50
ECON 6002 Econometrics Memorial University of Newfoundland Adapted from Vera Tabakova’s notes

Chapter 8

  • Upload
    hedwig

  • View
    43

  • Download
    0

Embed Size (px)

DESCRIPTION

ECON 6002 Econometrics Memorial University of Newfoundland. Heteroskedasticity. Chapter 8. Adapted from Vera Tabakova’s notes. Chapter 8: Heteroskedasticity. 8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator - PowerPoint PPT Presentation

Citation preview

Page 1: Chapter  8

ECON 6002 Econometrics Memorial University of Newfoundland

Adapted from Vera Tabakova’s notes

Page 2: Chapter  8

8.1 The Nature of Heteroskedasticity

8.2 Using the Least Squares Estimator

8.3 The Generalized Least Squares Estimator

8.4 Detecting Heteroskedasticity

Page 3: Chapter  8

1 2( )E y x

1 2( )i i i i ie y E y y x

1 2i i iy x e

Page 4: Chapter  8

Figure 8.1 Heteroskedastic Errors

Page 5: Chapter  8

2( ) 0 var( ) cov( , ) 0i i i jE e e e e

var( ) var( ) ( )i i iy e h x

ˆ 83.42 10.21i iy x

ˆ 83.42 10.21i i ie y x

Food expenditure example:

Page 6: Chapter  8

Figure 8.2 Least Squares Estimated Expenditure Function and Observed Data Points

Page 7: Chapter  8

The existence of heteroskedasticity implies:

The least squares estimator is still a linear and unbiased estimator, but

it is no longer best. There is another estimator with a smaller

variance.

The standard errors usually computed for the least squares estimator

are incorrect. Confidence intervals and hypothesis tests that use these

standard errors may be misleading.

Page 8: Chapter  8

21 2 var( )i i i iy x e e

2

22

1

var( )( )

N

ii

bx x

21 2 var( )i i i i iy x e e

Page 9: Chapter  8

2 2

2 2 12 2

1 2

1

( )var( )

( )

N

i iNi

i iNi

ii

x xb w

x x

2 2

2 2 12 2

1 2

1

ˆ( )ˆvar( )

( )

N

i iNi

i iNi

ii

x x eb w e

x x

Page 10: Chapter  8

ˆ 83.42 10.21

(27.46) (1.81) (White se)

(43.41) (2.09) (incorrect se)

i iy x

2 2

2 2

White: se( ) 10.21 2.024 1.81 [6.55, 13.87]

Incorrect: se( ) 10.21 2.024 2.09 [5.97, 14.45]

c

c

b t b

b t b

We can use a robust estimator: regress food_exp income, robust

Page 11: Chapter  8

1 2

2( ) 0 var( ) cov( , ) 0

i i i

i i i i j

y x e

E e e e e

Page 12: Chapter  8

2 2var i i ie x

1 2

1i i i

i i i i

y x e

x x x x

1 2

1 i i i

i i i i i

i i i i

y x ey x x x e

x x x x

Page 13: Chapter  8

1 1 2 2i i i iy x x e

2 21 1var( ) var var( )i

i i ii ii

ee e x

x xx

Page 14: Chapter  8

To obtain the best linear unbiased estimator for a model with

heteroskedasticity of the type specified in equation (8.11):

1. Calculate the transformed variables given in (8.13).

2. Use least squares to estimate the transformed model given in (8.14).

Page 15: Chapter  8

The generalized least squares estimator is as a weighted least

squares estimator. Minimizing the sum of squared transformed errors

that is given by:

When is small, the data contain more information about the

regression function and the observations are weighted heavily.

When is large, the data contain less information and the

observations are weighted lightly.

22 1/2 2

1 1 1

( )N N N

ii i i

i i ii

ee x e

x

ix

ix

Page 16: Chapter  8

ˆ 78.68 10.45

(se) (23.79) (1.39)i iy x

2 2ˆ ˆse( ) 10.451 2.024 1.386 [7.65,13.26]ct

Food example again, where was the problem coming from?

regress food_exp income [aweight = 1/income]

Page 17: Chapter  8

2 2var( )i i ie x

2 2ln( ) ln( ) ln( )i ix

2 2

1 2

exp ln( ) ln( )

exp( )

i i

i

x

z

Page 18: Chapter  8

21 2 2exp( )i i s iSz z

21 2ln( )i iz

1 2( )i i i i iy E y e x e

Page 19: Chapter  8

2 21 2ˆln( ) ln( )i i i i ie v z v

2ˆln( ) .9378 2.329i iz

21 1ˆ ˆˆ exp( )i iz

1 2

1i i i

i i i i

y x e

Page 20: Chapter  8

22 2

1 1var var( ) 1i

i ii i i

ee

1 2

1ˆ ˆ ˆ

i ii i i

i i i

y xy x x

1 1 2 2i i i iy x x e

Page 21: Chapter  8

1 2 2i i k iK iy x x e

21 2 2var( ) exp( )i i i s iSe z z

Page 22: Chapter  8

The steps for obtaining a feasible generalized least squares estimator

for are:

1. Estimate (8.25) by least squares and compute the squares of

the least squares residuals .

