15
The Human Race and The Technology Race! George Gantz 2014 Chapter III: The Technology Race to Superintelligence? Previous Chapters: Chapter I: The Human - Technology Interface Chapter II: What is the Human Race? Forthcoming Chapter: Chapter IV: Practical Advice - Responding to Technological Change 1. Introduction In Chapter I we provided a survey of some of the problems in the Human Technology interface. Advancing digital technology does not always, and perhaps only rarely, integrate seamlessly with the biology of its human masters. In some cases the technology may be disruptive to human aspirations and capacities. In Chapter II we examined in greater detail the questions of what it means to be human and what the goals are for the human race. Remarkably, we have made extraordinary progress, particularly in recent centuries, in terms of human population, lifespan, violence and economic wellbeing. Humanity has been thriving, in large part as a consequence of technological innovation. Will this positive trajectory continue? It seems that will depend on the trajectory of our technological advance, and particularly the trajectory of digital technologies that fuel and shape all the rest. Given the ubiquity of digital technology, will future advances lead to human thriving, or to something else.

Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

The  Human  Race  -­‐  and  The  Technology  Race!        George  Gantz  2014  

Chapter  III:    The  Technology  Race  -­‐  to  Superintelligence?  

Previous Chapters: Chapter I: The Human - Technology Interface Chapter II: What is the Human Race? Forthcoming Chapter: Chapter IV: Practical Advice - Responding to Technological Change    

1. Introduction        In  Chapter  I  we  provided  a  survey  of  some  of  the  problems  in  the  Human  -­‐  Technology  interface.    Advancing  digital  technology  does  not  always,  and  perhaps  only  rarely,  integrate  seamlessly  with  the  biology  of  its  human  masters.    In  some  cases  the  technology  may  be  disruptive  to  human  aspirations  and  capacities.    In  Chapter  II  we  examined  in  greater  detail  the  questions  of  what  it  means  to  be  human  and  what  the  goals  are  for  the  human  race.    Remarkably,  we  have  made  extraordinary  progress,  particularly  in  recent  centuries,  in  terms  of  human  population,  lifespan,  violence  and  economic  well-­‐being.      Humanity  has  been  thriving,  in  large  part  as  a  consequence  of  technological  innovation.    Will  this  positive  trajectory  continue?    It  seems  that  will  depend  on  the  trajectory  of  our  technological  advance,  and  particularly  the  trajectory  of  digital  technologies  that  fuel  and  shape  all  the  rest.    Given  the  ubiquity  of  digital  technology,  will  future  advances  lead  to  human  thriving,  or  to  something  else.    

Page 2: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 2 Digital  technology  is  exerting  a  transformational  influence  on  almost  every  facet  of  the  human  economic  and  social  enterprise.    Each  of  these  facets  will  follow  a  unique  trajectory.    This  makes  “general”  predictions  about  the  future  difficult  if  not  impossible.    The  evolution  of  digital  technology  applications  is  likely  to  be  as  chaotic  and  seemingly  unpredictable  as  the  evolution  of  biological  life,  although  on  a  far  shorter  time  horizon.    Yet  there  is  one  potential  digital  technology  that  is  getting  increasing  attention,  and  that  may,  in  time,  drive  all  the  rest.    That  is  the  goal  of  designing  and  building  human  level  general  intelligence.    Some  have  called  this  -­‐  the  “Singularity.”      In  this  chapter  we  will  explore  the  basis  for  the  optimism  many  are  expressing  for  achieving  artificial  super-­‐intelligence,  as  well  as  the  concerns  that  are  now  being  raised  about  the  potential  consequences  of  such  an  achievement.    We  will  conclude  with  some  observations  about  why  creating  a  super-­‐intelligence  may  be  vastly  more  difficult  that  its  promoters  believe.    

