108
1 Projections 2 The Properties 3 Example 1 4 Example 2 5 Back to Projections 6 The Gram-Schmidt Process 7 G-S Example 1 8 G-S Example 2 9 Orthonormaliza- tion Chapter 8 Orthogonality 8.2 Projections and the Gram-Schmidt Process

Chapter 8 Orthogonalitybtravers.weebly.com/uploads/6/7/2/9/6729909/8.2... · 2019. 9. 27. · such that u = cv. proj vu = vcv kvk2 v = c vv kvk2 v = c kvk2 kvk2 v = cv = u. 1 Projections

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Chapter 8 Orthogonality8.2 Projections and the Gram-Schmidt Process

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Projections

    DefinitionThe projection of a vector u onto another vector v, denotedprojvu, is the vector that is parallel to v such thatu− projvu makes a right angle with v.

    FormulaUsing dot product notation, this vector can be written as

    projvu =u · v‖v‖2

    v

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Projections

    DefinitionThe projection of a vector u onto another vector v, denotedprojvu, is the vector that is parallel to v such thatu− projvu makes a right angle with v.

    FormulaUsing dot product notation, this vector can be written as

    projvu =u · v‖v‖2

    v

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visualization

    v

    u

    {u, v} is a basis for R2

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visualization

    v

    u

    projvu

    u− projvu

    Think of projvu as the component of u in the direction of v.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visualization

    v

    u

    projvu

    u− projvu

    Think of projvu as the component of u in the direction of v.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visualization

    v

    u

    projvu

    u− projvu

    Think of projvu as the component of u in the direction of v.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(a) projvu ∈ span {v}

    Why?

    projvu =u · v‖v‖2

    v

    is a multiple of v, so ...

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(a) projvu ∈ span {v}

    Why?

    projvu =u · v‖v‖2

    v

    is a multiple of v, so ...

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(a) projvu ∈ span {v}

    Why?

    projvu =u · v‖v‖2

    v

    is a multiple of v, so ...

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(b) u− projvu is orthogonal to v

    If we claim they are orthogonal, what do we know?

    v · (u− projvu) = v ·(u− u · v‖v‖2

    v

    )= v · u− u · v

    ‖v‖2v · v

    = v · u− u · v‖v‖2

    ‖v‖2

    = 0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(b) u− projvu is orthogonal to v

    If we claim they are orthogonal, what do we know?

    v · (u− projvu) = v ·(u− u · v‖v‖2

    v

    )= v · u− u · v

    ‖v‖2v · v

    = v · u− u · v‖v‖2

    ‖v‖2

    = 0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(b) u− projvu is orthogonal to v

    If we claim they are orthogonal, what do we know?

    v · (u− projvu)

    = v ·(u− u · v‖v‖2

    v

    )= v · u− u · v

    ‖v‖2v · v

    = v · u− u · v‖v‖2

    ‖v‖2

    = 0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(b) u− projvu is orthogonal to v

    If we claim they are orthogonal, what do we know?

    v · (u− projvu) = v ·(u− u · v‖v‖2

    v

    )

    = v · u− u · v‖v‖2

    v · v

    = v · u− u · v‖v‖2

    ‖v‖2

    = 0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(b) u− projvu is orthogonal to v

    If we claim they are orthogonal, what do we know?

    v · (u− projvu) = v ·(u− u · v‖v‖2

    v

    )= v · u− u · v

    ‖v‖2v · v

    = v · u− u · v‖v‖2

    ‖v‖2

    = 0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}? There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}?

    There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}? There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}? There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}? There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}? There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}? There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(c) If u ∈ span{v} then u = projvu

    What does it mean for u ∈ span{v}? There exists c ∈ Rsuch that u = cv.

    projvu =v · cv‖v‖2

    v

    = cv · v‖v‖2

    v

    = c‖v‖2

    ‖v‖2v

    = cv

    = u

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(d) projvu = projcvu

    What does this statement say?

    projcvu =cv · u‖cv‖2

    (cv)

    =c2v · uc2‖v‖2

    v

    =v · u‖v‖2

    v

    = projvu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(d) projvu = projcvu

    What does this statement say?

