcac inverter

Very low voltage

New converter

concepts

Single-stage inverter

Page 282: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 282/585

Dual stage inverter

Multi-string inverter

Capacitors

Page 283: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 283/585

Component to avoid (line transformers= high

size, weight, price)h f f

Page 284: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 284/585

size, weight, price) High-frequency transformers

Grounding,

 

Page 285: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 285/585

standard full-bridge three-level VSI

Page 286: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 286/585

Half-bridge diode-clamped three-level VSI

Page 287: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 287/585

1. 100-W single-transistor flyback-type HF-

link inverter100 W t 230 V i 48 V 96% f 0 955

Page 288: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 288/585

100 W, out 230 V, in 48 V, 96%, pf=0,955

Page 289: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 289/585

3. Modified Shimizu Inverter (160W, 230, 28V,

87%)

Page 290: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 290/585

)

4. 160-W buck–boost inverter

in 100V out 160V

Page 291: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 291/585

5. 150-W flyback dc–dc converter with a line-

frequency dc–ac unfolding inverterin 44V o t 120V

Page 292: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 292/585

q y g in 44V, out 120V

6. 100-W flyback dc–dc converter with a PWM

dc–ac inverter30V 210 V

Page 293: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 293/585

30V – 210 V

110-W series-resonant dc–dc converter with

an HF inverter toward the grid 30 230V 87%

Page 294: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 294/585

g 30-230V , 87%

Page 295: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 295/585

Single-stage

Dual-stage

Page 296: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 296/585

a transformerless half-bridge diode-clamped

three-level inverter

Page 297: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 297/585

Page 298: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 298/585

Page 299: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 299/585

Page 300: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 300/585

component ratings

relative cost lifetime

Page 301: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 301/585

lifetime

efficiency

Dual-stage CSI = large electrolytic decoupling

capacitor

Page 302: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 302/585

VSI = small decoupling electrolytic capacitor.

Low efficiency=87%

C=68 mF 160V

Page 303: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 303/585

High efficiency=93%

C=2,2 mF 45V

The dual-grounded multilevel inverters p.82

– good solution but quite large capacitors2x640mF 810V -> half-period loading

Page 304: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 304/585

2x640mF 810V > half period loading

bipolar PWM switching toward the grid p.83 &84 (no grounding possible, large ground

currents) – 2x1200 mF 375 V current-fed fullbridge dc–dc converters with

embedded HF transformers, for each PVstring – p.85 – 3x 310 mF 400V

Large centralized single-stage inverters shouldbe avoided

Preferable location for the capacitor is in the dclink where the voltage is high and a large

Page 305: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 305/585

link where the voltage is high and a largefluctuation can be allowed without compromisingthe utilization factor

HFTs should be applied for voltage amplification

in the AC module and AC cell concepts Line-frequency CSI are suitable for low power,

e.g., for ac module applications.  High-frequency VSI is also suitable for both low-

and high-power systems, like the ac module, thestring, and the multistring inverters

PV inverters with dc/dc converter (with or

without isolation) PV inverters without dc/dc converter (with or

Page 306: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 306/585

PV inverters without dc/dc converter (with orwithout isolation)

Isolation is acquired using a transformer thatcan be placed on either the grid or lowfrequency (LF) side or on the HF side

full-bridge

single-inductor push–pull double-inductor push–pull

Page 307: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 307/585

double-inductor push–pull

number of cascade power processing stages

-single-stage -- dual-stage

Page 308: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 308/585

-- dual-stage

-----multi-stage

There is no any standard PV inverter topology

very efficient PV cells

roofing PV systems PV modules in high building structures

Page 309: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 309/585

PV modules in high building structures

PV systems without transformers - minimize

the cost of the total system cost reduction per inverter watt -make PV-

Page 310: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 310/585

cost reduction per inverter watt make PVgenerated power more attractive

AC modules implement MPPT for PV modules

improving the total system efficiency „ plug and play systems‖ 

MPPT control

THD improvements reduction of current or voltage ripple

Page 311: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 311/585

reduction of current or voltage ripple

standards are becoming more and more strict

Page 312: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 312/585

Page 313: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 313/585

Basic Physics andMaterials Science of Solar Cells

Original Presentation by J. M. Pearce, 2006

• Photovoltaic (PV) systems convert lightenergy directly into electricity.

Page 314: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 314/585

gy y y

• Commonly known as ―solar cells.‖

• The simplest systems power the small

calculators we use every day. Morecomplicated systems will provide a largeportion of the electricity in the near future.

• PV represents one of the most promising

means of maintaining our energy intensivestandard of living while not contributing toglobal warming and pollution.

• 1839 – Photovoltaic effect discovered byBecquerel.1870s Hertz developed solid selenium PV (2%)

Page 315: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 315/585

• 1870s – Hertz developed solid selenium PV (2%).

• 1905 – Photoelectric effect explained by A.Einstein.

• 1930s – Light meters for photography commonlyemployed cells of copper oxide or selenium.

• 1954 – Bell Laboratories developed the firstcrystalline silicon cell (4%).

• 1958 – PV cells on the space satellite U.S.Vanguard (better than expected).

Page 316: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 316/585

Page 317: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 317/585

Page 318: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 318/585

• Silicon

• Group 4 elementalsemiconductor

Page 319: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 319/585

• Silicon crystal forms thediamond lattice

• Resulting in the use offour valence electronsof each silicon atom.

Crystalline

Silicon

Page 320: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 320/585

Amorphous Silicon

• Advantages:

 –  High Efficiency (14-22%)

 –  Established technology

Page 321: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 321/585

(The leader)

 –  Stable

• Disadvantages: –  Expensive production

 –  Low absorption coefficient

 –  Large amount of highly

purified feedstock

Advantages:• High absorption (don’t need

a lot of material)• Established technology• Ease of integration into

b ld

Page 322: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 322/585

gbuildings

• Excellent ecological balancesheet

• Cheaper than the glass,metal, or plastic you depositit on

Disadvantages:

• Only moderate stabilizedefficiency 7-10%

• Instability- It degrades when lighthits it –  Now degraded steady state

Page 323: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 323/585

The physics view

• There are 3 types of

materials in BandTheory, which arediff i d b h i

Ef

Page 324: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 324/585

differentiated by theirelectronic structure: – 

insulators, –  conductors, and

 –  semiconductors.

Eg

Metal Insulator Semiconductor

EfEf

•Conduction

Band – Ec – empty

Page 325: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 325/585

empty

• Valence

Band – Ev – full ofelectrons

1.

Intrinsic

2.

n-type

3.

p-type

Page 326: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 326/585

• Types 2 and 3 are semiconductors thatconduct electricity - How?

 –  by alloying semiconductor with an impurity, alsoknown as doping

 –  carriers placed in conduction band or carriersremoved from valence band.

 Note: Color Protocol

•Pure semiconductor

(intrinsic):  contains the

right number ofelectrons to fill valence

Page 327: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 327/585

band, therefore,conduction band is

empty.• Because electrons in full

valence cannot move,the pure semiconductor

acts like an insulator.

• n-type: current iscarried by negatively

charged electrons -How?

Page 328: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 328/585

 –  group 5 impurity atomsadded to silicon melt

from which is crystal isgrown

 –  4/5 of outer electronsused to fill valence band

 –  1/5 left is then put into

conduction band. Theseimpurity atoms are calleddonors.

 Within conductionband the electrons aremoving, therefore,

crystal becomes aconductor

• p-Type: current carried bymissing electron holes

which act as positivelycharged particles. How?

Page 329: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 329/585

charged particles. How?

 –  group 3 added to siliconmelt

 –  need 4 out of 5 outerelectrons but doping createslack of electrons in valenceband.

 –  missing electrons, a.k.a

holes, are used to carrycurrent.

• Prevailing charges are called the majoritycarriers –  prevailing charge carrier in n-type: electrons

prevailing charge carrier in p-type: holes

Page 330: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 330/585

 –  prevailing charge carrier in p type: holes

• There are four main types of semiconductor junctions

Page 331: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 331/585

 –  p-n –  p-i-n –  Schottcky barrier –  Heterojunction

• Each has a built in potential

V bi V bi

Page 332: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 332/585

Ef Ef

Page 333: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 333/585

• All the junctions contain strong electricfield

• How does the electric field occur? –  When two semiconductors come into contact,

l t i t f f t t f

Page 334: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 334/585

electrons near interface from n-type, transferover to p-type, leaving a positively charged area

 –  Holes from p-type by interface transfer over to

n-type leaving a negatively charged area. –  Because electrons and holes are swapped, a

middle potential barrier with no mobile charges,is formed.

