16
University of Baghdad 2 nd Class College of Engineering Math II Electronics and Communications Engineering Dpt. Chapter 7 Chapter 7 Multiple Integral (Chapter 14) Double Integral (14.1) If (, ) is defined on the rectangular region given by R: โ‰ค โ‰ค , โ‰ค โ‰ค Then we can write โˆฌ (, ) = โˆซ โˆซ (, ) = โˆซ โˆซ (, ) The double integral represents the volume under the surface = (, ) within the region R Ex: Evaluate the integral โˆฌ (, ) Where (, ) = 1 โˆ’ 6 2 and R: 0 โ‰ค โ‰ค 2, โˆ’1 โ‰ค โ‰ค 1 Sol. โˆฌ (, ) = โˆซ โˆซ(1 โˆ’ 6 2 ) 2 0 1 โˆ’1 = โˆซ [ โˆ’ 2 3 ] 0 2 โˆ’1 โˆ’1 = โˆซ(2 โˆ’ 16) 1 โˆ’1 = 2 โˆ’ 8 2 | โˆ’1 1 = 2 โˆ’ 8 โˆ’ (โˆ’2 โˆ’ 8) = 4 This integral can be evaluated in the order of integration reversed โˆฌ (, ) = โˆซ โˆซ(1 โˆ’ 6 2 ) 1 โˆ’1 2 0 = โˆซ[ โˆ’ 3 2 2 ] โˆ’1 1 2 0 = โˆซ((1 โˆ’ 3 2 ) โˆ’ (โˆ’1 โˆ’ 3 2 )) 2 0 = โˆซ(2) 2 0 = 2| 0 2 =4 Double Integral Over Bounded Nonrectangular Regions โˆฌ (, ) =โˆซ โˆซ (, ) 2 () 1 () =โˆซ โˆซ (, ) โ„Ž 2 () โ„Ž 1 ()

Chapter 7 Multiple Integral (Chapter 14) Double Integral

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Chapter 7 Multiple Integral (Chapter 14)

Double Integral (14.1)

If ๐‘“(๐‘ฅ, ๐‘ฆ) is defined on the rectangular region given by

R: ๐‘Ž โ‰ค ๐‘ฅ โ‰ค ๐‘, ๐‘ โ‰ค ๐‘ฆ โ‰ค ๐‘‘

Then we can write

โˆฌ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

๐‘…

= โˆซ โˆซ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘‘

๐‘

๐‘

๐‘Ž

= โˆซ โˆซ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘

๐‘Ž

๐‘‘

๐‘

The double integral represents the volume under the surface ๐‘ง = ๐‘“(๐‘ฅ, ๐‘ฆ) within the region R

Ex: Evaluate the integral

โˆฌ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

๐‘…

Where ๐‘“(๐‘ฅ, ๐‘ฆ) = 1 โˆ’ 6๐‘ฅ2๐‘ฆ and R: 0 โ‰ค ๐‘ฅ โ‰ค 2, โˆ’1 โ‰ค ๐‘ฆ โ‰ค 1

Sol.

โˆฌ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

๐‘…

= โˆซ โˆซ(1 โˆ’ 6๐‘ฅ2๐‘ฆ)๐‘‘๐‘ฅ๐‘‘๐‘ฆ

2

0

1

โˆ’1

= โˆซ [๐‘ฅ โˆ’ 2๐‘ฅ3๐‘ฆ]02๐‘‘๐‘ฆ

โˆ’1

โˆ’1

= โˆซ(2 โˆ’ 16๐‘ฆ)๐‘‘๐‘ฆ

1

โˆ’1

= 2๐‘ฆ โˆ’ 8๐‘ฆ2|โˆ’11 = 2 โˆ’ 8 โˆ’ (โˆ’2 โˆ’ 8) = 4

This integral can be evaluated in the order of integration reversed

โˆฌ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

๐‘…

= โˆซ โˆซ(1 โˆ’ 6๐‘ฅ2๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

1

โˆ’1

2

0

= โˆซ[๐‘ฆ โˆ’ 3๐‘ฅ2๐‘ฆ2]โˆ’11 ๐‘‘๐‘ฅ

2

0

= โˆซ((1 โˆ’ 3๐‘ฅ2) โˆ’ (โˆ’1 โˆ’ 3๐‘ฅ2))๐‘‘๐‘ฅ

2

0

= โˆซ(2)๐‘‘๐‘ฅ

2

0

= 2๐‘ฅ|02 = 4

Double Integral Over Bounded Nonrectangular Regions

โˆฌ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

๐‘…

= โˆซ โˆซ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘”2(๐‘ฅ)

๐‘”1(๐‘ฅ)

๐‘

๐‘Ž

= โˆซ โˆซ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ๐‘‘๐‘ฆ

โ„Ž2(๐‘ฆ)

โ„Ž1(๐‘ฆ)

๐‘‘

๐‘

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Ex: Find the volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis

and the lines y=x and x=1 and whose top lies in the plane z=3xy.

Sol.

