65
Copyright McGraw-Hill 2009 1 Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

  • Upload
    hatram

  • View
    240

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 1

Chapter 9

Chemical Bonding II:

Molecular Geometry

and Bonding

Theories

Page 2: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 2

9.1 Molecular Geometry

• Molecular geometry is the three-dimensional shape of a molecule.

• Geometry can be predicted using – Lewis dot structures– VSEPR model

CCl4

Page 3: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 3

• Molecules of the type ABx will be

considered

– A is the central atom

– B atoms surround the central atom

– x commonly has integer values from 1 to 6

– Examples:

All AB1 molecules are linear.

Page 4: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 4Copyright McGraw-Hill 2009

AB2

AB3

Page 5: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 5Copyright McGraw-Hill 2009

• VSEPR Model: Valence-Shell Electron-

Pair Repulsion Model

− Electron pairs move as far apart as possible to

minimize repulsions.

Lewis

structure

Electron-domain

geometry

Molecular

geometry

− Strategy to predict geometry:

− Electron domain is a lone pair or a bond

(the bond may be single, double, or triple).

Page 6: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 6Copyright McGraw-Hill 2009

• Steps to determine Geometry

−Step #1: Draw the molecule’s Lewis structure.

−Step #2: Count the number of electron domains on

the central atom.

−Step #3: Determine the electron-domain geometry.

Examples

H – CN::O:

:O – N = O:

– :

::

:–

:F – Xe – F:::

: ::

• The electron-domain geometry is based on the

number of electron domains around the central

atom.

2 3 5

Page 7: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 7Copyright McGraw-Hill 2009

• Electron domains and geometry

Number of

Electron DomainsElectron-Domain Geometry

2 Linear

3 Trigonal planar

4 Tetrahedral

Page 8: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 8Copyright McGraw-Hill 2009

Number of

Electron DomainsElectron-Domain Geometry

5 Trigonal bipyramidal

6 Octahedral

Page 9: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 9Copyright McGraw-Hill 2009

− Step #4: Determine the molecular geometry.

Step #2 4 e¯ domains

Example: Ammonia, NH3

The electron-domain geometry and the number of

bonded atoms determine the molecular geometry.

Step #1

:

H – N – H –

Helectron-domain

geometry

tetrahedral

Step #3

molecular geometry = trigonal pyramidal

Page 10: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 10Copyright McGraw-Hill 2009

Note: The common molecular geometries are all

derived from these 5 electron-domain

geometries.

Linear

Bent

Trigonal planar

Bent

Trigonal pyramidal

Tetrahedral

T-shaped

Seesaw

Trigonal bipyramidal

Linear

T-shaped

Square planar

Square pyramidal

Octahedral

Page 11: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 11Copyright McGraw-Hill 2009

For SF4, which geometry is correct?

or

• Axial and equatorial positions

ax

ax

eq

eqeq

ax = axial

eq = equatorial

The 5 electron

domains are not

all equivalent.

Why?

Fewest lone-pair –

bond-pair interactions

at angles of 90o

90º

120º

Page 12: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 12

Page 13: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 13

Page 14: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 14Copyright McGraw-Hill 2009

Exercise: For each of the following species,

i) draw the Lewis structure.

ii) determine the number of electron domains on

the central atom and its electron-domain

geometry.

iii) predict the molecular geometry.

a) NF3

b) CO32

Page 15: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 15Copyright McGraw-Hill 2009

a) NF3

i)

ii) 4 electron domains on the central atom.

Electron-domain geometry: tetrahedral

iii) One lone pair on the central atom.

Molecular geometry: trigonal pyramidal

F N F

F

Page 16: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 16Copyright McGraw-Hill 2009

a) CO32

i)

ii) 3 electron domains on the central atom.

Electron-domain geometry: trigonal planar

iii) No lone pairs on the central atom.

Molecular geometry: trigonal planar

O C O

O

2

Page 17: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 17Copyright McGraw-Hill 2009

• Deviations from ideal bond angles

− All electron domains repel each other.

− The repulsion between domains depends on the

types of domains involved.

single

bond

triple

bond

double

bond

lone

pair< <<

Increasingly repulsion

Page 18: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 18Copyright McGraw-Hill 2009

lone-pair - lone-pair repulsion

is greater than

lone-pair - bonding-pair repulsion

is greater than

bonding-pair - bonding-pair repulsion

Page 19: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 19Copyright McGraw-Hill 2009

• Geometry with more than one central atom

CH3OH

C O

H

H

H

H

AX4AX4No lone pairs

2 lone pairs

tetrahedral

bent

C

H

H

O

H

H

Page 20: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 20Copyright McGraw-Hill 2009

9.2 Molecular Geometry

and Polarity

+ -

H – F H – F

Bond dipoles are vectors and therefore are additive.

The HF bond is polar and HF has a dipole moment ().

