31
Chapter 7 Energy Storage Elements

Chapter 7 Energy Storage Elements - Chonbukbmsp.chonbuk.ac.kr/v1.0/lec/2014_1/2014_1_1/Circuit_07.pdf · Energy Storage in an Inductor 2 2 1 ... Initial Conditions of Switched Circuit

  • Upload
    vuanh

  • View
    223

  • Download
    4

Embed Size (px)

Citation preview

Chapter 7

Energy Storage Elements

Figure 7.2-1 Capacitor connected to a battery.

Figure 7.2-2 Symbol of a capacitor.

Capacitors

tCvtq

d

AC

Coulomb1910602.1

electronsC 181024.61

• on one electron

• provides energy for moving charge

(flow of charge flow of current)

• storing electric charge

dt

tdvC

dt

tdqti

Figure 7.2-3 Change in voltage occurs over an increment of time Δt.

Capacitors

The voltage across a capacitor cannot change instantaneously

t

0

1

0

tC

dt

dvCi

0t

tt 0

tt

As decreases, the current will increase

can’t decrease to zero, since infinite current is impossible

t

diC

tv 1

t

)(111

o

t

t

tt

ttvdi

Cdi

Cdi

Ctv

o

o

o

Figure 7.2-6 Waveform of the voltage across a capacitor

Example 7.2-1

Figure 7.2-7 Current

Capacitors

mFC 1

dt

dv

dt

dvCi 3101

0

1020

10

0

t

t

v

0

10

10

0

2

2

i

0t

10 t

2t

21 t

0t

10 t

2t

21 t

Figure 7.2-8 Current waveform.

Example 7.2-2

Figure 7.2-9 Voltage waveform

Capacitors

0

1

0

t

i 0t

10 t

t2

21 t

t

idC

v0

1

3)1)2(2()2(

121)1(2)1()1(2

2

0

1

2

0

v

ttvd

td

v

t

t

0t

10 t

t2

21 t

F2

1

Example 7.2-3

Capacitors

Determine the value of the capacitor

0tt

The difference between the values of voltage at times and

)()(1

)( 00

tvdiC

tvt

t

t

tdi

Ctvtv

0

)(1

)()( 0 or

sAddit

t 1.0)13)(05.0()05.0()(

3

10

Vtvtv 2)3(1)()( 0

The area under the plot of vs. , for times between and 0tt

)(ti t

Find the values at the condition and st 10 st 3

)1.0(1

2C

mFFV

sAC 5005.005.0

Example 7.2-4

Capacitors

Determine the values of the constants, a and b

)()( tvdt

dCti

Find the values at the condition at mst 3

mAa 40)8000)(105( 6

s

Vv

dt

d8000

005.0002.0

240)003.0(

mAb 60)1012)(105( 36

s

Vv

dt

d 31012007.0005.0

024)006.0(

Find the values at the condition at mst 6

Exercise 7.2-1

Example 7.2-5

Capacitors

Determine the current for t>0 )(ti

t

vdiC

tv0

)0()(1

)(

)0()1(125.3

)0()2.1(

75.3

)0(75.31

25.14

2.1

0

2.1

2.1

0

2.1

veC

veC

vdeC

e

t

t

tt

Find the value of the capacitor, C, when

Vetv t2.125.14)(

Aeti t2.175.3)( 0t

0t

C

125.325.1 FC 5.2

)()()( tititi RC

0

1)8(

2)42(

)()1()(

tdt

d

tdt

d

tvdt

dti sC

0

8

42

1

)()(

t

t

tvti s

R

42 t

84 t

otherwise

42 t

84 t

otherwise

Figure 7.3-1 (a) capacitor is charged and vc=10V (b) the switch is opened at t=0.

Example 7.3-1

Energy Storage in a Capacitor

dt

dwp

Vvv cc 10)0()0(

)(

)(

2

2

1

)(

)(

tv

v

t

t

t

t

c

vCvdvC

dd

dvCv

vid

pdtw

JouletCvtwc )(2

1)( 2

The voltage across a capacitor cannot change instantaneously

Vvv cc 100)0()0(

JCvwc 50)100)(10(2

1

2

1 222

Example 7.3-2

Exercise 7.3-1

Exercise 7.3-2

Energy Storage in a Capacitor

FC 005.0

)()( tvdt

dCtiC

)()()( titvtp

dttpw )(

t

vidtwtw0

)0()(

JCvw 12

1 2 Vvv cc 100)0()0(

24

0

4 102)2()102()( tdtttwt

0)0( wwhere and tdtidtC

vtvtt

4

0

4

0102)2(10

1)0()(

Series and Parallel Capacitors

Example 7.4-1

Exercise 7.4-1

Exercise 7.4-2

Vvv 20)0()0( 32

pCThe voltage across at t=0

sCThe voltage across at t=0

V

vvv p

30

2010

)0()0()0( 1

Figure 7.5-1 Coil of wire connected to a current source.