2. Estimate by applying least squares to the equation

1 2, , , K

2ie

1 2, , , S

21 2 2ˆln i i S iS ie z z v

Page 23: Chapter  8

3. Compute variance estimates .

4. Compute the transformed observations defined by (8.23),

including if .

5. Apply least squares to (8.24), or to an extended version of

(8.24) if .

21 2 2ˆ ˆ ˆˆ exp( )i i S iSz z

3, ,i iKx x 2K

2K

ˆ 76.05 10.63

(se) (9.71) (.97)iy x

Page 24: Chapter  8

For our food expenditure example:

gen z = log(income)regress food_exp incomepredict ehat, residualgen lnehat2 = log(ehat*ehat)regress lnehat2 z

* --------------------------------------------* Feasible GLS* --------------------------------------------predict sig2, xbgen wt = exp(sig2)regress food_exp income [aweight = 1/wt]

Page 25: Chapter  8

9.914 1.234 .133 1.524

(se) (1.08) (.070) (.015) (.431)

WAGE EDUC EXPER METRO

1 2 3 1,2, ,Mi M Mi Mi Mi MWAGE EDUC EXPER e i N

1 2 3 1,2, ,Ri R Ri Ri Ri RWAGE EDUC EXPER e i N

1 9.914 1.524 8.39Mb

Using our wage data (cps2.dta):

???

Page 26: Chapter  8

2 2var( ) var( )Mi M Ri Re e

2 2ˆ ˆ31.824 15.243M R

1 2 3

1 2 3

9.052 1.282 .1346

6.166 .956 .1260

M M M

R R R

b b b

b b b

Page 27: Chapter  8

1 2 3

1Mi Mi Mi MiM

M M M M M

WAGE EDUC EXPER e

1,2, , Mi N

1 2 3

1Ri Ri Ri RiR

R R R R R

WAGE EDUC EXPER e

1,2, , Ri N

Page 28: Chapter  8

Feasible generalized least squares:

1. Obtain estimated and by applying least squares separately to

the metropolitan and rural observations.

2.

3. Apply least squares to the transformed model

ˆ M ˆ R

ˆ when 1ˆ

ˆ when 0

M i

i

R i

METRO

METRO

1 2 3

1ˆ ˆ ˆ ˆ ˆ ˆ

i i i i iR

i i i i i i

WAGE EDUC EXPER METRO e

Page 29: Chapter  8

9.398 1.196 .132 1.539

(se) (1.02) (.069) (.015) (.346)

WAGE EDUC EXPER METRO

_cons -9.398362 1.019673 -9.22 0.000 -11.39931 -7.397408 metro 1.538803 .3462856 4.44 0.000 .8592702 2.218336 exper .1322088 .0145485 9.09 0.000 .1036595 .160758 educ 1.195721 .068508 17.45 0.000 1.061284 1.330157 wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

Total 36081.2155 999 36.1173328 Root MSE = 5.1371 Adj R-squared = 0.2693 Residual 26284.1488 996 26.3897076 R-squared = 0.2715 Model 9797.0667 3 3265.6889 Prob > F = 0.0000 F( 3, 996) = 123.75 Source SS df MS Number of obs = 1000

(sum of wgt is 3.7986e+01). regress wage educ exper metro [aweight = 1/wt]

Page 30: Chapter  8

* --------------------------------------------* Rural subsample regression* --------------------------------------------regress wage educ exper if metro == 0 scalar rmse_r = e(rmse)scalar df_r = e(df_r)* --------------------------------------------* Urban subsample regression* --------------------------------------------regress wage educ exper if metro == 1 scalar rmse_m = e(rmse)scalar df_m = e(df_r)* --------------------------------------------* Groupwise heteroskedastic regression using FGLS* --------------------------------------------gen rural = 1 - metrogen wt=(rmse_r^2*rural) + (rmse_m^2*metro)regress wage educ exper metro [aweight = 1/wt]

STATA Commands:

Page 31: Chapter  8

Remark: To implement the generalized least squares estimators

described in this Section for three alternative heteroskedastic

specifications, an assumption about the form of the

heteroskedasticity is required. Using least squares with White

standard errors avoids the need to make an assumption about the

form of heteroskedasticity, but does not realize the potential

efficiency gains from generalized least squares.

Page 32: Chapter  8

8.4.1 Residual Plots

Estimate the model using least squares and plot the least squares

residuals.