๐‘‰ = โˆซ โˆซ(3 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘ฅ

0

1

0

= โˆซ [3๐‘ฆ โˆ’ ๐‘ฅ๐‘ฆ โˆ’๐‘ฆ2

2]

0

๐‘ฅ

๐‘‘๐‘ฅ

1

0

= โˆซ (3๐‘ฅ โˆ’ ๐‘ฅ2 โˆ’๐‘ฅ2

2) ๐‘‘๐‘ฅ

1

0

= โˆซ (3๐‘ฅ โˆ’3

2๐‘ฅ2) ๐‘‘๐‘ฅ

1

0

= [3

2๐‘ฅ โˆ’

1

2๐‘ฅ3]

0

1

=3

2โˆ’

1

2= 1

By reversing the order of integration

๐‘‰ = โˆซ โˆซ(3 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ)๐‘‘๐‘ฅ๐‘‘๐‘ฆ

1

๐‘ฆ

1

0

= โˆซ [3๐‘ฅ โˆ’๐‘ฅ2

2โˆ’ ๐‘ฅ๐‘ฆ]

๐‘ฆ

1

๐‘‘๐‘ฆ

1

0

= โˆซ ((3 โˆ’1

2โˆ’ ๐‘ฆ) โˆ’ (3๐‘ฆ โˆ’

๐‘ฆ2

2โˆ’ ๐‘ฆ2)) ๐‘‘๐‘ฆ

1

0

= โˆซ (5

2โˆ’ 4๐‘ฆ +

3

2๐‘ฆ2) ๐‘‘๐‘ฆ

1

0

= [5

2๐‘ฆ โˆ’ 2๐‘ฆ2 +

1

2๐‘ฆ3]

0

1

=5

2โˆ’ 2 +

1

2= 1

Ex: Find

โˆฌsin ๐‘ฅ

๐‘ฅ๐‘‘๐ด

๐‘…

Where R is the triangular region in the xy-plane bounded by the lines y=x, x=1 and x-axis

Sol.:

โˆซ โˆซsin ๐‘ฅ

๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘ฅ

0

= โˆซ [๐‘ฆsin ๐‘ฅ

๐‘ฅ]

0

๐‘ฅ1

0

1

0

= โˆซ sin ๐‘ฅ

1

0

= โˆ’ cos ๐‘ฅ|01 = 1 โˆ’ cos 1

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Ex: Find the value of the integration

โˆซ โˆซ (4๐‘ฅ + 2)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

2๐‘ฅ

๐‘ฅ2

2

0

With the order of the integration reversed

Sol.:

First it is better to find the points of intersection of the curves.

๐‘ฅ2 = 2๐‘ฅ โ‡’ ๐‘ฅ2 โˆ’ 2๐‘ฅ = 0

๐‘ฅ(๐‘ฅ โˆ’ 2) = 0

๐‘ฅ = 0 โ‡’ ๐‘ฆ = 0

๐‘ฅ = 2 โ‡’ ๐‘ฆ = 4

๐‘ฆ = ๐‘ฅ2 โ‡’ ๐‘ฅ = โˆš๐‘ฆ

๐‘ฆ = 2๐‘ฅ โ‡’ ๐‘ฅ = ๐‘ฆ/2

โˆซ โˆซ (4๐‘ฅ + 2)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

2๐‘ฅ

๐‘ฅ2

2

0

= โˆซ โˆซ (4๐‘ฅ + 2)๐‘‘๐‘ฅ๐‘‘๐‘ฆ

โˆš๐‘ฆ

๐‘ฆ/2

4

0

= โˆซ[2๐‘ฅ2 + 2๐‘ฅ]๐‘ฆ/2โˆš๐‘ฆ

4

0

= โˆซ (2๐‘ฆ + 2โˆš๐‘ฆ โˆ’๐‘ฆ2

2โˆ’ ๐‘ฆ) ๐‘‘๐‘ฆ

4

0

= โˆซ (๐‘ฆ + 2โˆš๐‘ฆ โˆ’๐‘ฆ2

2) ๐‘‘๐‘ฆ

4

0

= [๐‘ฆ2

2+

4

3๐‘ฆ3/2 โˆ’

๐‘ฆ3

6]

0

4

= 8 +32

3โˆ’

32

3โˆ’ 0 = 8

Areas, Moments and Center of Mass

Areas of Bounded Region in the Plane

The area of a bounded region R can be expressed in terms of double integral

๐ด = โˆฌ ๐‘‘๐ด

๐‘…

= โˆฌ ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘…

= โˆฌ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘…

Ex: Find the area of the region R bounded by the parabola ๐‘ฆ = ๐‘ฅ2 and the line y=x+2

Sol.:

First we find the points of intersections

๐‘ฅ2 = ๐‘ฅ + 2

๐‘ฅ2 โˆ’ ๐‘ฅ โˆ’ 2 = 0

(๐‘ฅ + 1)(๐‘ฅ โˆ’ 2) = 0

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

๐‘ฅ = โˆ’1 โ‡’ ๐‘ฆ = 1

๐‘ฅ = 2 โ‡’ ๐‘ฆ = 4

๐ด = โˆซ โˆซ ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘ฅ+2

๐‘ฅ2

2

โˆ’1

= โˆซ[๐‘ฆ]๐‘ฅ2๐‘ฅ+2๐‘‘๐‘ฅ

2

โˆ’1

= โˆซ(๐‘ฅ + 2 โˆ’ ๐‘ฅ2)๐‘‘๐‘ฅ

2

โˆ’1

= [๐‘ฅ2

2+ 2๐‘ฅ โˆ’

๐‘ฅ3

3]

โˆ’1

2

= (2 + 4 โˆ’8

3) โˆ’ (

1

2โˆ’ 2 +

1

3) = 8 โˆ’ 3 โˆ’

1

2=

9

2

First and Second Moments and Center of Mass

Density: ๐›ฟ(๐‘ฅ, ๐‘ฆ)

Mass: ๐‘€ = โˆฌ ๐›ฟ(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

First Moments:

Moment about x-axis: ๐‘€๐‘ฅ = โˆฌ ๐‘ฆ๐›ฟ(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

Moment about y-axis: ๐‘€๐‘ฆ = โˆฌ ๐‘ฅ๐›ฟ(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

Center of Mass: ๏ฟฝฬ…๏ฟฝ =๐‘€๐‘ฆ

๐‘€, ๏ฟฝฬ…๏ฟฝ =

๐‘€๐‘ฅ

๐‘€

Moments of Inertia (Second Moments)

About x-axis: ๐ผ๐‘ฅ = โˆฌ ๐‘ฆ2๐›ฟ(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

About y-axis: ๐ผ๐‘ฆ = โˆฌ ๐‘ฅ2๐›ฟ(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

About origin: ๐ผ๐‘œ = ๐ผ๐‘ฅ + ๐ผ๐‘ฆ = โˆฌ(๐‘ฅ2 + ๐‘ฆ2)๐›ฟ(๐‘ฅ, ๐‘ฆ)๐‘‘๐ด

Centroids of Geometric Figures

When the density of an object is constant, it cancels out of the numerator and denominator of the

formulas for ๏ฟฝฬ…๏ฟฝ and ๏ฟฝฬ…๏ฟฝ. So, we can take =1 in calculating ๏ฟฝฬ…๏ฟฝ and ๏ฟฝฬ…๏ฟฝ.