 –  This potential barrier created does not let any

more electrons or holes flow through.• Electric field pulls electrons and holes in

opposite directions.

• Equilibrium means thereis no net current

• Reduced barrier height iscalled forward bias

Page 335: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 335/585

called forward bias (positive voltage applied top-side) –  Result- increases current

through diode

• Increased barrier height iscalled reverse bias. –  Result- decreases current to

a very small amount..

Page 336: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 336/585

Diode I-V Characteristics

• Output current = I = I

l

-I

o

 [ exp(qV/kT)-1]

 –  Il=light generated current –  q = electric charge –  V = voltage –  k = Boltzman’s constant = 1.3807 × 10-23 J/K

Wh i i it (I 0) ll li ht t d

Page 337: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 337/585

• When in open circuit (I=0) all light generatedcurrent passes through diode

• When in short circuit (V=0) all current passes

through external load2 Important points:

1) During open circuit the voltage of opencircuit,

V

oc

 = (kT/q) ln( I

l

/I

o

 +1)

2) No power is generated under short and opencircuit - but Pmax = VmIm=FFVocIsc 

Page 338: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 338/585

  Fourth quadrant (i.e., power quadrant) of theilluminated I-V characteristic defining fill factor (FF) andidentifying Jsc and Voc

• Photovoltaic energy relies on light.• Light → stream of photons → carries energy • Example: On a clear day 4.4x1017 photons

hit 1 m2 of Earth’s surface every second. 

Page 339: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 339/585

• Eph()=hc/ =hfh = plank’s constant = 6.625 x 10-34 J-s

 = wavelengthc = speed of light =3 x 108 m/sf = frequency

• However, only photons with energy inexcess of bandgap can be converted into

electricity by solar cells.

Page 340: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 340/585

The entire spectrum is

not available to single

 junction solar cell

• Photon enters, isabsorbed, and letselectron from VB getsent up to CB

• Therefore a hole is left

Page 341: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 341/585

behind in VB, creatingabsorption process:electron-hole pairs.

• Because of this, onlypart of solar spectrumcan be converted.

• The photon fluxconverted by a solarcell is about 2/3 oftotal flux.

• Generation Current = light induced electrons acrossbandgap as electron current

• Electron current:= Ip=qNA –  N = # of photons in highlighted area of spectrum –  A = surface area of semiconductor that’s exposed to

light

Page 342: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 342/585

g• Because there is current from light, voltage can also

occur.• Electric power can occur by separating the electrons and

holes to the terminals of device.• Electrostatic energy of charges occurs after separation

only if its energy is less than the energy of the electron-hole pair in semiconductor

• Therefore Vmax=Eg/q• Vmax= bandgap of semiconductor is in EV’s, therefore

this equation shows that wide bandgap semiconductorsproduce higher voltage.

• Everything just talked about, where allenergy in excess of bandgap of photons are

absorbed, are called direct-bandgapsemiconductors.

l d b h

Page 343: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 343/585

• More complicated absorption process is theindirect-gap series

 –  quantum of lattice vibrations, of crystallinesilicon, are used in the conversion of a photoninto electron-hole pair to conserve momentumthere hindering the process and decreasing theabsorption of light by semiconductor.

• Electric current generated in semiconductor isextracted by contacts to the front and rear of cell.

• Widely spaced thin strips (fingers) are created so that

light is allowed through. –  these fingers supply current to the larger bus bar.

Page 344: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 344/585

• Antireflectioncoating (ARC) is

used to cover thecell to minimizelight reflection fromtop surface.

• ARC is made with

thin layer ofdielectric material. 

Page 345: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 345/585

Diffusion

Drift

Excitonic

• n-type and p-typeare aligned by theFermi-level

• When a photoncomes in n-type, ittakes the place of a

Page 346: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 346/585

takes the place of ahole, the hole actslike an air bubble and

―floats‖ up to the p-type• When the photon

comes to the p-type,it takes place of anelectron, the electronacts like a steel balland ―rolls‖ down tothe n-type

Page 347: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 347/585

• There is anintrinsic gapwhere the photon

is absorbed inand causes theelectron hole pair

f

Page 348: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 348/585

pto form.

• The electron risesup to the top anddrifts downwards(to n-type)

• The hole driftsupwards (to p-type)

• Dye molecule

 – 

electron hole pairsplits because ithits the dye

Page 349: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 349/585

y

 –  the electron shiftsover to the

electric conductorand the holeshifts to the holeconductor

Page 350: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 350/585

• Opposite of carrier generation,

where electron-hole pair isannihilated

Page 351: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 351/585

• Most common at: – 

impurities – defects of crystal structure

 – surface of semiconductor• Reducing both voltage and current

• Losses of resistance caused bytransmission of electric current

Page 352: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 352/585

produced by the solar cell.

• I-V characteristic of device:• I = I

l

-I

0

 [exp(qV+IRs / mkT) 1]

m= nonideality factor

• Current losses- called collection efficiency,ratio b/w number of carriers generated by

light by number that reaches the junction.• Temperature dependence of voltage

Page 353: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 353/585

p p g –  V decreases as T increases

• Other losses –   light reflection from top surface

 –  shading of cell by top contacts

 –  incomplete absorption of light

Page 354: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 354/585

• Tandem cell- several cells, –   Top cell has

large bandgap

Middl ll id

Indium Tin Oxide

p-a-Si:H

Blue Cell

i a Si:H

Silver Grid

Page 355: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 355/585

 –  Middle cell mideV bandgap

 –  Bottom cellsmall bandgap.

i-a-Si:H

n-a-Si:H

p

Green Cell

i-a-SiGe:H (~15%)

n

p

Red Cell

i-a-SiGe:H (~50%)

n

Textured Zinc Oxide

Silver

Stainless Steel SubstrateSchematic diagram of state-of-

the-art a-Si:H based substrate n-

i-p triple junction cell structure.

Page 356: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 356/585

• This is the first in a series of presentationscreated for the solar energy community to

assist in the dissemination of informationabout solar photovoltaics.

• This work was supported from a grant from

Page 357: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 357/585

• This work was supported from a grant fromthe Pennsylvania State System of HigherEducation.

• The author would like to acknowledgeassistance in creation of this presentation fromHeather Zielonka, Scott Horengic and JenniferRockage.

Page 358: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 358/585

Part I

Original Presentation by J. M. Pearce, 2006

Updated by J.M. Pearce and R. Andews, 2010

• What is a photovoltaic system –  Cell, Module, and Array

 –  BOS• Structure

El t i

Page 359: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 359/585

• Electronics

 –  PV System Design Basics

 –  Hybrid Systems

Page 360: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 360/585

• The BOS typically contains; –  Structures for mounting the

PV arrays or modules

 –  Power conditioningequipment that massagesand converts the do

Page 361: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 361/585

and converts the doelectricity to the proper formand magnitude required by

an alternating current (ac)load.

 –  Sometimes also storagedevices, such as batteries,for storing PV generatedelectricity during cloudy days

and at night.

• Stand-alone systems  –   Systems which use photovoltaics technology

only, and are not connected to a utility grid.•

Hybrid systems S hi h h l i d

Page 362: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 362/585

 –   Systems which use photovoltaics and someother form of energy, such as diesel generation

or wind.•

Grid-tied systems

 –   Systems which are connected to a utility grid.

• Water pumping

Page 363: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 363/585

• PV panel on a water pump in Thailand

Page 364: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 364/585

• PV powers stock waterpumps in remotelocations in Wyoming . Note that batterystorage is not used inthis case, as the solarenergy is stored in theform of pumped water.

•Communications facilities can be poweredby solar technologies: even in remote,

rugged terrain. Also, if a natural or human-caused disaster disables the utility grid,solar technologies can maintain power to

Page 365: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 365/585

solar technologies can maintain power tocritical operations

• This exhibit, dubbed"Solar Independence",is a 4-kW system

used for mobileemergency power.• while the workhorse

b tt i th t

Page 366: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 366/585

batteries that canstore up to 51 kW-hrs

of electricity arehoused in a portabletrailer behind theflag.