With more than one explanatory variable, plot the least squares

residuals against each explanatory variable, or against , to see if

those residuals vary in a systematic way relative to the specified

variable.

ˆiy

Page 33: Chapter  8

8.4.2 The Goldfeld-Quandt Test

2 2

( , )2 2

ˆ

ˆ M M R R

M MN K N K

R R

F F

2 2 2 20 0: against :M R M RH H

2

2

ˆ 31.8242.09

ˆ 15.243M

R

F

Page 34: Chapter  8

8.4.2 The Goldfeld-Quandt Test

2

2

ˆ 31.8242.09

ˆ 15.243M

R

F

* --------------------------------------------* Goldfeld Quandt test* --------------------------------------------

scalar GQ = rmse_m^2/rmse_r^2scalar crit = invFtail(df_m,df_r,.05)scalar pvalue = Ftail(df_m,df_r,GQ)scalar list GQ pvalue crit

Page 35: Chapter  8

8.4.2 The Goldfeld-Quandt Test

21ˆ 3574.8

22ˆ 12,921.9

2221

ˆ 12,921.93.61

ˆ 3574.8F

For the food expenditure data

You should now be able to obtain this test statistic

And check whether it exceeds the critical value

Page 36: Chapter  8

8.4.3 Testing the Variance Function

1 2 2( )i i i i K iK iy E y e x x e

2 21 2 2var( ) ( ) ( )i i i i S iSy E e h z z

1 2 2 1 2 2( ) exp( )i S iS i S iSh z z z z

21 2( ) exp ln( ) ln( )i ih z x

Page 37: Chapter  8

8.4.3 Testing the Variance Function

1 2 2 1 2 2( )i S iS i S iSh z z z z

1 2 2 1( ) ( )i S iSh z z h

0 2 3

1 0

: 0

: not all the in are zero

S

s

H

H H

Page 38: Chapter  8

8.4.3 Testing the Variance Function

2 21 2 2var( ) ( )i i i i S iSy E e z z

2 21 2 2( )i i i i S iS ie E e v z z v

21 2 2i i S iS ie z z v

2 2 2( 1)SN R

Page 39: Chapter  8

8.4.3a The White Test

1 2 2 3 3( )i i iE y x x

2 22 2 3 3 4 2 5 3z x z x z x z x

Page 40: Chapter  8

8.4.3b Testing the Food Expenditure Example

4,610,749,441 3,759,556,169SST SSE

2 1 .1846SSE

RSST

2 2 40 .1846 7.38N R

2 2 40 .18888 7.555 -value .023N R p

whitetst

Or

estat imtest, white

Page 41: Chapter  8

Slide 8-41Principles of Econometrics, 3rd Edition

Page 42: Chapter  8

Slide 8-42Principles of Econometrics, 3rd Edition

Page 43: Chapter  8

Slide 8-43Principles of Econometrics, 3rd Edition

(8A.1)

1 2i i iy x e

2( ) 0 var( ) cov( , ) 0 ( )i i i i jE e e e e i j

2 2 i ib w e

2i

i

i

x xw

x x

Page 44: Chapter  8

Slide 8-44Principles of Econometrics, 3rd Edition

2 2

2 2

i i

i i

E b E E w e

w E e

Page 45: Chapter  8

Slide 8-45Principles of Econometrics, 3rd Edition

(8A.2)

2

2

2 2

2 2

22

var var

var cov ,

( )

( )

i i

i i i j i ji j

i i

i i

i

b w e

w e w w e e

w

x x

x x

Page 46: Chapter  8

Slide 8-46Principles of Econometrics, 3rd Edition

(8A.3)

2

2 2var( )i

bx x

Page 47: Chapter  8

Slide 8-47Principles of Econometrics, 3rd Edition

(8B.2)

(8B.1)21 2 2i i S iS ie z z v

( ) / ( 1)

/ ( )

SST SSE SF

SSE N S

2

2 2 2

1 1

ˆ ˆ ˆ and N N

i ii i

SST e e SSE v

Page 48: Chapter  8

Slide 8-48Principles of Econometrics, 3rd Edition

(8B.4)

(8B.3)2 2( 1)( 1)

/ ( ) S

SST SSES F

SSE N S

2var( ) var( )i i

SSEe v

N S

(8B.5)2

2var( )i

SST SSE

e

Page 49: Chapter  8

Slide 8-49Principles of Econometrics, 3rd Edition

(8B.6)

(8B.7)

24ˆ2 e

SST SSE

22 2 4

2 4

1var 2 var( ) 2 var( ) 2i

i i ee e

ee e

2 2 2 2

1

1ˆ ˆvar( ) ( )

N

i ii

SSTe e e

N N

Page 50: Chapter  8

Slide 8-50Principles of Econometrics, 3rd Edition

(8B.8)

2

2

/

1

SST SSE

SST N

SSEN

SST

N R