Ex: Find the centroid of the region in the first quadrant that is bounded by the line y=x and the curve

๐‘ฆ = ๐‘ฅ2.

Sol.:

๐‘€ = โˆซ โˆซ(1)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘ฅ

๐‘ฅ2

1

0

= โˆซ[๐‘ฆ]๐‘ฅ2๐‘ฅ

1

0

๐‘‘๐‘ฅ = โˆซ(๐‘ฅ โˆ’ ๐‘ฅ2)

1

0

๐‘‘๐‘ฅ = [๐‘ฅ2

2โˆ’

๐‘ฅ3

3]

0

1

=1

2โˆ’

1

3=

1

6

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

๐‘€๐‘ฅ = โˆซ โˆซ(1)๐‘ฆ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘ฅ

๐‘ฅ2

1

0

= โˆซ [๐‘ฆ2

2]

๐‘ฅ2

๐‘ฅ1

0

๐‘‘๐‘ฅ =1

2โˆซ(๐‘ฅ2 โˆ’ ๐‘ฅ4)

1

0

๐‘‘๐‘ฅ =1

2[๐‘ฅ3

3โˆ’

๐‘ฅ5

5]

0

1

=1

2(

1

3โˆ’

1

5) =

1

15

๐‘€๐‘ฆ = โˆซ โˆซ(1)๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐‘ฅ

๐‘ฅ2

1

0

= โˆซ[๐‘ฅ๐‘ฆ]๐‘ฅ2๐‘ฅ

1

0

๐‘‘๐‘ฅ = โˆซ(๐‘ฅ2 โˆ’ ๐‘ฅ3)

1

0

๐‘‘๐‘ฅ = [๐‘ฅ3

3โˆ’

๐‘ฅ4

4]

0

1

= (1

3โˆ’

1

4) =

1

12

๏ฟฝฬ…๏ฟฝ =๐‘€๐‘ฆ

๐‘€=

1/12

1/6=

1

2

๏ฟฝฬ…๏ฟฝ =๐‘€๐‘ฅ

๐‘€=

1/15

1/6=

2

5

Ex: Evaluate the integral

โˆซ โˆซ cos(๐‘ฆ3) ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

2

โˆš๐‘ฅ

4

0

Sol.:

The integral cannot be solved in the given order, so, we have

to reverse the order of integration. The limits of the y variable are

๐‘ฆ = โˆš๐‘ฅ (๐‘ฅ = ๐‘ฆ2) and y=2, the intersection point is (2,4), the integral in the reversed order will be

โˆซ โˆซ cos(๐‘ฆ3) ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘ฆ2

0

2

0

= โˆซ[๐‘ฅ cos(๐‘ฆ3)]0๐‘ฆ2

๐‘‘๐‘ฆ

2

0

= โˆซ ๐‘ฆ2cos(๐‘ฆ3) ๐‘‘๐‘ฆ

2

0

=1

3sin(๐‘ฆ3)|

0

2

=1

3sin(8)

Exercises 14.2

Sketch the region bounded by the given lines and curves, then find the area by double integration.

6- The parabola ๐‘ฅ = ๐‘ฆ โˆ’ ๐‘ฆ2 and the line ๐‘ฅ + ๐‘ฆ = 0

Sol.

๐‘ฅ + ๐‘ฆ = 0 โ‡’ ๐‘ฅ = โˆ’๐‘ฆ

โˆ’๐‘ฆ = ๐‘ฆ โˆ’ ๐‘ฆ2

2๐‘ฆ โˆ’ ๐‘ฆ2 = 0 โ‡’ ๐‘ฆ(2 โˆ’ ๐‘ฆ) = 0

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

๐‘ฆ = 0 โ‡’ ๐‘ฅ = 0

๐‘ฆ = 2 โ‡’ ๐‘ฅ = โˆ’2

๐ด = โˆฌ ๐‘‘๐ด = โˆซ โˆซ ๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘ฆโˆ’๐‘ฆ2

โˆ’๐‘ฆ

2

0

๐ด = โˆซ(๐‘ฆ โˆ’ ๐‘ฆ2 โˆ’ (โˆ’๐‘ฆ))๐‘‘๐‘ฆ

2

0

= โˆซ(2๐‘ฆ โˆ’ ๐‘ฆ2)๐‘‘๐‘ฆ

2

0

= ๐‘ฆ2 โˆ’๐‘ฆ3

3|

0

2

= 4 โˆ’8

3โˆ’ 0 =

4

3

36- Find the centroid of the region in the xy-plane bounded by the curves =1

โˆš1โˆ’๐‘ฅ2 , ๐‘ฆ =

โˆ’1

โˆš1โˆ’๐‘ฅ2 and

the lines x=0 and x=1.