• The system is thelargest mobile power

unit ever built

• Smiling childstands infront ofTibetan homethat uses 20

Page 367: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 367/585

that uses 20W PV panelfor electricity

• PV panel onrooftop ofruralresidence

 

Page 368: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 368/585

• Ranching the

Sun project inHawaiigenerates

Page 369: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 369/585

g175 kW of PVpower and 50kW of windpower fromthe fiveBergey 10 kW

wind turbines

• A fleet of smallturbines;

Page 370: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 370/585

• PV panels in the

foreground

• PV / diesel hybrid

power system - 12kW PV array, 20 kWdiesel genset

Page 371: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 371/585

• This system servesas the master sitefor the "top gun"Tactical Air CombatTraining System(TACTS) on the U.S.Navy's FallonRange.

• There are two types of Grid Tied PV systems

 Two-MeterNet Meter

Page 372: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 372/585

Page 373: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 373/585

• At the moment, the boom in PV installations

is led by government subsidies, which willpay above market rates for energy generatedusing renewable energies

Page 374: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 374/585

using renewable energies

• In areas where subsidies are available, it is

more economical to sell all the generatedelectricity to the grid, and buy backinexpensive energy to run the house

• National Centerfor Appropriate

Page 375: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 375/585

pp pTechnology

Headquarters

Theworld'slargestresidenti

Page 376: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 376/585

residential PV

project

• These systems are designed to generate revenue,currently subsidized by government incentivesand will have a one directional meter to sell theirelectricity onto the grid.

Page 377: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 377/585

14.2 MW PV

Industrial Roof top solar array

• Grid-tied systems use the grid as storage,reducing the demands of fossil fuelled

generators when the sun is shining.

Page 378: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 378/585

• Large scale storage can allow solar to act like adispatchable power source

• Pumped water storage is one of the mostproven methods of energy storage to date

Page 379: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 379/585

Page 380: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 380/585

• The appliances and devices (TV's, computers,lights, water pumps etc.) that consume electricalpower are called loads.

• Important : examine your power consumption

and reduce your power needs as much aspossible.

• Make a list of the appliances and/or loads you

Page 381: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 381/585

pp / yare going to run from your solar electric system.

• Find out how much power each item consumeswhile operating. –  Most appliances have a label on the back which lists the

Wattage.

 –  Specification sheets, local appliance dealers, and the

product manufacturers are other sources ofinformation.

• Calculate your AC loads (and DC ifnecessary)

• List all AC loads, wattage and hours of useper week (Hrs/Wk).

Multiply Watts by Hrs/Wk to get Watt

Page 382: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 382/585

•  Multiply Watts by Hrs/Wk to get Watt-hours per week (WH/Wk).

• Add all the watt hours per week todetermine AC Watt Hours Per Week.

• Divide by 1000 to get kW-hrs/week

• Decide how much storage you would like yourbattery bank to provide (you may need 0 if grid tied) –   expressed as "days of autonomy" because it is based on the

number of days you expect your system to provide powerwithout receiving an input charge from the solar panels or thegrid.

•  Also consider usage pattern and critical nature ofyour application.

Page 383: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 383/585

your application.• If you are installing a system for a weekend home,

you might want to consider a larger battery bankbecause your system will have all week to charge andstore energy.

• Alternatively, if you are adding a solar panel array asa supplement to a generator based system, yourbattery bank can be slightly undersized since the

generator can be operated in needed for recharging.

• Once you have determined your storagecapacity, you are ready to consider thefollowing key parameters:

 –  Amp hours, temperature multiplier, batterysize and number

• To get Amp hours you need:

Page 384: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 384/585

g p y1. daily Amp hours

2. number of days of storage capacity( typically 5 days no input )

 –  1 x 2 = A-hrs needed

 –  Note: For grid tied – inverter losses

Temp

o

F

80 F

70 F

60 F

 Temp oC

26.7 C21.2 C

15.6 C

Multiplier

1.001.04

1.11

Page 385: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 385/585

50 F

40 F

30 F

20 F

10.0 C

4.4 C-1.1 C

-6.7 C

1.19

1.301.40

1.59

Select the closest multiplier for the average ambient winter temperature

 your batteries will experience.

• Determine the discharge limit for the batteries( between 0.2 - 0.8 )

 –  Deep-cycle lead acid batteries should never becompletely discharged, an acceptable dischargeaverage is 50% or a discharge limit of 0.5

Di id A h / k b di h li it d

Page 386: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 386/585

• Divide A-hrs/week by discharge limit andmultiply by ―temperature multiplier‖ 

• Then determine A-hrs of battery and # ofbatteries needed - Round off to the nexthighest number. –  This is the number of batteries wired in parallel

needed.

• Divide system voltage ( typically 12, 24 or48, controlled by inverter selected ) by

battery voltage. –  This is the number of batteries wired in series

needed.

Page 387: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 387/585

needed.

• Multiply the number of batteries in parallelby the number in series – 

• This is the total number of batteriesneeded.

Page 388: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 388/585

Page 389: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 389/585

• On any given day the solar radiation variescontinuously from sunup to sundown anddepends on cloud cover, sun position andcontent and turbidity of the atmosphere.

• The maximum irradiance is available at solar

noon which is defined as the midpoint, intime, between sunrise and sunset.

Page 390: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 390/585

• Insolation (now commonly referred as

irradiation) differs from irradiance because ofthe inclusion of time. Insolation is theamount of solar energy received on a givenarea over time measured in kilowatt-hoursper square meter squared (kW-hrs/m2) - this

value is equivalent to "peak sun hours".

• Peak sun hours is defined asthe equivalent number ofhours per day, with solar

irradiance equaling 1,000W/m2, that gives the sameenergy received fromsunrise to sundown.

• Peak sun hours only make

Page 391: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 391/585

• Peak sun hours only makesense because PV panel

power output is rated with aradiation level of1,000W/m2.

• Many tables of solar dataare often presented as anaverage daily value of peak

sun hours (kW-hrs/m2

) foreach month.

• Determine total A-hrs/day from load analysisand increase by 20% for battery losses thendivide by the area's peak sun hours to get

total Amps needed for array• Then divide your Amps by the Peak Amps

produced by your solar moduleYou can determine peak amperage if you divide the

Page 392: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 392/585

 –  You can determine peak amperage if you divide themodule's wattage by the peak power point voltage

• Determine the number of modules in eachseries string needed to supply necessary DCbattery Voltage

• Then multiply the number (for A and for V)together to get the amount of power you

need –  P=IV [W]=[A]x[V]

• Charge controllers are included in most PVsystems to protect the batteries from overchargeand/or excessive discharge.

• The minimum function of the controller is todisconnect the array when the battery is fully

Page 393: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 393/585

y y ycharged and keep the battery fully charged

without damage.• The charging routine is not the same for all

batteries: a charge controller designed for lead-acid batteries should not be used to control NiCdbatteries.

• Size by determining total Amp max for yourarray

• Selecting the correct size and type ofwire will enhance the performance andreliability of your PV system.

• The size of the wire must be largeenough to carry the maximum currentexpected without undue voltage losses.

• All wire has a certain amount of

Page 394: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 394/585

resistance to the flow of current.•

This resistance causes a drop in thevoltage from the source to the load.Voltage drops cause inefficiencies,especially in low voltage systems ( 12V orless ).

• See wire size charts here:

www.solarexpert.com/Photowiring.html

• For AC grid-tied systemsyou do not need a battery orcharge controller if you donot need back up power –

 just the inverter.• The Inverter changes the DC

Page 395: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 395/585

gcurrent stored in the

batteries or directly fromyour PV into usable ACcurrent. –  To size increase the Watts

expected to be used by your

AC loads runningsimultaneously by 20%

• Steven J. Strong andWilliam G. Scheller, The

Solar Electric House:Energy for theEnvironmentally-Responsive, Energy-

Page 396: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 396/585

Responsive, Energy  Independent Home, by

Chelsea Green Pub Co;2nd edition, 1994.

• This book will help withthe initial design and

contacting a certifiedinstaller.

• If you want to doeverything yourself alsoconsider these resources: –  Richard J. Komp, and John

Perlin, PracticalPhotovoltaics: Electricityfrom Solar Cells Aatec Pub

Page 397: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 397/585

from Solar Cells, Aatec Pub.,3.1 edition, 2002. (A

layman’s treatment). –  Roger Messenger and Jerry

Ventre, PhotovoltaicSystems Engineering, CRCPress, 1999.

(Comprehensive specializedengineering of PV systems).

• Photovoltaics: Design &Installation Manual by SEISolar Energy International, 2004

•  A manual on how to design,install and maintain aphotovoltaic (PV) system.

• This manual offers an overview ofh l l d

Page 398: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 398/585

photovoltaic electricity, and adetailed description of PV systemcomponents, including PVmodules, batteries, controllersand inverters. Electrical loads arealso addressed, including lightingsystems, refrigeration, waterpumping, tools and appliances.