Figure 7.5-3 Symbol for an inductor.

Inductors

Inductance - property of an electric device by which a time-varying current through the device produces a voltage across it - measure of the ability of a device to store energy in the form of a magnetic field

Coil wound with resistanceless wire

when current flows through the

wire, energy is stored in the

magnetic field around the coil

time-varying current produces

a self-induced voltage

l

ANL

2

, permeability (Property of the magnetic core)

tidt

dLtv

t

to

t

t

t

oo

dvL

tidvL

dvL

ti 1

)(11 0

t

dvL

ti 1

Inductors

HL 1.0

dt

di

dt

diLv 1.0

0

1

0

1

t

v

10

10

0

1

tt

i 0t

10 tt

1tt

0t

10 tt

1tt

The current in an inductor cannot change instantaneously

10

10

0

1

t

t

ti 0t

10 tt

1tt

0

1

0

1

t

tv 0t

10 tt

1tt

Example 7.5-1

Example 7.5-2

HL 1.0ttei 220

)21(2)2(2

)20()1.0(

222

2

teete

tedt

d

dt

diLv

ttt

t

0tt

The difference between the values of current at times and

The area under the plot of vs. , for times between and 0tt

)(tv t

Find the values at the condition and mst 20 mst 6

)()(1

)( 00

tidvL

tit

t

t

tdv

Ltiti

0

)(1

)()( 0 or

sVddvt

t 12.0)002.0006.0)(30(30)(

006.0

002.00

Atiti 3)2(1)()( 0

)12.0(1

3L

mHHA

sVL 4004.004.0

Inductors

Exercise 7.5-1

Example 7.5-3

Find and RL0for 5.12.1)( 20 teti t

AiL 5.3)0(

0for 4)( 20 tetv t

5 and 1.0 RHL

t

L idvLR

tvti

R

tvti

0)0()(

1)()(

)()(

5.35

1

5

14

5.3414

5.12.1

20

0

2020

20

Le

LR

deLR

ee

t

tt

t

otherwise

t

t

tidt

dtvL

0

84 1

42 2

)()1()(

)()()( tvtvtv RL

otherwise

tt

tt

titvR

0

84 8

42 42

)()1()(

Inductors

Example 7.6-1

idt

diLvip )(

)(2

)(2

)(2

)()( 0

22)(

)(

2)(

)(

)(

)( 00000

tiL

tiL

tiL

idiLiLdidid

diLpdw

ti

ti

ti

ti

ti

ti

t

t

t

t

Energy Storage in an Inductor

2

2

1Liw 0)( i 0t(since for the condition )

HL 1.0

)(1

00

tivdL

it

0for zero iscurrent t

ttev 510

Find the current in an inductor

))51(1(4)51(25

1001010 5

0

5

0

5 tee

dei t

tt

Example 7.6-2

Example 7.6-3

Energy Storage in an Inductor

t

tt

ti

1 20

10 20

0 0

HL 1.0

10for ][40 tWtvip

t

t

tv

1 0

10 2

0 0

t

tt

Liw

1 )20(05.0

10 )20(05.0

2

1

2

2

2

HL 1.0

0for 20 2 ttei t

0for )21(2 2 ttev t

0for 0 ti

0for )21(40

)21(220

4

22

ttte

teteivi

t

tt

0for 20

)20(05.02

1

42

222

tet

teLiw

t

t

Series and Parallel Inductors

Example 7.7-1

Exercise 7.7-1

Exercise 7.7-2

N

n

ns LL1

N

n np LL 1

11

Initial Conditions of Switched Circuit

Table 7.8-1 Characteristics of Energy Storage Elements

Circuit for t<0

Initial Conditions of Switched Circuit (Ed. 7)

Ls iii 1

11sL i

RR

Ri

21

1

LiSince is a constant current

AiL 122

1)0(

Aii LL 1)0()0(

Ai 1)0(1

0)0(1 i

1

1

sc vRR

Rv

21

2

Vvc 5102

1)0(

Vvv cc 5)0()0(

AiL 25

10)0( Vvc 6

5

310)0(

Aii LL 2)0()0( Vvv cc 6)0()0(

0t

Example 7.8-1

Initial Conditions of Switched Circuit

AiL 25

10)0(

Vvc 6105

3)0(

Since the capacitor voltage and inductor current can not change instantaeously,

Aii LL 2)0()0(

Vvv cc 6)0()0(

Example 7.8-2

Initial Conditions of Switched Circuit

Find dt

)(di

dt

)(dvvi Lc

cL

0

,0

),0( ),0(

0tfor

dt

dvCi c

c

0)0(

Li

Vvc 2)0(

0)0()0(

LL ii

Vvv cc 2)0()0(

0tfor

C

i

dt

dv cc )0()0(

dt

diLv L

L L

v

dt

di LL )0()0(

0)1( LcL ivvKVL

0tat

sAdt

diL /2)0(

Vivv LcL 202)0()0()0(

02

10

c

Lc

viiKCL

0tat

sVC

i

dt

dv cc /122/1

6)0()0(

Aiv

i Lc

c 606)0(2

)0(10)0(

Figure 7.9-2 The first partial block diagram.