Sol.:

From symmetry ๏ฟฝฬ…๏ฟฝ = 0

๐‘€ = โˆฌ(1)๐‘‘๐ด

๐‘€ = โˆซ โˆซ ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

1/โˆš1โˆ’๐‘ฅ2

โˆ’1/โˆš1โˆ’๐‘ฅ2

1

0

= โˆซ (1

โˆš1 โˆ’ ๐‘ฅ2โˆ’

โˆ’1

โˆš1 โˆ’ ๐‘ฅ2)

1

0

๐‘‘๐‘ฅ

= โˆซ (2๐‘‘๐‘ฅ

โˆš1 โˆ’ ๐‘ฅ2)

1

0

= 2sinโˆ’1(๐‘ฅ)|01

2 (๐œ‹

2= 0) = ๐œ‹

๐‘€๐‘ฆ = โˆซ โˆซ ๐‘ฅ๐‘‘๐‘ฆ๐‘‘๐‘ฅ

1/โˆš1โˆ’๐‘ฅ2

โˆ’1/โˆš1โˆ’๐‘ฅ2

1

0

= โˆซ[๐‘ฅ๐‘ฆ]โˆ’1/โˆš1โˆ’๐‘ฅ2

1/โˆš1โˆ’๐‘ฅ2

1

0

๐‘‘๐‘ฅ

= โˆซ (2๐‘ฅ

โˆš1 โˆ’ ๐‘ฅ2)

1

0

๐‘‘๐‘ฅ = โˆ’โˆš1 โˆ’ ๐‘ฅ2

1/2|

0

1

= โˆ’2(0 โˆ’ 1) = 2

๏ฟฝฬ…๏ฟฝ =2

๐œ‹

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Double Integral in Polar Form

To integrate a function in polar form ๐‘“(๐‘Ÿ, ๐œƒ) over the shaded region shown

โˆฌ ๐‘“(๐‘Ÿ, ๐œƒ)๐‘‘๐ด

๐‘…

= โˆซ โˆซ ๐‘“(๐‘Ÿ, ๐œƒ)๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

1+cos ๐œƒ

1

๐œ‹/2

โˆ’๐œ‹/2

Area in Polar Coordinates

๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘œ๐‘“ ๐‘… = โˆฌ ๐‘‘๐ด

๐‘…

= โˆฌ ๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘…

Ex: Find the area enclosed by the curve ๐‘Ÿ2 = 4 cos 2๐œƒ

Sol.:

๐ด

4= โˆซ โˆซ ๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

โˆš4 cos 2๐œƒ

0

๐œ‹/4

0

๐ด = 4 โˆซ [๐‘Ÿ2

2]

0

โˆš4 cos 2๐œƒ

๐‘‘๐œƒ

๐œ‹/4

0

= 4 โˆซ 2 cos 2๐œƒ ๐‘‘๐œƒ

๐œ‹/4

0

= 4[sin(2๐œƒ)]0๐œ‹/4

= 4(1 โˆ’ 0) = 4

Changing Cartesian Integration into Polar Integration

โˆฌ ๐‘“(๐‘ฅ, ๐‘ฆ)๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘…

= โˆฌ ๐‘“(๐‘Ÿcos(๐œƒ), ๐‘Ÿsin(๐œƒ))๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐บ

R is the region of integration described in Cartesian coordinates and G is the same region described

in polar coordinates.

Ex: Find the moment of inertia about the origin of a thin plate of density (x,y)=1 bounded by the

quarter circle ๐‘ฅ2 + ๐‘ฆ2 = 1 in the first quadrant.

Sol.:

In Cartesian coordinates

๐ผ๐‘œ = โˆซ โˆซ (๐‘ฅ2 + ๐‘ฆ2)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

โˆš1โˆ’๐‘ฅ2

0

1

0

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

โˆซ [๐‘ฅ2๐‘ฆ +๐‘ฆ3

3]

0

โˆš1โˆ’๐‘ฅ2

๐‘‘๐‘ฅ = โˆซ (๐‘ฅ2โˆš1 โˆ’ ๐‘ฅ2 +1

3(1 โˆ’ ๐‘ฅ2)3/2) ๐‘‘๐‘ฅ

1

0

1

0

In polar coordinates

๐ผ๐‘œ = โˆซ โˆซ (๐‘ฅ2 + ๐‘ฆ2)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

โˆš1โˆ’๐‘ฅ2

0

1

0

= โˆซ โˆซ(๐‘Ÿ2)๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

1

0

๐œ‹/2

0

= โˆซ โˆซ(๐‘Ÿ3)๐‘‘๐‘Ÿ๐‘‘๐œƒ

1

0

๐œ‹/2

0

= โˆซ๐‘Ÿ4

4|

0

1

๐‘‘๐œƒ

๐œ‹/2

0

= โˆซ1

4๐‘‘๐œƒ

๐œ‹/2

0

=๐œƒ

4|

0

๐œ‹/2

=๐œ‹

8

Ex: Evaluate the integral (the Gaussian integral)

โˆซ ๐‘’โˆ’๐‘ฅ2๐‘‘๐‘ฅ

โˆž

โˆ’โˆž

Sol.:

๐ผ = โˆซ ๐‘’โˆ’๐‘ฅ2๐‘‘๐‘ฅ

โˆž

โˆ’โˆž

๐ผ = โˆซ ๐‘’โˆ’๐‘ฆ2๐‘‘๐‘ฆ

โˆž

โˆ’โˆž

๐ผ ยท ๐ผ = [ โˆซ ๐‘’โˆ’๐‘ฅ2๐‘‘๐‘ฅ

โˆž

โˆ’โˆž

] [ โˆซ ๐‘’โˆ’๐‘ฆ2๐‘‘๐‘ฆ

โˆž

โˆ’โˆž

]