Page 399: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 399/585

• This is the second in a series of presentationscreated for the solar energy community to

assist in the dissemination of informationabout solar photovoltaics.

• This work was supported from a grant fromthe Pennsylvania State System of Higher

Page 400: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 400/585

the Pennsylvania State System of HigherEducation.

• The author would like to acknowledgeassistance in creation of this presentation fromHeather Zielonka, Scott Horengic and JenniferRockage.

Page 401: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 401/585

Application Flexibilityof Solar Electricity

Original Presentation by J. M. Pearce, 2006

Distributed Energy Source◦ Roof Retrofits

◦ BIPV◦ Tiles, Shingles

◦  Facades

Page 402: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 402/585

◦ Parking and Sound Barriers

Centralized PV PV Systems for Transportation

◦ Cars, Boats, and Bikes

Located near the consumer in order to eliminatetransmission losses (which can be higher than50% on some antiquated grids).

Panels can be placed on roofs, built into roofs,

Page 403: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 403/585

p , ,building facades, carports, highway sound

barriers, etc. Any surface which is exposed to sunlight is fair

game.

This house on right ismodular constructionand includes 6 kW ofPV modules.

Below retrofits toschools

Page 404: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 404/585

  The design and integration of PV technologyinto the building envelope, usually replacing

conventional building materials:

•  vertical facades,

• replacing view glassSolar modules come in a

variety of shapes,

Page 405: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 405/585

replacing view glass,

• spandrel glass,

• or other facade material;

• into semitransparent skylight systems;

• into roofing systems,

• replacing traditional roofing materials;

• into shading "eyebrows" over windows;

• or other building envelope systems.

 variety of shapes,colors, sizes and canbe integrated into anytype of architecture.

•  Advantages

 –   Aesthetics

 –  Reduce the cost of thesystem (e.g. roof,awning, etc.)

Specifically designedfor PV.

This energy efficienthome in Oxfordgenerates more

Page 406: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 406/585

electricity than it

uses.◦ Surplus electricity is

sold to the local utilitycompany and to power

an electric car

The PV shingle shownhere won Popular ScienceMagazine's grand awardfor What's new inEnvironmental

Technology. PV shingles can replacecommon roofingshingles.

PV shingles look muchlike ordinary roofing

Page 407: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 407/585

like ordinary roofingshingles, but they

generate electricity. They were laid out and

nailed to the roof usingthe same methods as areused to lay conventionalshingles.

Like their non-PVcounterparts, theseshingles overlapproviding for watershedding capability.

Bill Ball, president of the Stellar Sun Shopin Little Rock, Arkansas, is clearly

comfortable with PV shingles on therooftop of his shop.

Page 408: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 408/585

The flexibleshingles, rated at 17watts each, aremanufactured by

United SolarSystems Corp.

Thin film amorphoussilicon solar cells

which can bedeposited on plasticor steel (right) are

l il

Page 409: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 409/585

extremely versatile

The panels on theright can be stuckdirectly to standardstanding seam metal

roofs

Buildings with standing-seammetal roofs can use solarmodule material referred to as"thin films" that can be rolledout inside the standing seams.

Page 410: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 410/585

Roof-integrated PV

 panels were installed on

the south-facing roof of

the BigHorn HomeImprovement Center in

Silverthorne, Colorado.

  These panels have amorphous silicondeposited on glass and are semi-transparent – they can be used both as

tinted glass but also as a project screenbackdrop.

Page 411: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 411/585

  The Boston Edison―Impact 2000‖ home

incorporated◦ a 4-kWp utility-

connectedphotovoltaic array inh i i l

Page 412: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 412/585

the original

construction◦ all electric

appliances,◦ solar electric water

heating, and◦ both passive and

active space heating.

  Large rooftopsare ideal

locations for PV

Page 413: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 413/585

PowerGuard slopedtiles, 150 Wp per tile,

shown on customer'sroof

Lowe’s executivesdetermined that clean,reliable distributed solargeneration offers manybenefits both to its retailoperations and to thesurrounding community.

Lowe’s is extremelycommitted to reducinggreenhouse gasemissions while

Page 414: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 414/585

emissions, whilepromoting and selling

energy efficient homeimprovement products. Lowe’s sought a cost-

effective solution toreduce the operatingcosts associated withproviding reliableelectricity supply at its

West Hills store.

Wal-Mart McKinney

Location: TXOperator: Wal-MartConfiguration: 59 kWpPVOperation: 2005System supplier: RWE

Page 415: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 415/585

System supplier: RWESchott

This pilot installationfor Wal-Mart has5,500sqft of crystallineand thin film PV in five

separate locations.

Hawaii’s Mauna LaniBay Hotel

This sprawling hotelhad acres of roofspace, making it theperfect host for aphotovoltaicsystem.

They installed aPowerGuard (R)

f l

Page 416: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 416/585

( )system of insulating

PV roofing tiles thatcovers 10,000 ft2 and generates75kWs.

The hotel will bespared hundredsand thousands of

dollars in utilitybills.

The building’s mostadvanced feature isthe photovoltaic skin,a system that usesthin-film PV panels toreplace traditionalglass claddingmaterial.

The PV curtain wall

Page 417: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 417/585

The PV curtain wallextends from the35th to the 48th flooron the south and eastwalls of the building,making it a highlyvisible part of themidtown New York

skyline.

Page 418: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 418/585

ScheideggerBuilding with

photovoltaicfacade nearBern inSwitzerland.

Page 419: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 419/585

Courtesy ofAtlantis SolarSysteme AG

Austria Swtizerland

Building Facades

Page 420: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 420/585

73 kW system and generates ~ 55 000 kW-hrs of electricity per year in Sunderland, UK.

This 3500 m2 solar office building at theDoxford International Business Park nearSunderland in the UK incorporates 646 m2 of photovoltaic modules.

Page 421: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 421/585

Solar cells can be made indifferent colors

Glass façades on office

buildings, winter gardens orsunroofs on automobileswill become energysuppliers with thetransparent solar cell

Page 422: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 422/585

transparent solar cell.

The use of the transparent,dark blue solar cells allowsa beautiful play of light andshadow.

The standard product lets atenth of the light passthrough and has a 10 %efficiency rate.

The 20kW cube

Page 423: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 423/585

  The 20kW cube

stands 135 feettall on top of theDiscovery ScienceCenter in SantaAna

Page 424: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 424/585

 

Page 425: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 425/585

Page 426: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 426/585

Prescott Airport

Location: AZOperator: Arizona PublicService

Configuration: 1,450 kWp

SGS Solar

Location: AZOperator: Tucson ElectricPower Co

Configuration: 3,200 kWp

Advantages

◦ Economy of scale

◦ Single location for maintenance◦ You can put a fence around it

Disadvantages

Page 427: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 427/585

◦ All eggs in one basket – natural/terrorist disaster

◦ Transmission losses

◦ Land cost

Hysperia PV Power Station.

Page 428: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 428/585

These 20-kW SolarSystems dishes dwarf

visitors in Alice Springs,Australia. The concentrators use

an array of mirrors tofocus sunlight ontoh h ff l

Page 429: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 429/585

ghigh-efficiency solar

cells. Four supports hold the

cells in front of themirrors

The supports also

supply cooling waterand electricalconnections

In hybrid

energy systems

more than a

single source

of energy

Page 430: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 430/585

supplies the

electricity.

Wind and Solar

compliment

one another

Unique totheproject istheintroduction of anewgeneration ofhybridpower

Page 431: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 431/585

powerprocessingequipment.

This new115 kWPV/hybridenergy

system

• Located among the rolling hills of Northern California, these solarelectric sunflowers elegantly combine art and technology.E h fl d 1 kW f l l i i d i f f

Page 432: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 432/585

• Each sunflower produces 1 kW of solar electricity and consists of four

240 Wp polycrystalline PV modules custom made with yellow back-skins and yellow frames.• The custom PV modules are attached to a two-axis-tracking

mechanism and mounted on custom-painted green poles producing afield of 36 kW solar electric sunflowers.

• The sunflowers wake up each day and follow the sun's path fromsunrise to sunset, increasing solar harvest over a fixed array by 25%.

• This system produces enough energy for approximately eight to ten

homes and was an ideal engineering solution for the steep hillsidesite.