    projcvu =cv · u‖cv‖2

    (cv)

    =c2v · uc2‖v‖2

    v

    =v · u‖v‖2

    v

    = projvu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(d) projvu = projcvu

    What does this statement say?

    projcvu =cv · u‖cv‖2

    (cv)

    =c2v · uc2‖v‖2

    v

    =v · u‖v‖2

    v

    = projvu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(d) projvu = projcvu

    What does this statement say?

    projcvu =cv · u‖cv‖2

    (cv)

    =c2v · uc2‖v‖2

    v

    =v · u‖v‖2

    v

    = projvu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(d) projvu = projcvu

    What does this statement say?

    projcvu =cv · u‖cv‖2

    (cv)

    =c2v · uc2‖v‖2

    v

    =v · u‖v‖2

    v

    = projvu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    TheoremLet u, v ∈ Rn with v non-zero and let c ∈ R.(d) projvu = projcvu

    What does this statement say?

    projcvu =cv · u‖cv‖2

    (cv)

    =c2v · uc2‖v‖2

    v

    =v · u‖v‖2

    v

    = projvu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 1

    Example

    Consider u1 =

    [2−1

    ]and u2 =

    [42

    ]. Find proju1u2.

    proju1u2 =

    (u1 · u2‖u1‖2

    )u1

    =

    (8− 2

    22 + (−1)2

    )[2−1

    ]=

    6

    5

    [2−1

    ]

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 1

    Example

    Consider u1 =

    [2−1

    ]and u2 =

    [42

    ]. Find proju1u2.

    proju1u2 =

    (u1 · u2‖u1‖2

    )u1

    =

    (8− 2

    22 + (−1)2

    )[2−1

    ]=

    6

    5

    [2−1

    ]

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 1

    Example

    Consider u1 =

    [2−1

    ]and u2 =

    [42

    ]. Find proju1u2.

    proju1u2 =

    (u1 · u2‖u1‖2

    )u1

    =

    (8− 2

    22 + (−1)2

    )[2−1

    ]

    =6

    5

    [2−1

    ]

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 1

    Example

    Consider u1 =

    [2−1

    ]and u2 =

    [42

    ]. Find proju1u2.

    proju1u2 =

    (u1 · u2‖u1‖2

    )u1

    =

    (8− 2

    22 + (−1)2

    )[2−1

    ]=

    6

    5

    [2−1

    ]

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 2

    Example

    Consider v1 =

    02−1

    and v2 = 2−1

    2

    . Find projv1v2

    projv1v2 =

    (v1 · v2‖v1‖2

    )v1

    =

    (0− 2− 2

    02 + 22 + (−1)2

    ) 02−1

    = −4

    5

    02−1

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 2

    Example

    Consider v1 =

    02−1

    and v2 = 2−1

    2

    . Find projv1v2projv1v2 =

    (v1 · v2‖v1‖2

    )v1

    =

    (0− 2− 2

    02 + 22 + (−1)2

    ) 02−1

    = −4

    5

    02−1

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 2

    Example

    Consider v1 =

    02−1

    and v2 = 2−1

    2

    . Find projv1v2projv1v2 =

    (v1 · v2‖v1‖2

    )v1

    =

    (0− 2− 2

    02 + 22 + (−1)2

    ) 02−1

    = −45

    02−1

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 2

    Example

    Consider v1 =

    02−1

    and v2 = 2−1

    2

    . Find projv1v2projv1v2 =

    (v1 · v2‖v1‖2

    )v1

    =

    (0− 2− 2

    02 + 22 + (−1)2

    ) 02−1

    = −4

    5

    02−1

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Projection onto a Subspace

    What could we be talking about when we have anorthogonal basis?

    DefinitionIf {v1, v2, . . . , vk} is an orthogonal basis for a subspace S ofRn, then the projection of u onto S is defined by

    projSu = projv1u + projv2u + . . . + projvku

    =u · v1‖v1‖2

    v1 +u · v2‖v2‖2

    v2 + . . . +u · vk‖vk‖2

    vk

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Projection onto a Subspace

    What could we be talking about when we have anorthogonal basis?