Figure 7.9-1 differentiation and integration.

OP Amp Circuits and Linear Differential Equations

)(6)(3)(4)(5)(22

2

3

3

txtytydt

dty

dt

dty

dt

d initial conditions 0)( ty

dt

d0)(

2

2

tydt

d0)( ty

)(5.1)(2)(5.2)(3)(

2

2

3

3

tytydt

dty

dt

dtxty

dt

d)(6)(3)(4)(5)(2

2

2

3

3

txtytydt

dty

dt

dty

dt

d

Figure 7.9-6 The integrator.

OP Amp Circuits and Linear Differential Equations

)(0)()()()( 21 txtxtvtvtvR

0)0( then ,0)0( Cvy

R

tx

R

tvti R

R

)()()(

R

txtiti RC

)()()(

)()(0)()()( 32 tytytvtvtvC

)0()(1

)(0

C

t

CC vdiC

tv

dxRC

dR

x

Cdi

Ctv

ttt

CC 000

)(1)(1

)(1

)(

dxRC

tyt

0

)(1

)(

Figure 7.9-7 The summing integrator.

OP Amp Circuits and Linear Differential Equations

Differentiation Integration

)()( ,0)( ),()( ),()( 432211 tytvtvtxtvtxtv

0)0( then ,0)0( Cvy

2

2

2

22

1

1

1

11

)()()( ,

)()()(

R

tx

R

tvti

R

tx

R

tvti

2

2

1

121

)()()()()(

R

tx

R

txtititiC

)()(0)()()( 43 tytytvtvtvC

)0()(1

)(0

C

t

CC vdiC

tv

dCR

x

CR

xd

R

x

R

x

Cdi

Ctv

ttt

CC

02

2

1

1

02

2

1

1

0

)()()()(1)(

1)(

dCR

x

CR

xty

t

02

2

1

1 )()()(

Figure 7.9-11 Eq.7.9-1, implemented by the summing integrator.

Figure 7.9-10 Eq.7.9-1 adjusted to accommodate inverting integrators.

Figure 7.9-8 Figure 7.9-2 adjusted to accommodate inverting integrators.

Figure 7.9-9 Figure 7.9-3 adjusted to accommodate the consequences of using inverting integrators.

OP Amp Circuits and Linear Differential Equations

Figure 7.9-12 The summing integrator.

OP Amp Circuits and Linear Differential Equations

)(5.1)(2)(5.2)(3)(

2

2

3

3

tytydt

dty

dt

dtxty

dt

d

dtyCR

tydt

d

CRty

dt

d

CRtx

CRty

dt

d t

043

2

2

21

2

2

)(1

)(1

)(1

)(1

)(

t

dtytydt

dty

dt

dtxty

dt

d

0 2

2

2

2

)(5.1)(2)(5.2)(3)(

If pick FC 1 kR 3331

kR 4002

kR 6674

kR 5003

MATLAB

14 8

146 220

62 2

2 4)(

t

tt

tt

tti

14 467

146 31102

62 44

2 52)(

2

2

tt

ttt

ttt

tttv

Figure 7.12-2 Using an integrator to measure an interval of time.

Design Example - Integrator and Switch

Design an integrator satisfying both

)()()( 12

2

1

tvdttvKtv o

t

tso

0)( and 1

10 1 tvs

K o

Measurement of an interval of time )()()( 1122 tvVttKtv oso

Hc vtv )(Switch closed when

Switch open when Lc vtv )(

The time interval to be measured could be between 5ms and 200ms

Let )(200

10)( 212 tt

ms

Vtvo

ms

VVK s

200

10 where VVs 5

2

1

)(1

)( 2

t

tso dttv

RCtv

sK

RC

110

1

If let FC 1 kR 100

)(50

5)10)(10100(

1

)0()(1

)(

1

631

1

tt

d

vdvRC

tv

t

t

o

t

tso

50

)()( 1

tvtt o

Table 7.13-1 Element Equations for Capacitors and Inductors.

Table 7.13-2 Parallel and Series Capacitors and Inductors.

Summary

Problems P7.2-5 / P7.2-11 / P7.2-15 / P7.3-3 /

P7.5-4 / P7.5-10 / P7.5-14 / P7.6-3 /

P7.7-9 / P7.8-3 / P7.8-10

Homework #7