Page 433: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 433/585

 PV will be most applicable totransportationif it can be stored

BatteriesElectrolysis of water to produce hydrogen

Car #195, CalStateUniversity/LongBeach, at the start

line of Sunrayce1995

Page 434: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 434/585

Sunrayce is a biennial solar-powered car

race for colleges and universities inNorth America. Students design, buildand then race their car 1,250 km fromIndianapolis, IN, to Colo. Springs, CO.

From July 15th tothe 25th, 2001,2300 miles ofsolar ―raycing‖

challenged teamsfrom around theworld.

High tech andhigh efficiencysolar cars crossed

Page 435: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 435/585

the Great Plains,climbed the RockyMountains, anddashed over theGreat AmericanDesert to thefinish line inSouthernCalifornia

This solarpowered race carwas built in

Philadelphia,Pennsylvania, bystudents atDrexel Universityduring the 1989-

Page 436: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 436/585

during the 1989

1990 school year. Car #43,

University ofMissouri/Columbia, on the

road in Sunrayce1995

  Electric or hybridelectric vehicles canrecharge theirbatteries at PV powerstations such as thisone at the Universityof S. Florida.

Page 437: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 437/585

Covered parking inCalifornia providesshading and makeselectricity

Solar Panels on Sound

Barriers

This solar power, in

proposed system, could give

EVs essentially unlimited

range on freeways that

supply in-transit power.

 

Page 438: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 438/585

 Highway sound barrier

above planted slope, with

integrated PV panels, in

Austria.

An upcoming project in

Holland will use

PVs, installed on railway

right-of-way, to power an

entire electric rail system. 

Team #2, from GreenMountain High Schoolin Lakewood, CO wonthe women's divisionof the solar bike race

•  These golf carts arepowered by photovoltaicmodules from Shell Solar

Page 439: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 439/585

  300-watt system powerson-boardcommunications andlighting, an application

that has been in use for15 years

Page 440: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 440/585

On board, the solar modulescreate a fascinating play of light,shadow, and transparency.

The largest solar boat in the world

began operating on the AlsterRiver in Hamburg on May 23,2000.

This boat can hold up to 120passengers for excursions and chartertours

Page 441: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 441/585

tours 

The boat can hold up to

120 passengers for

excursions and charter

tours. The "Alster Sun"reaches a speed of 5

kmph just from solarpower.If it has to go faster, therest of the energy comesfrom batteries.

Page 442: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 442/585

Catamaran ―Sol 10‖:direct currentpowering from 550to 1600 watts.

No drivers license

needed, unsinkable,and easy to use.

Page 443: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 443/585

This is the third in a series of presentationscreated for the solar energy community to

assist in the dissemination of informationabout solar photovoltaics. This work was supported from a grant from

the Pennsylvania State System of Higher

Page 444: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 444/585

Education. The author would like to acknowledge

assistance in collecting information for thispresentation from Heather Zielonka.

Page 445: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 445/585

PV Economics Basics• Solar Photovoltaic Cells convert sunlight directly into

electricity

 They are sold on a $/Wp basis or $/power•  Wp is the power in Watts for Peak sun hours -- the

equivalent number of hours per day, with solar irradianceequaling 1,000 W/m2, that gives the same energy receivedf i t d

Page 446: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 446/585

from sunrise to sundown.

•  To convert power to energy simply multiply by the amountof time that the cell is illuminated –   W * hr = 1 W-hr

• Electricity (energy) is normally billed $/kW-hr

PV Economics Terms• kW = kilowatt = 1 000 Watts

• MW = Megawatt = 1 000 000 Watts

• kW-h/kW/ * –  * year or month or day

 –   Amount of power predicted to be produced from a 1 kWsolar panel in the desired location

Page 447: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 447/585

p

• Payback = minimum time it takes to recoverinvestment costs.

Economics of a Solar Electric Home

•  A typical American uses ~11,000 kW-hrs/year

•  A well-designed U.S. home needs 4kW-5kW of PVto provide for its energy needs averaged throughoutthe year

Page 448: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 448/585

 – 

Depends on location (solar flux) –  Energy use of home

 –  Because calculating on /Wp basis you do not need to worry about efficiency

How much for a

Solar Electric House?•  The 2nd presentation discussed the components of a

grid-tied solar home system

•  The price tag for the complete installed systemincluding all labor as of 2010 is between $5/Wp to$10/Wp

Page 449: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 449/585

For a 4kW system: –  4000Wp x $5/Wp = $20,000

 –  4000Wp x $10/Wp = $40,000

Financing PV• For new homes a PV system can be folded

into the mortgage  –  long term low interest

loan• For retrofits of existing homes PV can be

economic with:

Page 450: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 450/585

 – 

Financial assistance through grants, subsidies, orother incentives

 –  High costs of electricity in your area

 –  Green power purchase agreements

 –  Off-grid Applications

PV Incentives• One stop shop for financial incentives is www.dsireusa.org/

•  The Database of State Incentives for Renewable Energy (DSIRE) is acomprehensive source of information on state, local, utility, and federal

incentives that promote renewable energy.• Lists includes:

 –  Corporate Tax Incentives

 –  Direct Equipment Sales

G t P

Page 451: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 451/585

 –  Grant Programs

 –  Leasing/Lease Purchase Programs

 –  Loan Programs

 –  Personal Income Tax Incentives

 –  Production Incentives

 –  Property Tax Incentives

 –  Rebate Programs

 –  Sales Tax Incentives

Feed-In Tariff• Solar FIT rates for Ontario:

• Rooftop

 –  Less than 10 kW - 80.2 ¢/kWh

 –  10 - 100 kW - 71.2 ¢/kWh

 –  100-500 kW - 63.5 ¢/kWh

Page 452: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 452/585

 –  Greater than 500 kW - 53.9 ¢/kWh

• Ground Systems

 –  Less than 10 MW - 44.2 ¢/kWh

•  You are guaranteed these rates for 20 years.

 Where PV makes

Economic Sense Now

• Remote sites that are too far from power

• Or where the power is too unreliable for a givenapplication (e.g. internet server)

 –  Costs for power lines range from $8000 to $75,000

Page 453: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 453/585

per mile. –  As a general rule, if you are more than ½ mile from a

line, solar is probably the best alternative.

Page 454: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 454/585

Portable Radio Station

Page 455: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 455/585

 The Developing World

Page 456: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 456/585

Stand Alone Systems

Page 457: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 457/585

Coast Guard Stations

and Aircraft

Page 458: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 458/585

Bus Stops and

Emergency Phones

Page 459: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 459/585

Solar in

Page 460: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 460/585

Space

Parking Lights

Page 461: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 461/585

Running Trails and

Lighthouses

Page 462: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 462/585

Solar powered

monasteries

Page 463: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 463/585

!

 When will PV make economicsense for me?

Page 464: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 464/585

Economy of Scale$3.12/Wp to $3.56/Wp

Page 465: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 465/585

0 subsidiesGrid-tied

Market

Module Costs

Page 466: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 466/585

Component Costs

Page 467: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 467/585

Industry-Developed PV Roadmap

Page 468: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 468/585

World PV Module Production (MW) Increases

00

00

Rest of worldEuropeJapanU.S.

287.7

390.5

512.200

World PV installations in 2004 rose to 930MW --

growth of 62 % Consolidated world production of

PV now 1.15 GW+ 

Page 469: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 469/585

198819891990199119921993199419951996199719981999200020010

00

00

33.640.246.555.4 57.960.169.477.688.6125.8

154.9201.3

2002Source: PV News, March 2003

World PV Module Production (MW) Increases

Page 470: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 470/585

World PV Module Installation (MW) Increases

Page 471: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 471/585

So Why Can’t We Do It? 

Page 472: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 472/585

PV System vs. Electricity Costs

20

24

28

32

36

40

44

r  a   t  e   d   E   l  e  c   t  r   i  c   i   t  y   (  c  e  n   t  s   /   k   W   h   )

Japanese Retail Rate

German Retail RateCapactiy Factor = 0.25

(South West U.S)

Capacity Factor = 0.2

(U.S. Average)

Page 473: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 473/585

0

4

8

12

16

$0.00$1.00$2.00$3.00$4.00$5.00$6.00$7.00$8.00$9.00

Installed PV System Cost ($/Wp)

   C  o  s   t  o   f   G  e  n  e

  rPennsylvania Retail Rate

Additional Assumptions:

System Lifetime = 20 years

Real Interest Rate = 6%

O&M = 0.1 cent per kWh

California Retail Rate

New Technology

Could Play a Role• Heterojunction with Intrinsic

 Thin-layer

• Sanyo

• 18.5%

SANYO, plans to continue to

Page 474: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 474/585

grow its unique solar business,aiming to reach a productionscale of approximately 2GW forHIT solar cells by 2020.