    DefinitionIf {v1, v2, . . . , vk} is an orthogonal basis for a subspace S ofRn, then the projection of u onto S is defined by

    projSu = projv1u + projv2u + . . . + projvku

    =u · v1‖v1‖2

    v1 +u · v2‖v2‖2

    v2 + . . . +u · vk‖vk‖2

    vk

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visual Representation

    S

    u

    projSu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visual Representation

    S

    u

    projSu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visual Representation

    S

    u

    projSu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Visual Representation

    S

    u

    projSu

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 3

    Example

    Consider v1 =

    02−1

    , v2 = 2−1

    2

    and v3 = 22−1

    . FindprojSv1 where S = span{v2, v3}.

    Notice that v2 and v3 form an orthogonal basis for S.

    projSv1 = projv2v1 + projv3v1

    =v1 · v2‖v2‖2

    v2 +v1 · v3‖v3‖2

    v3

    = −49

    2−12

    + 59

    22−1

    =

    1

    9

    214−13

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 3

    Example

    Consider v1 =

    02−1

    , v2 = 2−1

    2

    and v3 = 22−1

    . FindprojSv1 where S = span{v2, v3}.Notice that v2 and v3 form an orthogonal basis for S.

    projSv1 = projv2v1 + projv3v1

    =v1 · v2‖v2‖2

    v2 +v1 · v3‖v3‖2

    v3

    = −49

    2−12

    + 59

    22−1

    =

    1

    9

    214−13

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 3

    Example

    Consider v1 =

    02−1

    , v2 = 2−1

    2

    and v3 = 22−1

    . FindprojSv1 where S = span{v2, v3}.Notice that v2 and v3 form an orthogonal basis for S.

    projSv1 = projv2v1 + projv3v1

    =v1 · v2‖v2‖2

    v2 +v1 · v3‖v3‖2

    v3

    = −49

    2−12

    + 59

    22−1

    =

    1

    9

    214−13

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 3

    Example

    Consider v1 =

    02−1

    , v2 = 2−1

    2

    and v3 = 22−1

    . FindprojSv1 where S = span{v2, v3}.Notice that v2 and v3 form an orthogonal basis for S.

    projSv1 = projv2v1 + projv3v1

    =v1 · v2‖v2‖2

    v2 +v1 · v3‖v3‖2

    v3

    = −49

    2−12

    + 59

    22−1

    =

    1

    9

    214−13

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 3

    Example

    Consider v1 =

    02−1

    , v2 = 2−1

    2

    and v3 = 22−1

    . FindprojSv1 where S = span{v2, v3}.Notice that v2 and v3 form an orthogonal basis for S.

    projSv1 = projv2v1 + projv3v1

    =v1 · v2‖v2‖2

    v2 +v1 · v3‖v3‖2

    v3

    = −49

    2−12

    + 59

    22−1

    =1

    9

    214−13

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Example 3

    Example

    Consider v1 =

    02−1

    , v2 = 2−1

    2

    and v3 = 22−1

    . FindprojSv1 where S = span{v2, v3}.Notice that v2 and v3 form an orthogonal basis for S.

    projSv1 = projv2v1 + projv3v1

    =v1 · v2‖v2‖2

    v2 +v1 · v3‖v3‖2

    v3

    = −49

    2−12

    + 59

    22−1

    =

    1

    9

    214−13

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    The following theorem is analagous to the one we previouslyproved, so we omit the proof. It is in the text.

    TheoremIf S is a non-zero subspace of Rn, u is a vector in Rn and cis a real scalar, then

    (a) projSu is in S

    (b) u− projSu is orthogonal to S, i.e. in S⊥

    (c) If u is in S, then u = projSu(d) projSu does not depend on the choice of orthogonal

    basis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    The following theorem is analagous to the one we previouslyproved, so we omit the proof. It is in the text.

    TheoremIf S is a non-zero subspace of Rn, u is a vector in Rn and cis a real scalar, then

    (a) projSu is in S(b) u− projSu is orthogonal to S, i.e. in S⊥

    (c) If u is in S, then u = projSu(d) projSu does not depend on the choice of orthogonal

    basis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    The following theorem is analagous to the one we previouslyproved, so we omit the proof. It is in the text.