๐ผ2 = โˆซ โˆซ ๐‘’โˆ’(๐‘ฅ2+๐‘ฆ2)๐‘‘๐‘ฅ๐‘‘๐‘ฆ

โˆž

โˆ’โˆž

โˆž

โˆ’โˆž

The above integral can be converted to polar coordinates. We note that the region of integration is

the entire xy-plane that can be described as below

๐ผ2 = โˆซ โˆซ ๐‘’โˆ’๐‘Ÿ2๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

โˆž

0

2๐œ‹

0

= โˆซ โˆ’1

2๐‘’โˆ’๐‘Ÿ2

|0

โˆž2๐œ‹

0

๐‘‘๐œƒ = โˆ’1

2โˆซ (0 โˆ’ 1)๐‘‘๐œƒ

2๐œ‹

0

=1

2(2๐œ‹) = ๐œ‹

๐ผ = โˆš๐œ‹

โˆซ ๐‘’โˆ’๐‘ฅ2๐‘‘๐‘ฅ

โˆž

โˆ’โˆž

= โˆš๐œ‹

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Triple Integral in Rectangular Coordinates

The volume of a closed bounded region D in space is

๐‘‰๐‘œ๐‘™๐‘ข๐‘š๐‘’ ๐‘œ๐‘“ ๐ท = โˆญ ๐‘‘๐‘‰

๐ท

= โˆญ ๐‘‘๐‘ง๐‘‘๐‘ฆ๐‘‘๐‘ฅ

๐ท

In triple integral we always make the order of integration starts with dz and the limits of the integral

with respect to the variable z should always be clear from the problem statement. Next, the problem

reduces to double integral and we follow the same rules described in earlier sections. Usually we

only need to draw the region of integration with respect to x and y variable in 2-D only and no need

to draw a 3-dimesional drawing for the overall region.

Exercises 14.4

24- Find the volume of the region in the 1st octant bounded by the surface ๐‘ง = 4 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฆ

Sol.:

In the xy-plane z=0 ๐‘ฆ = 4 โˆ’ ๐‘ฅ2

0 โ‰ค ๐‘ง โ‰ค 4 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฆ

0 โ‰ค ๐‘ฆ โ‰ค 4 โˆ’ ๐‘ฅ2

0 โ‰ค ๐‘ฅ โ‰ค 2

๐‘‰ = โˆซ โˆซ โˆซ ๐‘‘๐‘ง๐‘‘๐‘ฆ๐‘‘๐‘ฅ

4โˆ’๐‘ฅ2โˆ’๐‘ฆ

0

4โˆ’๐‘ฅ2

0

2

0

๐‘‰ = โˆซ โˆซ ๐‘ง|04โˆ’๐‘ฅ2โˆ’๐‘ฆ

๐‘‘๐‘ฆ๐‘‘๐‘ฅ

4โˆ’๐‘ฅ2

0

2

0

The first step is to find the limits of the variable

z. Since the region is in the first octant this

means that x 0, y 0 and z 0. Combining this

and the fact that the upper bound is ๐‘ง = 4 โˆ’

๐‘ฅ2 โˆ’ ๐‘ฆ, then we have found the limits of z

variable.

The second step is to draw the region in the xy-

plane and finding the limits of x and y variables.

The limits of the x, y, z variables are

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

๐‘‰ = โˆซ โˆซ (4 โˆ’ ๐‘ฅ2 โˆ’ ๐‘ฆ)๐‘‘๐‘ฆ๐‘‘๐‘ฅ

4โˆ’๐‘ฅ2

0

2

0

๐‘‰ = โˆซ [(4 โˆ’ ๐‘ฅ2)๐‘ฆ โˆ’๐‘ฆ2

2]

0

4โˆ’๐‘ฅ2

๐‘‘๐‘ฅ

2

0

= โˆซ ((4 โˆ’ ๐‘ฅ2)2 โˆ’(4 โˆ’ ๐‘ฅ2)2

2) ๐‘‘๐‘ฅ

2

0

=1

2โˆซ((4 โˆ’ ๐‘ฅ2)2)๐‘‘๐‘ฅ

2

0

๐‘‰ =1

2โˆซ(16 โˆ’ 8๐‘ฅ2 + ๐‘ฅ4)๐‘‘๐‘ฅ

2

0

=1

2โˆซ [16๐‘ฅ โˆ’

8

3๐‘ฅ3 +

1

5๐‘ฅ5] ๐‘‘๐‘ฅ

2

0

=1

2(32 โˆ’

64

3+

32

5) =

128

15

Masses and Moments in Three Dimensions

Mass:

๐‘€ = โˆญ ๐›ฟ๐‘‘๐‘‰

๐‘…

(๐›ฟ = ๐‘‘๐‘’๐‘›๐‘ ๐‘–๐‘ก๐‘ฆ)

First Moments:

๐‘€๐‘ฆ๐‘ง = โˆญ ๐‘ฅ๐›ฟ๐‘‘๐‘‰

๐‘…

๐‘€๐‘ฅ๐‘ง = โˆญ ๐‘ฆ๐›ฟ๐‘‘๐‘‰

๐‘…

๐‘€๐‘ฅ๐‘ฆ = โˆญ ๐‘ง๐›ฟ๐‘‘๐‘‰

๐‘…

Center of Mass

๏ฟฝฬ…๏ฟฝ =๐‘€๐‘ฆ๐‘ง

๐‘€, ๏ฟฝฬ…๏ฟฝ =

๐‘€๐‘ฅ๐‘ง

๐‘€, ๐‘งฬ… =

๐‘€๐‘ฅ๐‘ฆ

๐‘€

Moments of Inertia

๐ผ๐‘ฅ = โˆญ(๐‘ฆ2 + ๐‘ง2)๐›ฟ๐‘‘๐‘‰

๐‘…

๐ผ๐‘ฆ = โˆญ(๐‘ฅ2 + ๐‘ง2)๐›ฟ๐‘‘๐‘‰

๐‘…

๐ผ๐‘ง = โˆญ(๐‘ฅ2 + ๐‘ฆ2)๐›ฟ๐‘‘๐‘‰

๐‘…

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Triple Integral in Cylindrical and Spherical Coordinates