New Technology

Could Play a Role

Page 475: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 475/585

Built-in Incentives

$/W Value

Material avoided

by BIPV Installation

Material

Credit

$1/sq-ft

$5/sq-ft

$10/sq-ft

Asphalt Shingle roof,

monolithic glazing

Laminated glass w/coatings

metal roofing/cladding

Roofing slates, clay tile,

$0.10/W

$0.50/W

$1/W

Building Material Replacement Value

Page 476: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 476/585

$10/sq ft

$20/sq-ft

Roofing slates, clay tile,

high performance coatings

Stainless steel,

photochromic glass

$1/W

$2/W

Utilizing Financial Incentives

Page 477: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 477/585

Subsidies for Fossil Fuel• Fossil fuels and nuclear energy receive 90% of the

government money, (with PV receiving <3%).

• Hidden costs that we all subsidize for the energy industry which include:

 –  Air pollution leads to the death of 120,000 Americansevery year and costs $40 billion in health care annually. /

Page 478: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 478/585

 –  Hidden Subsidies  –  pollution, global climate change, war•Military (U.S. military spends billions/yr just defending the oilsupplies in the Persian Gulf).

 The Question of Energy

Unemployment

• If we switch to solar what about all the fossil fuel

jobs?• It is estimated that solar on average creates 26 total

jobs per MW in the US

 –  Coal only produces 8.7 total jobs per MW in the US.

Page 479: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 479/585

y p j p

• Ontario predicts 31.6 jobs/MW for solar PV

! PV: Net Job Producer 

 Jobs created with every

million dollars spenton:

 –  oil and gas

exploration: 1.5

 –  on coal mining: 4.4

Page 480: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 480/585

g

 –  on producing solar

 water heaters: 14

 –  on photovoltaicpanels: 17 

 Jobs

Coal vs. Solar

 –  Coal only employs 80,000

 –   As of 2009 there are 46,000jobs. From 2009 to 2010,approximately 17, 000 newjobs were created as a result

Page 481: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 481/585

of the increased demandthrough the installation ofsolar systems.

People Want Solar•  The Program on International Policy Attitudes

found that the American public wants the federal

budget for renewable energy research like solar PVto increase by 1090 %.

Page 482: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 482/585

Solar Photovoltaicsis the Future

Page 483: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 483/585

 Acknowledgements

•  This is the fourth in a series of presentations createdfor the solar energy community to assist in thedissemination of information about solarphotovoltaic cells.

•  This work was supported from a grant from thePennsylvania State System of Higher Education.

Page 484: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 484/585

 The author would like to acknowledge assistance incollecting information for this presentation fromHeather Zielonka and Michael Pathak.

 The Environmental Impact

of Solar Photovoltaic Cells The Energy Challenge and How to Solve it with

Solar Cells

Page 485: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 485/585

Original Presentation by J. M. Pearce,

2006

Updated by A. Shahed and J.M.

Pearce, 2010

Email: [email protected]

 The Energy Challenge

•  World population is expanding rapidly and will likelyreach over ~9 billion before stabilizing

• Energy use is directly proportional to standard ofliving

• Energy demand is skyrocketing

Page 486: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 486/585

Standard methods of producing energy have alimited supply and have unacceptable impacts on theenvironment

 The Population Explosion

• UN Projections to 2050 place

 population level at ~9 billion

Page 487: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 487/585

• Exponential population

rise with advancements in

energy production and

technology

Human Development Index

Page 488: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 488/585

HDI: longevity (life expectancy), educational attainment, andstandard of living (gross domestic product per capita)

 World Energy Consumption

By Fuel Type1980-2030

Page 489: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 489/585

Future Energy Needs

Page 490: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 490/585

How to Produce Electricity?

• Conversion of mechanical energy into

electricity (hydro, wind)

• Conversion of chemical energy into electricity

( l l )

Page 491: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 491/585

(coal, natural gas, etc.)

• Conversion of nuclear energy into electricity

• Conversion of photon energy into electricity

Energy Sources –  Global Primary

Energy Supplies

Page 492: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 492/585

Peak Oil (U.S. Production Peak –  1970)

Page 493: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 493/585

• Measured in 1000 barrels per day

•  World energy reserves and peak under considerable debate… 

U.S. and World Natural Gas Supplies

Page 494: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 494/585

 World and U.S. Coal Reserves

Page 495: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 495/585

Even if we discover more fossilfuels…. 

W b h l d h

Page 496: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 496/585

 We can not burn what we already have.

Recent Global Atmospheric

Carbon Dioxide Concentration

From 1860 to 1990the industrial nations

released 185 billiontons of carbon into theatmosphere from

 burning fossil fuels.

Toda 6 + billion tons

Page 497: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 497/585

Today 6 + billion tonsof CO2 are releasedinto the air every year!

380ppm

v

Historical CO2 Concentration

Page 498: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 498/585

Global Warming

Page 499: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 499/585

 This is the Consensus View

The Intergovernmental Panel on Climate Change

 In 1995, over 2,500 scientists representing more than 80countries analyzed over 20,000 articles from the relevantliterature

It is now quite clear that certain gases such as carbondi id l i l l i d i i h h' li

Page 500: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 500/585

It is now quite clear that certain gases, such as carbondioxide, play a crucial role in determining the earth's climate by preventing heat from escaping the atmosphere.

Temp. gains up to 14oF!!!

• In 50 years Earth will be ~3-5 degrees hotter

• Up to 14 ft rise in global sea levels. (3ft floods Florida & NYC)

• Weather patterns disrupted: droughts in some places andt ti l i i th di t bi i lt l d ti

Potential Consequences :

Manageable to Catastrophic

Page 501: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 501/585

torrential rain in others –  disturbing agricultural production.

• EPA estimates that by 2050 the southern boundary of forestecosystems could move northward by 600km.

• Massive forest death and species extinction.

Global Temperatures for Various Growth

Scenarios

Page 502: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 502/585

Solar Photovoltaic Energy as aSolution to the Energy Challenge

Page 503: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 503/585

Environmental Benefits

• During use PV produces no :atmospheric emissions

radioactive waste

During use PV produces no greenhouse gases so it will help offset CO2 emissions and global climatedestabilization

 –  PV does have an embodied energy andembodied CO2 emissions

Page 504: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 504/585

• PV curtails air pollution, which produces acid rain,soil damage, and human respiratory ailments.

Environmental Benefit of a 4 kWp

PV system

 This solar energy array would prevent:

• 2.4 tons of coal from being burned

• 6.2 tons of CO2 = decreasing the greenhouse effect

• over 3,600 gallons of water from being used

• ~34 pounds each of NOx and SO2 from polluting the

atmosphere

Page 505: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 505/585

atmosphere• 1.8 pounds of particulates from causing a health hazard

(and no nuclear waste)

EACH YEAR - FOR 30+ YEARS!

Busting PV Related Myths

Page 506: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 506/585

Myth 1:

PV use more energy to make than

they produce over their lifetime

For cells in production now the

energy payback is between 6

Page 507: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 507/585

energy payback is between 6months and 5 years!

Net Energy for 1kW-hr invested in PV Roof in Detroit, MI

N

etEnergy(kW-hrs)

3

4

5

6

7

8

9

10

11

12

13

14

15 c-Si Low

c-Si High

p-Si Low

p-Si Higha-Si Low

a-Si High

14+breeds

Page 508: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 508/585

Time (Years)

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

-1

0

1

2

3

Built in

PV

Integrated into the roof

Page 509: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 509/585

Integrated into the roof.

Integrated into an awning over a backporch California, generates electricity

 while shading the family's outdoor

activities

 Additional BIPV

Page 510: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 510/585

Solar Shingles

• Various styles of PV

shingles are available

Page 511: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 511/585

 • Solar Shingles are rated at 17W• Lightweight and Flexible

• 20 year warranty on power output

 Aesthetic Applications

• A Canadian team fashioned a

window with solar electric

cells and a motif of autumn

leaves

• Semi-Transparent and

Transparent PV cells

Page 512: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 512/585

Transparent PV cells

• Building Integration

Myth 2: There is Not Enough Land

• Each day the sun casts moreenergy on the earth than all

 people would consume in 27years

• The entire world’s energy needs

Page 513: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 513/585

• The entire world s energy needscould be provided by ½ the areaof the Gobi desert covered withPV.

 What about in the USA?