    TheoremIf S is a non-zero subspace of Rn, u is a vector in Rn and cis a real scalar, then

    (a) projSu is in S(b) u− projSu is orthogonal to S, i.e. in S⊥

    (c) If u is in S, then u = projSu

    (d) projSu does not depend on the choice of orthogonalbasis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Properties

    The following theorem is analagous to the one we previouslyproved, so we omit the proof. It is in the text.

    TheoremIf S is a non-zero subspace of Rn, u is a vector in Rn and cis a real scalar, then

    (a) projSu is in S(b) u− projSu is orthogonal to S, i.e. in S⊥

    (c) If u is in S, then u = projSu(d) projSu does not depend on the choice of orthogonal

    basis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    The Gram-Schmidt Process

    We will see the use of these orthonormal basis of a vectorspace later in this chapter. Right now, we will be concernedwith finding this orthonormal basis.

    What we need to be able to do is use the idea of aprojection, but find the projection to increasingly largerorthogonal subspaces until we have the entire basis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    The Gram-Schmidt Process

    We will see the use of these orthonormal basis of a vectorspace later in this chapter. Right now, we will be concernedwith finding this orthonormal basis.

    What we need to be able to do is use the idea of aprojection, but find the projection to increasingly largerorthogonal subspaces until we have the entire basis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    The Gram-Schmidt Process

    The ProcessGiven any basis of a {s1, s2, . . . , sk} subspace S of Rn, wecan produce the orthogonal basis {v1, v2, . . . , vk} as follows:

    v1 = s1

    v2 = s2 − projv1s2v3 = s3 − projv1s3 − projv2s3

    ...

    vk = sk − projv1sk − projv2sk − projv3sk − projvk−1sk

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    The Gram-Schmidt Process

    The ProcessGiven any basis of a {s1, s2, . . . , sk} subspace S of Rn, wecan produce the orthogonal basis {v1, v2, . . . , vk} as follows:

    v1 = s1

    v2 = s2 − projv1s2

    v3 = s3 − projv1s3 − projv2s3...

    vk = sk − projv1sk − projv2sk − projv3sk − projvk−1sk

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    The Gram-Schmidt Process

    The ProcessGiven any basis of a {s1, s2, . . . , sk} subspace S of Rn, wecan produce the orthogonal basis {v1, v2, . . . , vk} as follows:

    v1 = s1

    v2 = s2 − projv1s2v3 = s3 − projv1s3 − projv2s3

    ...

    vk = sk − projv1sk − projv2sk − projv3sk − projvk−1sk

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    The Gram-Schmidt Process

    The ProcessGiven any basis of a {s1, s2, . . . , sk} subspace S of Rn, wecan produce the orthogonal basis {v1, v2, . . . , vk} as follows:

    v1 = s1

    v2 = s2 − projv1s2v3 = s3 − projv1s3 − projv2s3

    ...

    vk = sk − projv1sk − projv2sk − projv3sk − projvk−1sk

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    Example

    Apply the Gram-Schmidt process to find an orthogonal basisfor

    S = span{[

    12

    ],

    [−11

    ]}

    Since we are looking for the vectors to be orthogonal, we

    cans start with the first one, so v1 =

    [12

    ].

    How many basis vectors do we need to have?

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    Example

    Apply the Gram-Schmidt process to find an orthogonal basisfor

    S = span{[

    12

    ],

    [−11

    ]}

    Since we are looking for the vectors to be orthogonal, we

    cans start with the first one, so v1 =

    [12

    ].

    How many basis vectors do we need to have?

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    Example

    Apply the Gram-Schmidt process to find an orthogonal basisfor

    S = span{[

    12

    ],

    [−11

    ]}

    Since we are looking for the vectors to be orthogonal, we

    cans start with the first one, so v1 =

    [12

    ].

    How many basis vectors do we need to have?