Cylindrical Coordinates

To integrate a continuous function f(r,,z) over a region given by

๐‘ง1(๐‘Ÿ, ๐œƒ) โ‰ค ๐‘ง โ‰ค ๐‘ง2(๐‘Ÿ, ๐œƒ)

๐‘Ÿ1(๐œƒ) โ‰ค ๐‘Ÿ โ‰ค ๐‘Ÿ2(๐œƒ)

๐œƒ1 โ‰ค ๐œƒ โ‰ค ๐œƒ2

โˆซ โˆซ โˆซ ๐‘“(๐‘Ÿ, ๐œƒ, ๐‘ง)๐‘‘๐‘ง๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘ง2(๐‘Ÿ,๐œƒ)

๐‘ง1(๐‘Ÿ,๐œƒ)

๐‘Ÿ2(๐œƒ)

๐‘Ÿ1(๐œƒ)

๐œƒ2

๐œƒ1

Ex: Find the volume of the solid bounded by the cylinder ๐‘ฅ2 + ๐‘ฆ2 = 4 and the planes y+z=4 and

z=0.

Sol.:

๐‘‰ = โˆซ โˆซ โˆซ ๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

4โˆ’๐‘Ÿ sin ๐œƒ

0

2

0

2๐œ‹

0

๐‘‰ = โˆซ โˆซ๐‘Ÿ๐‘ง|04โˆ’๐‘Ÿ sin ๐œƒ๐‘Ÿ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

2๐œ‹

0

๐‘‰ = โˆซ โˆซ(4๐‘Ÿ โˆ’ ๐‘Ÿ2 sin ๐œƒ)๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

2๐œ‹

0

๐‘‰ = โˆซ [2๐‘Ÿ2 โˆ’1

3๐‘Ÿ3 sin ๐œƒ]

0

2

๐‘‘๐œƒ

2๐œ‹

0

๐‘‰ = โˆซ (8 โˆ’8

3sin ๐œƒ) ๐‘‘๐œƒ

2๐œ‹

0

= 8๐œƒ +8

3cos ๐œƒ|

0

2๐œ‹

= 8(2๐œ‹ โˆ’ 1) +8

3(1 โˆ’ 1) = 16๐œ‹

Ex: Find the centroid of the solid enclosed by the cylinder ๐‘ฅ2 + ๐‘ฆ2 = 4, bounded above by the

paraboloid ๐‘ง = ๐‘ฅ2 + ๐‘ฆ2 and below by the xy-plane.

Sol.:

๐‘ง = ๐‘ฅ2 + ๐‘ฆ2 = ๐‘Ÿ2

๐‘ฅ2 + ๐‘ฆ2 = 4 = ๐‘Ÿ2 โ‡’ ๐‘Ÿ = 2

0 โ‰ค ๐‘ง โ‰ค ๐‘Ÿ2

2 2

y

z

x2+y2=4

y=2

x=0

z=4y

x2+y2=4

r=2

x

y

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

0 โ‰ค ๐‘Ÿ โ‰ค 2

0 โ‰ค ๐œƒ โ‰ค 2๐œ‹

The centroid lies on the axis of symmetry in this case the z-axis

๏ฟฝฬ…๏ฟฝ = 0, ๏ฟฝฬ…๏ฟฝ = 0

๐‘€ = โˆซ โˆซ โˆซ (1)๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿ2

0

2

0

2๐œ‹

0

= โˆซ โˆซ[๐‘Ÿ๐‘ง]0๐‘Ÿ2

๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

2๐œ‹

0

= โˆซ โˆซ ๐‘Ÿ3๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

2๐œ‹

0

= [๐‘Ÿ4

4]

0

2

[๐œƒ]02๐œ‹ = (4)(2๐œ‹) = 8๐œ‹

๐‘€๐‘ฅ๐‘ฆ = โˆซ โˆซ โˆซ ๐‘ง(1)๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿ2

0

2

0

2๐œ‹

0

= โˆซ โˆซ [๐‘Ÿ๐‘ง2

2]

0

๐‘Ÿ2

๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

2๐œ‹

0

= โˆซ โˆซ๐‘Ÿ5

2๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

2๐œ‹

0

=1

2[๐‘Ÿ6

6]

0

2

[๐œƒ]02๐œ‹ =

1

2(

32

3) (2๐œ‹) =

32๐œ‹

3

๐‘งฬ… =๐‘€๐‘ฅ๐‘ฆ

๐‘€=

32๐œ‹/3

8๐œ‹=

4

3

Ex: Find the center of mass of the solid whose density =z and bounded above by the plane z=y,

below by the xy-plane and laterally by the cylinder ๐‘ฅ2 + ๐‘ฆ2 = 4.

Sol.:

๐‘€ = โˆญ ๐›ฟ๐‘‘๐‘‰

= โˆซ โˆซ โˆซ ๐‘ง๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿsin๐œƒ

0

2

0

๐œ‹

0

= โˆซ โˆซ๐‘ง2๐‘Ÿ

2|

0

๐‘Ÿsin๐œƒ

๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

= โˆซ โˆซ1

2๐‘Ÿ3 sin2 ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

= โˆซ โˆซ1

4๐‘Ÿ3(1 โˆ’ cos2๐œƒ)๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

=1

4[๐‘Ÿ4

4]

0

2

[๐œƒ โˆ’1

2sin2๐œƒ]

0

๐œ‹

=1

4(

16

4โˆ’ 0) (๐œ‹ โˆ’ 0) = ๐œ‹

๐‘€๐‘ฅ๐‘ฆ = โˆซ โˆซ โˆซ ๐‘ง๐›ฟ๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿsin๐œƒ