Page 21: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 21

• Molecules with more than two atoms– Remember bond dipoles are additive since

they are vectors.

dipole moment > 0

dipole moment = 0

H2O

CO2

Page 22: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 22Copyright McGraw-Hill 2009

cis-1,2-dichloroethene trans-1,2-dichloroethene

C C=Cl

H

Cl

H

C C=Cl

H

H

Cl

Example: Dichloroethene, C2H2Cl2, exists as three isomers.

polar

= 1.90 D

bp = 60.3ºC

nonpolar

= 0 D

bp = 47.5ºC

C C=Cl

Cl

H

H

1,1-dichloroethene

polar

= 1.34 D

bp = 31.7ºC

Page 23: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 23Copyright McGraw-Hill 2009

9.3 Valence Bond Theory

• Electrons in molecules occupy atomic

orbitals.

• Covalent bonding results from the

overlap of atomic orbitals.

Page 24: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 24

Representation of singly-occupied and doubly-occupied

s and p atomic orbitals. Singly-occupied orbitals appear

light; doubly-occupied orbitals appear darker.

Page 25: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 25Copyright McGraw-Hill 2009

Example: H(1s1) + H(1s1) H2

Page 26: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 26Copyright McGraw-Hill 2009

Example: F(1s22s22p5) + F(1s22s22p5) F2

Page 27: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 27Copyright McGraw-Hill 2009

Example: H(1s1) + F(1s22s22p5) HF

Page 28: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 28

9.4 Hybridization of

Atomic Orbitals• Valence bond theory cannot account for

many experimental observations.

Beryllium Chloride, BeCl2

linear

both bonds equivalent

VSEPRBe ClCl

• No unpaired electrons

• 2 types of overlap

with 2s and 2p

#1

#2

Page 29: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 29

Page 30: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 30

• The atomic orbitals on an atom mix to

form hybrid orbitals.

– Orbital shapes (boundary surfaces) are

pictorial representations of wave functions.

– Wave functions are mathematical

functions.

– Mathematical functions can be combined.

• Hybridization of s and p orbitals

– sp hybridization

Page 31: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 31Copyright McGraw-Hill 2009

• The two sp orbitals point in opposite directions

inline with one another.

Page 32: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 32Copyright McGraw-Hill 2009

• Each Be sp orbital overlaps a Cl 3p orbital to yield

BeCl2.

2Cl + BeCl2Be

All bond angles 180o.

Page 33: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 33Copyright McGraw-Hill 2009

#2 • 2 types of overlap with 2s and 2p

#3 • overlap with p-orbitals = 90o

Example: Boron trifluoride, BF3

. .F ....

B

F..

.... F

. .

. ...

VSEPR • trigonal planar

• all bonds equivalent

• only 1 unpaired electron

− sp2 hybridization

#1

Page 34: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 34Copyright McGraw-Hill 2009

• The three sp2 orbitals point to the corners of an

equilateral triangle.

All bond angles 120o.

Page 35: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 35Copyright McGraw-Hill 2009

• Each B sp2 orbital overlaps a F 2p orbital to yield BF3.

B3F + BF3

2s2 2p5

All bond angles 120o.

Page 36: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 36Copyright McGraw-Hill 2009

#2 • 2 types of overlap with 2s and 2p

• overlap with p-orbitals = 90°

tetrahedral

all bonds equivalent

Example: Methane, CH4

VSEPRC

H

H

H

H

• only 2 unpaired electrons#1

− sp3 hybridization

#3

Page 37: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 37Copyright McGraw-Hill 2009

Page 38: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 38Copyright McGraw-Hill 2009

• The sp3 hybrid orbitals point to the corners of a

tetrahedron.

All bond angles 109.5o.

Page 39: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 39Copyright McGraw-Hill 2009

• Each C 2sp3 orbital overlaps a H 1s orbital to yield CH4.

C4H + CH41s1

All bond angles 109.5o.

Page 40: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 40Copyright McGraw-Hill 2009

• Expanded octets

− Hybridization of s, p and d orbitals

Bond angles 120o and 90o.

Page 41: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 41Copyright McGraw-Hill 2009

Lewis

structure

Number of

electron domainsType of

hybridization

Page 42: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 42

9.5 Hybridization in Molecules

Containing Multiple Bonds

• A sigma () bond is a bond in which

the shared electron density is

concentrated directly along the

internuclear axis between the two nuclei

involved in bonding.

– end-to-end overlap

Page 43: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 43

• Double and triple bonds consist of both

sigma () and pi () bonds.

• A pi () bond forms from the sideways

overlap of p orbitals resulting in regions

of electron density that are concentrated

above and below the plane of the

molecule.– sideways overlap

Page 44: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 44Copyright McGraw-Hill 2009

Example: Ethylene, C2H4 C C=H

H

H

H

number of = 3

electron domains

Double bond = 1 bond + 1 bond

hybridization = sp2

Page 45: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 45Copyright McGraw-Hill 2009

Example: Acetylene, C2H2 H– CC – H

number of = 2

electron domains

Triple bond = 1 bond + 2 bonds

hybridization = sp

Page 46: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 46Copyright McGraw-Hill 2009

Exercise: How many pi bonds and sigma bonds are

in each of the following molecules? Describe the

hybridization of each C atom.