• 100 miles by 100 miles in Nevada would provide

the equivalent of the entire US electrical demand

• Distributed (to sites with less sun) it would take

l th 25% f th d b US d

Page 514: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 514/585

less than 25% of the area covered by US roads.

Solar Cell Land Area Requirements for

the World’s Energy with Solar PV  

Page 515: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 515/585

6 Boxes at 3.3TW Each

Solar Cells• PV cells can provide a

substantial portion of

energy needs.

• For the US, only 3% of

the land area would be

required using 1999

efficiency measures

Page 516: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 516/585

• PV technology is improving

continuously

• Greater efficiencies

• Lower costs

Myth 3: We do not have Enough Raw Materials

• Si - 2nd most abundant element in

Earth’s crust 

• The amorphous silicon cellsmanufactured from one ton of sandcould produce as much electricity as

Page 517: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 517/585

could produce as much electricity as burning 500,000 tons of coal.

• Philadelphia home

Solar Photovoltaicsis the Future

• Photovoltaic technology provides an effective means ofsupplying clean energy

• The technology is ready to use and proven

• There is extensive research and development providing

opportunities for higher efficiencies and new market players

Page 518: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 518/585

opportunities for higher efficiencies and new market players

• Abundant silicon resource

• Will play a major role in tackling our increasing energy

needs and curbing our GGH emissions

 Acknowledgements

•  This is the fifth in a series of presentations createdfor the solar energy community to assist in thedissemination of information about solarphotovoltaics.

•  This work was supported from a grant from thePennsylvania State System of Higher Education.

The author would like to acknowledge assistance incollecting information for this presentation from

Page 519: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 519/585

 The author would like to acknowledge assistance incollecting information for this presentation fromHeather Zielonka.

 The full series can be found here:

http://www.appropedia.org/Solar_Photovoltaic_Open _Lectures

Prof. Le Chi Hiep

Director Program on Rene able Energ &

Page 520: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 520/585

Director, Program on Renewable Energy &Energy Conservation (VNU-HCM)

Berlin, October 9, 2009

519

1. GENERAL INFORMATION

2. SOLAR ENERGY and ITS APPLICATIONSIN VIETNAM

3 SOLAR PHOTOVOLTAICS IN VIETNAM

Page 521: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 521/585

3. SOLAR PHOTOVOLTAICS IN VIETNAM

4. DISCUSSION & CONCLUSION

520

Page 522: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 522/585

521

  VIETNAM

Population – 85.8

Page 523: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 523/585

pmillions  (2009)

Area – 332,000km 2

Capital –  Hanoi

522

Location Latitude Longitude

Ha Giang 22o54’N 

105oE

Hanoi 21o03’N  105o54’E 

Hue 16o29’N  107o36’E 

Da nang 16o03’N  108o12’E 

Qui Nhon 13o47’N 109o15’E

Page 524: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 524/585

Qui Nhon 13o47 N  109o15 E 

HoChiMinh City 10o45’N  106o41’E 

Phu Quoc 10o12’N  103o58’E 

Ca Mau 9o11’N  105o09’E 

523

Installed electric generating capacity (9GW ,2004).

In 2004, Vietnam generated 40.1 billion

kilowatthours (Bkwh) of total electricity, ofwhich 52 percent was supplied byconventional thermal sources and 48percent came from hydroelectric sources.

Electricity demand has increased steadily in

Page 525: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 525/585

524

Electricity demand has increased steadily inVietnam during the last decade, but thecountry’s  per capita energy consumptionremains one of the lowest in Asia.

Page 526: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 526/585

525

Page 527: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 527/585

526

Page 528: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 528/585

527

Page 529: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 529/585

528

 

North: 1800 – 2100 hours of sunshine a year,

on average. South: 2000 – 2600 hours of sunshine a year,

on average.

Page 530: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 530/585

529

January 2.2 

February 1.6

March 1.4

 April 2.7

May 5.3

June 5.2July 5 9

Page 531: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 531/585

July 5.9

 August 5.3

September 5.4

October 5.3

November 4.2

December 3.5530

January 4.4 

February 5.1

March 3.4

 April 6.9

May 8.3

June 7.9July 8 3

Page 532: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 532/585

July 8.3

 August 6.7

September 5.8

October 4.7

November 4.0

December 3.6531

January 7.9 

February 8.8

March 8.8

 April 7.7

May 6.3

June 5.7July 5 8

Page 533: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 533/585

July 5.8

 August 5.6

September 5.4

October 5.9

November 6.7

December 7.2532

January 2.24 

February 2.40

March 2.53

 April 3.46

May 5.23

June 5.31July 5 59

Annual Mean Solar

Radiation:

3.93kWh/m2 /day

Page 534: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 534/585

July 5.59

 August 5.10

September 4.79

October 4.18

November 3.45

December 2.97533

January 3.5 

February 4.3

March 5.2

 April 5.8

May 6.4

June 5.9July 6.5

Annual Mean Solar

Radiation:

4.85kWh/m2 /day

Page 535: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 535/585

July 6.5

 August 5.7

September 5.2

October 4.2

November 3.1

December 2.5534

January 4.66 

February 5.29

March 5.69

 April 5.91

May 5.90

June 5.66July 5.66

Annual Mean Solar

Radiation:

5.15kWh/m2 /day

Page 536: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 536/585

July 5.66

 August 5.51

September 4.92

October 4.42

November 4.04

December 4.15535

January 5.1 

February 6.3

March 6.6

 April 5.7

May 5.0

June 4.9July 5.1

Annual Mean Solar

Radiation:

5.2kWh/m2 /day

Page 537: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 537/585

July 5.1

 August 5.0

September 4.8

October 4.5

November 4.3

December 4.6536

400

500

600

700

800

900

1000

"Average Solar Radia tion" in "10 Minute Summ ary" of "Current" data base a t "28-004-2005"

      W

      /    m

      2

Page 538: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 538/585

537

0

100

200

300

9A M28 Thu A pr 2005

12P M 3P M

40 0

50 0

60 0

70 0

80 0

90 0

"A verage S ola r R adia t ion" in "10 M inute Summ ary" of "C urrent" da tabas e a t " 28-06-2005"

      W

      /    m

      2

Page 539: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 539/585

538

0

10 0

20 0

30 0

9A M28 Tue Jun 2005

12P M 3P M

09:00 323 10:40 255 12:20 886

09:10 494 10:50 249 12:30 725

09:20 489 11:00 650 12:40 791

09:30 638 11:10 1064 12:50 934

09:40 658 11:20 464 13:00 797

09:50 650 11:30 871 13:10 785

Page 540: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 540/585

10:00 508 11:40 1044 13:20 773

10:10 659 11:50 1031 13:30 838

10:20 503 12:00 497 13:40 453

10:30 629 12:10 957 13:50 474 539

14:00 685 15:40 387 17:20 139

14:10 611 15:50 344 17:30 98

14:20 344 16:00 385 17:40 66

14:30 392 16:10 381 17:50 17

14:40 557 16:20 306 18:00 7

14:50 627 16:30 135 18:10 7

Page 541: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 541/585

15:00 649 16:40 139 18:20 0

15:10 643 16:50 140 18:30 0

15:20 583 17:00 182 18:40 0

15:30 469 17:10 168 18:50 0 540

Two main applications:

- Solar hot water- Solar photovoltaics

Page 542: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 542/585

541

Solar hot water has been developed since1990. At the early period, it was very difficultto get the attention of the community.

But, since around 1998, the number ofinstalled solar hot water systems hasgradually increased, especially in Ho Chi Minh

city.

Page 543: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 543/585

542

Currently, solar hot water has become one ofproducts at high competition. That leads tothe increase of the number of companies

doing business in this field.

But, there is so far no full industry   referringto solar hot water. The main components of

the system (solar collector,…) are imported,mainly from China

Page 544: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 544/585

mainly from China.

543

Page 545: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 545/585

544

Researches referring to solar photovoltaicshave been done from 1975.