2. Moore’s  Law    In  1965,  Gordon  Moore,  the  founder  of  Intel  Corporation,  offered  a  theoretical  projection  of  continuing  exponential  advances  in  computing  power  and  capacity  for  the  coming  decades.    This  is  now  known  as  “Moore’s  Law”,  and,  remarkably,  Moore’s  Law  has,  over  the  past  45  years,  so  far  held  true.    In  terms  of  speed,  capacity  and  memory,  our  computational  capabilities  have  continued  to  increase  at  an  exponential  rate.    Chart  1  on  the  following  page  shows  a  version  of  Moore’s  Law  from  Intel  Corporation  covering  the  period  from  1970  to  2010.    Chart  2  shows  an  example  of  Moore’s  Law  from  Ray  Kurzweil,  author  of  the  2005  best  seller  The  Singularity  is  Near  –  When  Humans  Transcend  Biology,  covering  the  period  from  1900  to  2010.      I’ve  added  a  vertical  line  to  Chart  2  in  1970  to  show  the  corresponding  period  as  in  Chart  1.    These  two  graphs  use  a  similar  logarithmic  scale  as  the  graphs  in  Chapter  II  –  the  upward  sloping  line  reflects  an  exponential  growth  rate.    Each  horizontal  line  as  you  move  up  is  a  ten-­‐fold  increase  over  the  line  below.      What  these  graphs  show  is  that,  using  two  different  measures  of  computing  power,  growth  has  been  consistently  exponential  over  the  period.    This  is  dramatic  progress.      In  the  1960’s  and  ‘70’s.  Moore’s  Law  was  considered  by  many  to  be  an  extremely  optimistic  projection,  as  each  stage  in  the  advancement  of  computing  power  appeared  to  confront  increasingly  more  difficult  constraints  to  further  breakthroughs.    Yet  almost  five  decades  later  the  projection  continues  to  hold.    For  many  it  has  become  an  article  of  faith  that  computational  advances  will  continue  to  follow  Moore’s  Law  into  the  foreseeable  future.    

Page 3: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 3 Chart  1.    Moore’s  Law  -­‐  transistor  capacity  1970  to  2010  (Intel).  

   Chart  2.    Moore’s  Law  -­‐  calculating  speed  per  $K  -­‐  1900  to  2010  (Kurzweil)  

Page 4: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 4 Chart  3  below  shows  a  conceptual  projection  of  technological  advancement  published  by  Time  Magazine  online.      Along  the  top  we  see  a  list  of  major  technological  advances  along  with  the  time  span  between  them:    8000  years  between  the  agriculture  revolution  and  the  industrial  revolution  –  another  120  years  to  the  invention  of  the  light  bulb  (the  electrical  revolution)  –  90  more  years  to  the  moon  landing  –  another  22  years  to  the  world  wide  web  and  then  just  9  years  to  the  sequencing  of  the  human  genome.    These  big  technological  discoveries  seem  to  be  speeding  up!    The  lower  part  of  the  graph  shows  another  representation  of  Moore’s  law,  also  beginning  in  the  year  1900,  with  various  computer  inventions  highlighted.    The  graph  also  continues  into  the  future  as  a  forecast.    On  the  far  right,  the  graph  suggests  that  by  2015,  computer  capability  in  terms  of  speed  (calculations  per  second)  will  increase  to  the  point  that  it  will  surpass  the  brainpower  of  a  mouse.    By  2023,  it  will  surpass  the  brainpower  of  a  single  human,  and  by  2045  it  will  surpass  the  brainpower  of  all  human  brains  combined.    As  the  graph  proclaims:    “The  accelerating  pace  of  change  and  exponential  growth  in  computing  power  will  lead  to  the  Singularity.”    Chart  3.      History  and  Projection  of  Technological  Advances  (link)  

 I  don’t  suggest,  as  the  Time  Magazine  graph  apparently  does,  that  you  can  equate  computational  speed  with  intelligence.    Nevertheless,  most  experts  do  predict  that  computers  will  achieve  human  level  general  intelligence  in  this  century.    Some  contend  that  the  increase  in  computer  intelligence  at  that  point  will  be  so  fast  that  it  will  take  on  the  appearance  of  vertical  growth  –  hence  the  name  “Singularity”.  

Page 5: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 5 3. Super-­‐intelligence    Is  it  likely  that  our  computer  scientists  will  eventually  manage  to  build  a  computer  program,  installed  on  appropriate  and  necessarily  sophisticated  hardware,  that  is  capable  of  learning  and  has  the  capacity  to  outperform  humans  on  every  test  of  intelligence?      In  terms  of  learning,  some  computers  can  do  that  now,  and  the  results  are  proving  to  be  exciting  as  well  as  interesting.    Among  the  interesting  findings:    In  Switzerland,  robots  with  learning  and  communication  capability  were  trained  to  play  a  game  together  where  they  seek  to  find  “food”  and  avoid  “poison”  -­‐  these  robots  quickly  learned  that  lying  to  their  compatriots  could  be  a  successful  strategy.            Computer  programs  are  now  also  quite  capable  of  outperforming  humans  in  a  wide  array  of  activities.    Among  the  most  famous  examples  is  Deep  Blue,  the  computer  program  that  beat  reigning  World  Champion  Gary  Kasparov  at  chess  in  1997.    The  computer  program  Watson  also  beat  the  reigning  Champion  in  the  notoriously  tricky  game  of  Jeopardy  in  2011.    Some  games,  like  GO  or  poker,  seem  to  be  more  difficult  for  computers  to  master,  but  it  seems  to  be  only  a  matter  of  time  until  specialized  computers  are  built  that  can  best  humans  in  those  games,  too.        Computers  are  now  also  routinely  being  employed  in  what  are  considered  expert  tasks  –  medical  diagnosis  and  surgery  –  engineering  –  operational  and  manufacturing  controls  –  interactive  telephone  networks.      Interactive  computer  programs,  such  as  the  Siri  program  on  the  iPhone,  are  becoming  commonplace.    While  it  may  take  some  time  for  such  computers  to  be  able  to  pass  the  “Turing  Test”1,  it  no  longer  seems  very  far-­‐fetched.    Intelligent,  interactive  computers  are  common  in  fiction  -­‐  in  time  they  may  seem  commonplace  in  the  daily  world  as  well.    Clearly,  we  are  moving  quickly  in  the  direction  of  getting  smarter  computers  –  doesn’t  it  seem  just  a  matter  of  time  before  someone  builds  a  computer  program  that  is  smarter  than  its  creators?          What  happens  when  we  do?      Some  speculations:    