(a) 4 sigma bonds

(b) 5 sigma bonds, 1 pi bond

(c) 10 sigma bonds, 3 pi bonds

sp3 sp2

sp2 sp3 sp2

sp2

sp spC ClCl

H

H

C C

HH

H Cl

H3C C

H

C

H

C C H

(a) (b) (c)

Page 47: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 47

9.6 Molecular Orbital Theory

• Molecular Orbital Theory (MO)

– Atomic orbitals combine to form new molecular orbitals which are spread out over the entire molecule. Electrons are in orbitals that belong to the molecule as a whole.

– Molecular orbitals (wave functions) result from adding and/or subtracting atomic orbitals (wave functions).

Page 48: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 48

• Molecular orbital theory (MO)

– Atomic orbitals combine to form new,

molecular orbitals that are spread out over

the entire molecule. Electrons are now in

orbitals that belong to the molecule as a

whole.

Page 49: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 49Copyright McGraw-Hill 2009

− Pictorial representation.

H + H H2

1s1 1s1 1s2

bonding orbital

antibonding orbital

*s1

s11s 1s

H atomic orbitals

H2 molecular orbitals

sum

difference

Page 50: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 50Copyright McGraw-Hill 2009

• Lower energy and more stable than the atomic

orbitals that were added

• Types of molecular orbitals

− Bonding molecular orbital

• High electron density between the nuclei

Page 51: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 51Copyright McGraw-Hill 2009

• Higher energy and less stable than the atomic

orbitals that were subtracted

− Antibonding molecular orbital

• Low electron density between the

nuclei

node

Page 52: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 52Copyright McGraw-Hill 2009

bond order = 1/2 (2 – 0) = 1

single bondbond order = 1/2 (2 – 2) = 0

no bond

• Bond order

Page 53: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 53Copyright McGraw-Hill 2009

bond order = 1/2 (2 – 0) = 1

single bond

bond order = 1/2 (2 – 2) = 0

no bond

Examples Using Antibonding Orbitals

Page 54: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 54

• Pi () molecular orbitals

– Wave functions representing p orbitals

combine in two different ways yielding

either orbitals or orbitals.

– End-to-end combination yields sigma ()

orbitals

Copyright McGraw-Hill 2009

Atomic orbitals

+ +- -±

2pz 2pz

Molecular orbitals

+

- -+ +

- -

sum

difference

bonding orbital

antibonding orbital

*p2

p2

Page 55: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 55Copyright McGraw-Hill 2009

Atomic orbitals

sum

difference

sum

difference

2px

±+

--

2px

+

+

-

+

+

-

-

+

-

+

+ --

Molecular orbitals

*p2

*p2

p2

p2

− Sideways combination yields pi () orbitals

2py

±

++

--

2py

Page 56: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 56Copyright McGraw-Hill 2009

• Energy order of the 2p and 2p orbitals

changes across the period.

B2, C2, N2 O2, F2, Ne2

Page 57: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 57Copyright McGraw-Hill 2009

Molecular orbital diagram of nitrogen, N2

Page 58: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 58Copyright McGraw-Hill 2009

Molecular orbital diagram of oxygen, O2

Page 59: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 59

• Magnetism

– Diamagnetic substance

• A substance whose electrons are all

paired.

• Weakly repelled by magnetic fields.

– Paramagnetic substance

• A substance with one or more unpaired

electrons.

• Attracted by magnetic fields.

Page 60: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 60Copyright McGraw-Hill 2009

Page 61: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 61

9.7 Bonding Theories and

Descriptions of Molecules with

Delocalized Bonding

• In localized bonds the and bonding

electrons are associated with only two

atoms.

• Resonance requires delocalized

bonds when applying valence bond

theory.

Page 62: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 62

• In delocalized bonds the bonding

electrons are associated with more than

two atoms.

Examples:

NO3, CO3

2, C6H6 , O3

Page 63: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 63Copyright McGraw-Hill 2009

Example: benzene, C6H6

Each C atom has 3

electron domains

Hybridization: sp2

Page 64: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 64

Key Points

• Molecular geometry

– VSEPR model

• Molecular geometry and polarity

• Valence bond theory

• Hybridization of atomic orbitals

– s and p

– s, p, and d

• Hybridization involving multiple bonds

Page 65: Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding · PDF fileChapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories . Copyright McGraw-Hill 2009 2 9.1 Molecular

Copyright McGraw-Hill 2009 65

Key Points

• Molecular orbital theory

– Bonding and antibonding orbitals

– Sigma () molecular orbitals

– Pi () molecular orbitals

– MO diagrams