0

2

0

๐œ‹

0

= โˆซ โˆซ โˆซ ๐‘ง2๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿsin๐œƒ

0

2

0

๐œ‹

0

2 2

x,y,r

z

z=r2

x2+y2=4

r=2

z=4

x

y

2 2

y

z x2+y2=4

y=2

x=0

z=y

r=2 y

x

r=2 x

y

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

= โˆซ โˆซ๐‘ง3

3๐‘Ÿ|

0

๐‘Ÿsin๐œƒ

๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

= โˆซ โˆซ1

3๐‘Ÿ4 sin3 ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

= โˆซ โˆซ1

3๐‘Ÿ4 sin ๐œƒ (1 โˆ’ cos2 ๐œƒ) ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

=1

3[๐‘Ÿ5

5]

0

2

[โˆ’cos ๐œƒ +cos3 ๐œƒ

3]

0

๐œ‹

=1

3(

32

5) (1 โˆ’

1

3+ 1 โˆ’

1

3)

=32

15(

4

3) =

128

45

๐‘€๐‘ฅ๐‘ง = โˆซ โˆซ โˆซ ๐‘ฆ๐›ฟ๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿsin๐œƒ

0

2

0

๐œ‹

0

= โˆซ โˆซ โˆซ ๐‘ง๐‘Ÿ2 sin ๐œƒ ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿsin๐œƒ

0

2

0

๐œ‹

0

= โˆซ โˆซ๐‘ง2

2|

0

๐‘Ÿsin๐œƒ

๐‘Ÿ2 sin ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

= โˆซ โˆซ1

2๐‘Ÿ4 sin3 ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

=64

15

๐‘€๐‘ฆ๐‘ง = โˆซ โˆซ โˆซ ๐‘ฅ๐›ฟ๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿsin๐œƒ

0

2

0

๐œ‹

0

= โˆซ โˆซ โˆซ ๐‘ง๐‘Ÿ2 cos ๐œƒ ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿsin๐œƒ

0

2

0

๐œ‹

0

= โˆซ โˆซ๐‘ง2

2|

0

๐‘Ÿsin๐œƒ

๐‘Ÿ2 cos ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

= โˆซ โˆซ1

2๐‘Ÿ4 sin2 ๐œƒ cos ๐œƒ ๐‘‘๐‘Ÿ๐‘‘๐œƒ

2

0

๐œ‹

0

=1

2[๐‘Ÿ5

5]

0

2

[sin3 ๐œƒ

3]

0

๐œ‹

=1

2(

32

5) (0 โˆ’ 0) = 0

๏ฟฝฬ…๏ฟฝ =๐‘€๐‘ฆ๐‘ง

๐‘€= 0

๏ฟฝฬ…๏ฟฝ =๐‘€๐‘ฅ๐‘ง

๐‘€=

64/15

๐œ‹=

64

15๐œ‹

๐‘งฬ… =๐‘€๐‘ฅ๐‘ฆ

๐‘€=

128/45

๐œ‹=

128

45๐œ‹

Spherical Coordinates

To integrate a continuous function ๐‘“(๐œŒ, ๐œ™, ๐œƒ) over a region given by

๐œŒ1(๐œ™, ๐œƒ) โ‰ค ๐œŒ โ‰ค ๐œŒ2(๐œ™, ๐œƒ)

๐œ™1(๐œƒ) โ‰ค ๐œ™ โ‰ค ๐œ™2(๐œƒ)

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

๐œƒ1 โ‰ค ๐œƒ โ‰ค ๐œƒ2

The integral will be

โˆซ โˆซ โˆซ ๐‘“(๐œŒ, ๐œ™, ๐œƒ)๐œŒ2 sin ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

๐œŒ2(๐œ™,๐œƒ)

๐œŒ1(๐œ™,๐œƒ)

๐œ™2(๐œƒ)

๐œ™1(๐œƒ)

๐œƒ2

๐œƒ1

Ex: Find the volume of the upper region cut from the solid sphere 1 by the cone =/3.

Sol.:

Limits:

0 โ‰ค ๐œŒ โ‰ค 1

0 โ‰ค ๐œ™ โ‰ค ๐œ‹/3

0 โ‰ค ๐œƒ โ‰ค 2๐œ‹

๐‘‰ = โˆซ โˆซ โˆซ ๐œŒ2 sin ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

1

0

๐œ‹/3

0

2๐œ‹

0

= [๐œŒ3

3]

0

1

[โˆ’ cos ๐œ™]0๐œ‹/3[๐œƒ]0

2๐œ‹ = (1

3) (โˆ’

1

2+ 1) (2๐œ‹) =

๐œ‹

3

Ex: find the moment of inertia about the z-axis of the region in example above.

Sol.:

๐ผ๐‘ง = โˆญ(๐‘ฅ2 + ๐‘ฆ2)๐‘‘๐‘‰ = โˆญ ๐‘Ÿ2๐‘‘๐‘‰ = โˆญ(๐œŒ sin ๐œ™)2๐‘‘๐‘‰

๐ผ๐‘ง = โˆซ โˆซ โˆซ(๐œŒ sin ๐œ™)2๐œŒ2 sin ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

1

0

๐œ‹/3

0

2๐œ‹

0

๐ผ๐‘ง = โˆซ โˆซ โˆซ ๐œŒ4 sin3 ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

1

0

๐œ‹/3

0

2๐œ‹

0

= โˆซ โˆซ โˆซ ๐œŒ4(1 โˆ’ cos2 ๐œ™) sin ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

1

0

๐œ‹/3

0

2๐œ‹

0

= [๐œŒ4

5]

0

1

[โˆ’ cos ๐œ™ +cos3 ๐œ™

3]

0

๐œ‹/3

[๐œƒ]02๐œ‹

y

z /3

=1

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

= (1

5) (โˆ’

1

2+

1/8

3+ 1 โˆ’

1

3) (2๐œ‹) = (

2๐œ‹

5) (

1

2โˆ’

7

24) = (

2๐œ‹

5) (

5

24) =

๐œ‹

12

Exercises: (14.6)

16- Convert the integral

โˆซ โˆซ โˆซ(๐‘ฅ2 + ๐‘ฆ2)๐‘‘๐‘ง๐‘‘๐‘ฅ๐‘‘๐‘ฆ

๐‘ฅ

0

โˆš1โˆ’๐‘ฆ2

0

1

โˆ’1

into cylindrical coordinates and evaluate the result.