Page 546: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 546/585

545

1. Monocrystalline silicon

2. Polycrystalline silicon

3. Amorphous silicon

Page 547: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 547/585

546

Determination of the light- induced degradationrate of the solar cell sensitized N719 onnanocrystalline TiO2 particles

Thermal degradation kinetics of solar cell dyeN719 bound to nanocrystalline TiO2 particles

Fabrication of solar cells based on N719, D520- 

dyed nano-crystalline titanium dioxide andinvestigation of their performances

Page 548: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 548/585

g p

Improvement of the Dye-Sensitized Solar CellOpen-circuit Voltage by Electrolyte Additives and

Cell Treatment with 4-tert-butylpyridine

547

The Relationship between ElectrochemicalImpedance Spectra and Photovoltaic PerformanceCharacteristics during the Light and ThermalAgeing of Dye-Sensitized Solar Cells

Effects of Electrolyte Additives on the Open-circuitVoltage of Dye-Sensitized Solar Cells

Decomposition and degradation of dyes in solarcells under prolonged thermal and light ageing

Dye-sensitized solar cell based on nano-crystallinetitani m dio ide

Page 549: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 549/585

titanium dioxide  

548

Fabrication of solar cells based on titanium dioxideand organometallic dyes

Grid connected systems

Page 550: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 550/585

549

But, due to many difficulties, the research on

solar photovoltaics is nearly activities ofscientists in laboratory only.

It has not exercised its influence on thesociety.

Page 551: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 551/585

550

In 1990, the first 300Wp -unit was installedat Can Gio district, Ho Chi Minh city.

From 1994, solar photovoltaics has beenexpanded in the whole country.

Currently, total installed photovoltaics isd 2MW

Page 552: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 552/585

around 2MWp .

551

Installed locations:

- Rural areas (PV units were installed at

more than 3000 houses, there have beenaround 8500 families who can reach PVindirectly by using batteries charged fromstations).

- Cultural centers.M di l t

Page 553: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 553/585

- Medical centers.

- Telecommunication units.

- Traveling boats.552

  - Post offices

- Ambulances.

- Public lighting systems.- Traffic lighting systems.

- Battery charging stations.

- Schools.

- Islands.

Page 554: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 554/585

553

2000Wp

Page 555: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 555/585

554

Reference:

http://www.soltechvn.com/vn/

810Wp

Page 556: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 556/585

555

Reference:

http://www.soltechvn.com/vn/

Page 557: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 557/585

556

Reference: http://www.selco-

vietnam.com.vn/index.php?lang=vn

Main features of photovoltaic developmentin Vietnam:

- Most budgets funded by internationalorganizations and several funded bynational agencies (there is so far nearly  nopersonal budget  invested to set up the

system).- It leads to unstable and unsustainable

Page 558: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 558/585

development.

- All solar panels are so far imported.

557

Currently, there are only several companiesdoing business on photovoltaics in Vietnam.

SELCO-VIETNAM could be considered as the

biggest company in this field (Installedphotovoltaics – 262kWp )

Page 559: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 559/585

558

  Several related websites for your reference:

1. http://www.selco-vietnam.com.vn/index.php?lang=en 

2. http://www.soltechvn.com/vn/ 

Page 560: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 560/585

559

  Recently, a factory producing solar panelshas been installed in Long An – near Ho Chi

Minh City.

By planning, its expected capacity is3MWp/year  (first step) and 5MWp/year  

(next step). 

Page 561: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 561/585

560

Page 562: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 562/585

561

Page 563: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 563/585

562

There is high potential to exploit solar energy

in Vietnam.

There is also high demand on solartechnologies such as solar photovoltaics andsolar hot water.

(Survey : 50,000 families in southern and

central parts of the country need PV systems)

Page 564: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 564/585

563

Current situation on solar photovoltaics :

1. Solar hot water has been developed well,especially in the southern parts of thecountry. Currently, it is easy to see solar hot

water systems on roofs of many houses inHo Chi Minh city.

2. In the meantime, solar photovoltaics has

been almost done by projects  and has beeninstalled dispersedly . There have been onlyf l h i h

Page 565: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 565/585

a few people who want to invest thesystems by their own budget.

564

Referring to energy policy, currently there are

good enough macroscopic   policies androadmap to promote renewable energyactivities in Vietnam.

In June 2009, the draft of the law on energy

conservation

  was submitted to theconsideration of the national assembly.Hopefully, the similar draft of the law on

renewable energy could be submitted nextyear .

Page 566: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 566/585

565

According to the current energy policy,renewable energy including solar energy isexpected to be one of main energy resources

of the country.

Page 567: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 567/585

566

But, unfortunately, the current applications ofrenewable energy, especially of installed solarphotovoltaics, are still far from our expectedtargets.

Although there have been activities referring tophotovoltaics in Vietnam leading to around2MWp   installed, but Vietnam is still nearly a

blank area in terms of photovoltaics.

Page 568: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 568/585

567

 

Page 569: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 569/585

568

  YES, we need solar photovoltaics.

But, like everywhere, the first main reason isalways the price .

Page 570: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 570/585

569

  To set up a photovoltaic system, we oftenneed:- Solar panel (Kyocera, SolarWorld,…) 

- Control system- Battery (Phoenix,…) - Converter- Others

Current mean price in Vietnam (including

Page 571: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 571/585

Current mean price in Vietnam (includingsolar panel and main components):8USD/Wp - 10USD/Wp

570

 We can see:

- Rural area : very high demand on solar

photovoltaics, but because of high pricepoor people can not dream of getting it.

- Urban area : good electricity supply fromthe national grid. But, if the price is good

enough, solar photovoltaics can also attractthe attention of the people living in theurban area to prevent unexpected power

Page 572: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 572/585

urban area to prevent unexpected powershortage (It is quite often in Vietnam,especially in the dry season).

571

- Currently, there is general macroscopic energy

policy. But, there are so far no concrete policies

such as tax exemption and financial supports,… 

- Solar panels and corresponding parts aremainly imported. There is nearly no industry

f i t l h t lt i i Vi t

Page 573: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 573/585

572

referring to solar photovoltaics in Vietnam,

except one factory named RED SUN in Long An

 – near Ho Chi Minh City.

Price reduction:1. In country fabrication by local andforeign investment.2 Detailed policies focusing on tax

Page 574: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 574/585

2. Detailed policies focusing on taxexemption, or tax reduction, or financialsupports …. 

573

Page 575: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 575/585

  The new projects should be invested bypeople who are intending to do business inthis field.

Under this point of view, the new projectsshould not be decentralized and should beconnected to the grid…..

In order to set up the projects, it must berepeated that we need good financialli i h f ll hi h ld b

Page 576: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 576/585

policies, hopefully, which would bepublished in the first quarter of the next

year.575

  2. Following the success of the first step, thesolar photovoltaics together with its low pricecan get the attention of the community.

After this step, hopefully personal budgetscan be expended to buy solar panels.

Page 577: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 577/585

576

  ―SOLAR ROOF should be considered as one ofmain strategic approaches parallel  with  thenew projects  (step 1) to promote photovoltaic

application in Vietnam, especially at NEWURBAN AREAS‖.

There is high potential to develop the notion

SOLAR CITY at NEW URBAN AREAS.

Page 578: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 578/585

577

Page 579: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 579/585

578

Nearly blank market and blank area in termsof solar photovoltaics  are awaiting you.

Page 580: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 580/585

579

―Vietnam Needs Investors To Promote Use

Of Renewable Energy Technologies‖. 

―The Government of Vietnam has been

exploring more and more the possibilitiesfor investment in the country as they

Page 581: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 581/585

o est e t t e cou t y as t eyrecognize the toll that electricity shortagesnationwide are causing‖. 

580

 

―The  climate of Vietnam is conducive topositive impacts from solar energy use, andthe sun is a priceless commodity in bothsummer and winter. Research information

shows that sunshine is available between1,800 hours and 2,700 hours annually‖.

Page 582: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 582/585

, , y

581

―Experts  agree that solar energy is a greatway to fill off-grid electricity needs,especially in areas of a higher concentrationof pollution where mini-grids are not a

good idea‖.

Sherry Irvin

on behalf of theBascoTec Internet LimitedTechnologie Park 13

Page 583: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 583/585

Technologie Park 1333100 Paderborn

Germany582

The draft of the decree on the means supportingthe development of renewable energy  has just beensubmitted to the government by the ministry ofindustry and commerce (Tuoi Tre daily newspaper,

Sept. 8, 2009).

Main contents of the draft of the decree:- The government commits to exempt those

who invest to develop the electric generation by

renewable energy from taxes.- The price of electricity produced by renewable

energy would be discussed to guarantee the

Page 584: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 584/585

energy would be discussed to guarantee theinvestor’s rational benefit.

583

It’s time to invest and to do businessreferring to solar photovoltaics in Vietnam.

Page 585: Chapter 5_PV Systems_April 11- 2011.pdf

8/10/2019 Chapter 5_PV Systems_April 11- 2011.pdf

http://slidepdf.com/reader/full/chapter-5pv-systemsapril-11-2011pdf 585/585

584