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    We need to find the projection to find the other basis vectorwe need.

    v2 =

    [−11

    ]− projv1

    ([−11

    ])=

    [−11

    ]− 1

    5

    [12

    ]=

    1

    5

    [−63

    ]So, the orthogonal basis is therefore{[

    12

    ],

    1

    5

    [−63

    ]}

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    We need to find the projection to find the other basis vectorwe need.

    v2 =

    [−11

    ]− projv1

    ([−11

    ])

    =

    [−11

    ]− 1

    5

    [12

    ]=

    1

    5

    [−63

    ]So, the orthogonal basis is therefore{[

    12

    ],

    1

    5

    [−63

    ]}

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    We need to find the projection to find the other basis vectorwe need.

    v2 =

    [−11

    ]− projv1

    ([−11

    ])=

    [−11

    ]− 1

    5

    [12

    ]

    =1

    5

    [−63

    ]So, the orthogonal basis is therefore{[

    12

    ],

    1

    5

    [−63

    ]}

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    We need to find the projection to find the other basis vectorwe need.

    v2 =

    [−11

    ]− projv1

    ([−11

    ])=

    [−11

    ]− 1

    5

    [12

    ]=

    1

    5

    [−63

    ]

    So, the orthogonal basis is therefore{[12

    ],

    1

    5

    [−63

    ]}

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    An Example

    We need to find the projection to find the other basis vectorwe need.

    v2 =

    [−11

    ]− projv1

    ([−11

    ])=

    [−11

    ]− 1

    5

    [12

    ]=

    1

    5

    [−63

    ]So, the orthogonal basis is therefore{[

    12

    ],

    1

    5

    [−63

    ]}

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    Example

    Apply the Gram-Schmidt process to find an orthogonal basisfor

    S = span

    1201

    ,

    2011

    ,

    1221

    We begin as before, with v1 =

    1201

    . Now what?

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    Example

    Apply the Gram-Schmidt process to find an orthogonal basisfor

    S = span

    1201

    ,

    2011

    ,

    1221

    We begin as before, with v1 =

    1201

    . Now what?

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    Example

    Apply the Gram-Schmidt process to find an orthogonal basisfor

    S = span

    1201

    ,

    2011

    ,

    1221

    We begin as before, with v1 =

    1201

    . Now what?

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v2 =

    2011

    − projv1

    2011

    =

    2011

    − 36

    1201

    =

    32−1112

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v2 =

    2011

    projv1

    2011

    =

    2011

    − 36

    1201

    =

    32−1112

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v2 =

    2011

    − projv1

    2011

    =

    2011

    − 36

    1201

    =

    32−1112

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v2 =

    2011

    − projv1

    2011

    =

    2011

    − 36

    1201

    =

    32−1112

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v2 =

    2011

    − projv1

    2011

    =

    2011

    − 36

    1201

    =

    32−1112

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =

    −2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Another Example

    v3 =

    1221

    − projv1

    1221

    − projv2

    1221

    =

    1221

    − 66

    1201

    − 292

    32−1112

    =

    1221

    1201

    23−494929

    =−2349149−29

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization

    DefinitionA set {v1, v2, . . . , vk} of vectors in Rn is orthonormal if it isan orthogonal set and every vector in the set has length one.

    If we think about this in a geometric sense, we have toconsider that vectors need not intersect to be orthogonal. Itis the orientation that matters. So, the question is, how canwe guarantee that all of the vectors are of length one?

    OrthonormalizationBy replacing the output of the Gram-Schmidt process{v1, v2, . . . , vk} with {w1,w2, . . . ,wk} where wi = 1‖vi‖vi ,one obtains an orthonormal basis for the given subspace.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization

    DefinitionA set {v1, v2, . . . , vk} of vectors in Rn is orthonormal if it isan orthogonal set and every vector in the set has length one.

    If we think about this in a geometric sense, we have toconsider that vectors need not intersect to be orthogonal. Itis the orientation that matters. So, the question is, how canwe guarantee that all of the vectors are of length one?

    OrthonormalizationBy replacing the output of the Gram-Schmidt process{v1, v2, . . . , vk} with {w1,w2, . . . ,wk} where wi = 1‖vi‖vi ,one obtains an orthonormal basis for the given subspace.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization

    DefinitionA set {v1, v2, . . . , vk} of vectors in Rn is orthonormal if it isan orthogonal set and every vector in the set has length one.

    If we think about this in a geometric sense, we have toconsider that vectors need not intersect to be orthogonal. Itis the orientation that matters. So, the question is, how canwe guarantee that all of the vectors are of length one?