Sol.:

= โˆซ โˆซ โˆซ (๐‘Ÿ2)๐‘Ÿ๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿcos๐œƒ

0

1

0

๐œ‹/2

โˆ’๐œ‹/2

= โˆซ โˆซ โˆซ ๐‘Ÿ3๐‘‘๐‘ง๐‘‘๐‘Ÿ๐‘‘๐œƒ

๐‘Ÿcos๐œƒ

0

1

0

๐œ‹/2

โˆ’๐œ‹/2

= โˆซ โˆซ[๐‘ง]0๐‘Ÿcos๐œƒ๐‘Ÿ3๐‘‘๐‘Ÿ๐‘‘๐œƒ

1

0

๐œ‹/2

โˆ’๐œ‹/2

= โˆซ โˆซ ๐‘Ÿ4cos๐œƒ๐‘‘๐‘Ÿ๐‘‘๐œƒ

1

0

๐œ‹/2

โˆ’๐œ‹/2

= [๐‘Ÿ5

5]

0

1

[sin ๐œƒ]โˆ’๐œ‹/2๐œ‹/2

= (1

5) (1 โˆ’ (โˆ’1)) =

2

5

37- Find the volume of the smaller region cut from the sphere =2 by the plane z=1.

Sol.:

Convert the plane equation z=1 to spherical coordinates

๐‘ง = 1 โ‡’ ๐œŒ cos ๐œ™ = 1 โ‡’ ๐œŒ = 1/ cos ๐œ™

Find the limit of as the intersection of the plane z=1 and the sphere

=2

๐‘ง = 1 โ‡’ ๐œŒ cos ๐œ™ = 1 โ‡’ 2 cos ๐œ™ = 1 โ‡’ cos ๐œ™ =1

2โ‡’ ๐œ™ = ๐œ‹/3

๐‘‰ = โˆซ โˆซ โˆซ ๐œŒ2 sin ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

2

1/ cos ๐œ™

๐œ‹/3

0

2๐œ‹

0

x

y ๐‘ฅ = โˆš1 โˆ’ ๐‘ฆ2

r=1

y

z /3

=2

z=1

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

= โˆซ โˆซ [๐œŒ3

3]

1/ cos ๐œ™

2

sin ๐œ™ ๐‘‘๐œ™๐‘‘๐œƒ

๐œ‹/3

0

2๐œ‹

0

=1

3โˆซ โˆซ (8 sin ๐œ™ โˆ’

sin ๐œ™

cos3 ๐œ™) ๐‘‘๐œ™๐‘‘๐œƒ

๐œ‹/3

0

2๐œ‹

0

=1

3[โˆ’8 cos ๐œ™ โˆ’

1

2cosโˆ’2 ๐œ™]

0

๐œ‹/3

[๐œƒ]02๐œ‹ =

1

3(โˆ’8 (

1

2โˆ’ 1) โˆ’

1

2((

1

2)

โˆ’2

โˆ’ 1)) (2๐œ‹)

=1

3(4 โˆ’

1

2(4 โˆ’ 1)) (2๐œ‹) =

2๐œ‹

3(

5

2) =

5๐œ‹

3

40- A conical hole is drilled inside the solid hemisphere, the cone equation is =/3. Find the center

of mass, 2, z0

Sol.:

From symmetry ๏ฟฝฬ…๏ฟฝ = 0, ๏ฟฝฬ…๏ฟฝ = 0

๐‘€ = โˆญ ๐›ฟ๐‘‘๐‘‰ = โˆซ โˆซ โˆซ(1)๐œŒ2 sin ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

2

0

๐œ‹/2

๐œ‹/3

2๐œ‹

0

= [๐œŒ3

3]

0

2

[โˆ’ cos ๐œ™]๐œ‹/3๐œ‹/2[๐œƒ]0

2๐œ‹

= (8

3) (0 +

1

2) (2๐œ‹) =

8๐œ‹

3

๐‘€๐‘ฅ๐‘ฆ = โˆญ ๐‘ง๐›ฟ๐‘‘๐‘‰ = โˆซ โˆซ โˆซ (๐œŒ cos ๐œ™)(1)๐œŒ2 sin ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

2๐œ‹

0

๐œ‹/2

๐œ‹/3

2๐œ‹

0

= โˆซ โˆซ โˆซ ๐œŒ3 sin ๐œ™ cos ๐œ™ ๐‘‘๐œŒ๐‘‘๐œ™๐‘‘๐œƒ

2๐œ‹

0

๐œ‹/2

๐œ‹/3

2๐œ‹

0

= [๐œŒ4

4]

0

2

[sin2 ๐œ™

2]

๐œ‹/3

๐œ‹/2

[๐œƒ]02๐œ‹ = (

16

4) (

1 โˆ’ 3/4

2) (2๐œ‹) = ๐œ‹

๐‘งฬ… =๐‘€๐‘ฅ๐‘ฆ

๐‘€=

๐œ‹

8๐œ‹/3=

3

8

Center of mass at (0, 0, 3/8)

y

z /3