34
CHAPTER 9 Nuclear Energy I. I. Radioactivity Radioactivity (pg.284-292)

CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Embed Size (px)

Citation preview

Page 1: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

CHAPTER 9

Nuclear Energy

CHAPTER 9

Nuclear Energy

I. RadioactivityI. Radioactivity(pg.284-292)

I. RadioactivityI. Radioactivity(pg.284-292)

Page 2: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Radioactive ElementsRadioactive ElementsRadioactive ElementsRadioactive Elements

Page 3: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

A. DefinitionsA. DefinitionsA. DefinitionsA. Definitions

Radioactivity Process of unstable nuclei of

elements becoming stable through emitting particles or releasing energy away from the atom

Also called nuclear decay

Page 4: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

DefinitionsDefinitionsDefinitionsDefinitions

During nuclear decay, the element can transform into a different isotope of the same element or to a different element completely.

Transmutation process of changing one element into

another element by nuclear decay

Page 5: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

DefinitionsDefinitionsDefinitionsDefinitions

Nuclear radiation is the released energy and matter during nuclear decay.

This can have both positive and negative effects for life on earth.

Page 6: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

DefinitionsDefinitionsDefinitionsDefinitions

Isotopes – elements that have the same number of protons but different number of neutrons in their nuclei.

Page 7: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

IsotopesIsotopesIsotopesIsotopes

Carbon-12, Carbon-13, Carbon-14

Page 8: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Where does this take Where does this take place?place?

Where does this take Where does this take place?place?

Radioactivity (nuclear decay) happens in the nucleus of the atom.

Page 9: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

He42

B. Types of RadiationB. Types of RadiationB. Types of RadiationB. Types of Radiation

Alpha () helium nucleus paper2+

Beta-minus (-) electron e0

-11- plastic

Gamma () high-energy photon 0 lead

Page 10: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Types of RadiationTypes of RadiationTypes of RadiationTypes of Radiation

Neutron emission (n) 1

0 n 0 charge

Page 11: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

C. Nuclear DecayC. Nuclear DecayC. Nuclear DecayC. Nuclear Decay

Why some nuclei decay… to obtain a stable ratio of neutrons to protons

K

K4019

3919

Stable

Unstable(radioactive)

Page 12: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

C. Nuclear DecayC. Nuclear DecayC. Nuclear DecayC. Nuclear Decay

Alpha Emission

He Th U 42

23490

23892

Beta Emission

e Xe I 0-1

13154

13153

TRANSMUTATIONTRANSMUTATIONTRANSMUTATIONTRANSMUTATION

Page 13: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

ExampleExampleExampleExample

Actinium-217 decays by releasing an alpha particle. Write the equation for this decay process and determine what element is formed.

Step 1: Write the equation with the original element on the reactant side and products on the right side.

Page 14: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

ExampleExampleExampleExample

217 A 4

89 Ac Z X + 2 He Step 2: Write math equations for the atomic

and mass numbers.217 = A + 489 = Z + 2

Page 15: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

ExampleExampleExampleExample

Step 3: Rearrange the equations.

A = 217 – 4 Z = 89 - 2

Step 4:Solve for the unknown value, and rewrite the equation with all nuclei.

A = 213 Z = 87

Page 16: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

ExampleExampleExampleExample

217 213 4

89 Ac 87 Fr + 2 He

This is an example of alpha decay.

Page 17: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

D. Half-lifeD. Half-lifeD. Half-lifeD. Half-life

Half-life (t½)

time it takes for half of the radioactive nuclei in a sample to decay

Nuclear Decay

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10

# of Half-Lives

Ma

ss

of

Iso

top

es

(g

)

Example Half-lives

polonium-194 0.7 seconds

lead-212 10.6 hours

iodine-131 8.04 days

carbon-14 5,370 years

uranium-238 4.5 billion years

Page 18: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Half-lifeHalf-lifeHalf-lifeHalf-life

Page 19: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)
Page 20: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

If we start out with 1 gram of the parent isotope, after the passage of 1 half-life, there will be 0.5 gram of the parent isotope left.  

If we start out with 1 gram of the parent isotope, after the passage of 1 half-life, there will be 0.5 gram of the parent isotope left.  

Page 21: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

D. Half-lifeD. Half-lifeD. Half-lifeD. Half-life How much of a 20-g sample of sodium-24 would

remain after decaying for 30 hours? Sodium-24 has a half-life of 15 hours.

GIVEN:

total time = 30 hours

t1/2 = 15 hours

original mass = 20 g

WORK:

number of half-lives = 2

20 g ÷ 2 = 10 g (1 half-life)

10 g ÷ 2 = 5 g (2 half-lives)

5 g of 24Na would remain.

Page 22: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Nuclear ForcesNuclear ForcesNuclear ForcesNuclear Forces

There are two types of forces in the nucleus.

•Strong nuclear force – helps attract the protons and neutrons in the nucleus and keep them together.

•Repulsive force- protons repel each other because they are the same charge

Page 23: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Nuclear ForcesNuclear ForcesNuclear ForcesNuclear Forces

In stable atoms, the attractive forces are stronger than the repulsive forces.

Page 24: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

A. FA. F issionissionA. FA. F issionission

splitting a nucleus into two or more smaller nuclei

some mass is converted to large amounts of energy

n3 Kr Ba U n 10

9236

14156

23592

10

Page 25: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

A. FA. F issionissionA. FA. F issionission

chain reaction - self-feeding reaction

Page 26: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

FissionFissionFissionFission

Chain reactions can be controlled and used to create electricity in nuclear power plants.

The minimum amount of a substance that can undergo a fission reaction and sustain a chain reaction is called critical mass.

Page 27: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

B. FusionB. FusionB. FusionB. Fusion

combining of two nuclei to form one nucleus of larger massproduces even more

energy than fissionoccurs naturally in

stars

Page 28: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

FusionFusionFusionFusion

Page 29: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Nuclear Radiation in LifeNuclear Radiation in LifeNuclear Radiation in LifeNuclear Radiation in Life

Background radiation is nuclear radiation that is around you from natural sources like the sun, soil, rocks, and space.

A rem or millirem (1 rem = 1000millirems) is the unit for radiation.

Page 30: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Nuclear Radiation in Life Nuclear Radiation in Life Nuclear Radiation in Life Nuclear Radiation in Life

A safe limit is set at 5000 millirems/year.

Occupation – X-ray tech, flight attendant

Where you live- high elevation, near rocks

Activities - smoking

Page 31: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

A. Nuclear PowerA. Nuclear PowerA. Nuclear PowerA. Nuclear Power

Fission Reactors

Page 32: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

A. Nuclear PowerA. Nuclear PowerA. Nuclear PowerA. Nuclear Power

Fusion Reactors (not yet sustainable)

Tokamak Fusion Test Reactor

Princeton University

National Spherical Torus Experiment

Page 33: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

A. Nuclear PowerA. Nuclear PowerA. Nuclear PowerA. Nuclear Power

235U is limited danger of meltdown toxic waste thermal pollution

Hydrogen is abundant no danger of meltdown no toxic waste not yet sustainable

FISSION

FUSION

vs.

Page 34: CHAPTER 9 Nuclear Energy I. Radioactivity (pg.284-292) I. Radioactivity (pg.284-292)

Other benefits to Other benefits to radiationradiation

Other benefits to Other benefits to radiationradiation

Smoke detectorsDisease detectionUltra soundCT scanMRICancer treatment