    OrthonormalizationBy replacing the output of the Gram-Schmidt process{v1, v2, . . . , vk} with {w1,w2, . . . ,wk} where wi = 1‖vi‖vi ,one obtains an orthonormal basis for the given subspace.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    Example

    Apply the Gram-Schmidt orthonormalization process to thegiven basis for R3.

    S =

    11

    0

    ,12

    0

    ,01

    2

    First, let’s find the orthogonal basis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    Example

    Apply the Gram-Schmidt orthonormalization process to thegiven basis for R3.

    S =

    11

    0

    ,12

    0

    ,01

    2

    First, let’s find the orthogonal basis.

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v1 =

    s1 =

    110

    v2 = s2 − projv1s2

    =

    120

    − 32

    110

    =

    −12120

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v1 = s1 =

    110

    v2 = s2 − projv1s2

    =

    120

    − 32

    110

    =

    −12120

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v1 = s1 =

    110

    v2 =

    s2 − projv1s2

    =

    120

    − 32

    110

    =

    −12120

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v1 = s1 =

    110

    v2 = s2 − projv1s2

    =

    120

    − 32

    110

    =

    −12120

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v1 = s1 =

    110

    v2 = s2 − projv1s2

    =

    120

    − 32

    110

    =

    −12120

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v1 = s1 =

    110

    v2 = s2 − projv1s2

    =

    120

    − 32

    110

    =

    −12120

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v3 =

    s3 − projv1s3 − projv2s3

    =

    012

    − 12

    110

    − 1212

    −12120

    =

    002

    So, the orthogonal basis is11

    0

    ,−121

    20

    ,00

    2

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v3 = s3 − projv1s3 − projv2s3

    =

    012

    − 12

    110

    − 1212

    −12120

    =

    002

    So, the orthogonal basis is11

    0

    ,−121

    20

    ,00

    2

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v3 = s3 − projv1s3 − projv2s3

    =

    012

    − 12

    110

    − 1212

    −12120

    =

    002

    So, the orthogonal basis is11

    0

    ,−121

    20

    ,00

    2

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v3 = s3 − projv1s3 − projv2s3

    =

    012

    − 12

    110

    − 1212

    −12120

    =

    002

    So, the orthogonal basis is11

    0

    ,−121

    20

    ,00

    2

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    v3 = s3 − projv1s3 − projv2s3

    =

    012

    − 12

    110

    − 1212

    −12120

    =

    002

    So, the orthogonal basis is11

    0

    ,−121

    20

    ,00

    2

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    Now we normalize ...

    w1 =1

    ‖v1‖v1

    =1√2

    110

    =

    1√21√2

    0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    Now we normalize ...

    w1 =1

    ‖v1‖v1

    =1√2

    110

    =

    1√21√2

    0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    Now we normalize ...

    w1 =1

    ‖v1‖v1

    =1√2

    110

    =

    1√21√2

    0

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    w2 =1

    ‖v2‖v2

    =1√12

    −12120

    =

    −√22√220

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    w2 =1

    ‖v2‖v2

    =1√12

    −12120

    =

    −√22√220

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    w3 =1

    ‖v3‖v3

    =1√4

    002

    =

    001

    So, the orthonormal basis we seek is

    1√21√2

    0

    ,−

    √22√220

    ,00

    1

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    w3 =1

    ‖v3‖v3

    =1√4

    002

    =

    001

    So, the orthonormal basis we seek is

    1√21√2

    0

    ,−

    √22√220

    ,00

    1

  • 1 Projections

    2 The Properties

    3 Example 1

    4 Example 2

    5 Back toProjections

    6 TheGram-SchmidtProcess

    7 G-S Example 1

    8 G-S Example 2

    9 Orthonormaliza-tion

    Orthonormalization Example

    w3 =1

    ‖v3‖v3

    =1√4

    002

    =

    001

    So, the orthonormal basis we seek is

    1√21√2

    0

    ,−

    √22√220

    ,00

    1

    First SectionSecond SectionThird SectionFourth SectionFifth SectionSixth SectionSeventh SectionEighth SectionNinthSection