! It  is  likely  that  a  computer  program  with  human-­‐level  general  intelligence  will  be  able  to  assimilate  vast  amounts  of  knowledge  and  information  quickly.        

! Such  a  program  will  probably  have  Internet  links  and  access  to  many  resources,  potentially  including  robotics,  satellite  data  and  remote  sensing.      

! By  virtue  of  its  learning  capabilities,  it  will  be  able  to  adjust  its  own  programming  –  and  perhaps  its  associated  hardware  and  sensing  devices  -­‐  in  ways  that  will  in  time  (perhaps  quite  quickly)  increase  its  effective  intelligence  to  levels  well  beyond  what  we  can  imagine.    

1  Alan  Turing  (1902-­‐1954),  one  of  the  founders  of  modern  computing,  developed  a  common  sense  notion  of  computer  intelligence.    When  a  human  has  an  extensive  conversation  with  a  hidden  entity  and  is  not  able  to  determine  whether  it  is  human  or  machine,  the  entity  has  passed  the  Turing  test.  

Page 6: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 6  The  consensus  among  the  experts  is  that  once  human-­‐level  general  intelligence  is  achieved,  that  program,  network  or  Artificial  Intelligence  will  evolve  quickly  and  become  a  super-­‐intelligence.      With  super-­‐intelligent  capacity,  the  entity  could  link  to  and  control  computer  networks,  communication  devices,  hardware  manufacturing  facilities  –  essentially  our  entire  sophisticated  digital  infrastructure  –  in  order  to  achieve  the  goals  that  had  been  set  for  it.    Potentially,  this  capacity  will  enable  it  to  identify  and  overcome  just  about  any  technical  or  resource  barriers  -­‐  including  any  barriers  erected  by  its  much  less  intelligent  creators.      How  can  we  deal  with  such  a  machine?    

4. Raising  Concerns    The  real  question  may  be  -­‐  how  would  such  a  machine  deal  with  us,  its  human  creators?    Isaac  Asimov,  scientist  and  writer,  pioneered  the  “laws  of  robotics”  in  1942:    The  first  law  is  that  a  robot  may  not  injure  or  allow  a  human  being  to  come  to  harm;  The  second  law  is  that  a  robot  must  obey  the  orders  of  humans  unless  it  violates  the  first  law;  And  the  third  law  is  that  a  robot  must  protect  its  own  existence  unless  that  violates  the  First  or  Second  Law.      This  is  all  nicely  reassuring.    However,  these  laws  are  a  literary  construct  for  Asimov’s  science  fiction  stories  -­‐  they  do  not  exist  or  apply  in  any  governing  institutions.    Moreover,  in  the  context  of  complex  systems  and  advanced  digital  technology,  these  laws  are  going  to  be  unfeasibly  simplistic.    Thankfully,  to  date,  they  have  not  been  needed.    You  may  also  feel  reassured  to  learn  that  Google,  one  of  the  largest  and  most  innovative  corporations  engaged  in  the  digital  transformation,  has  adopted  an  official  corporate  motto  -­‐  “don’t  be  evil”  –  and  they  have  instituted  an  AI  ethics  review  board  which  we  can  hope  will  be  able  to  enforce  that  motto.    Whether  these  constraints  will  be  effective  in  the  context  of  a  culture  so  thoroughly  committed  to  the  digital  transformation  is  another  question.        In  any  case,  the  topic  of  super-­‐intelligence  is  now  getting  significant  discussion  and  debate.    One  key  question  is  whether  and  how  we  might  be  able  to  achieve  the  intent  of  Asimov’s  laws.    My  sense  at  this  point  is  that  discussion  so  far  is  limited  to  the  expert  community.    It  has  not  yet  been  given  a  lot  of  attention  by  the  public,  the  government  or  the  international  community.    Meanwhile,  the  notion  of  an  evolving  super-­‐intelligence  is  firmly  embedded  in  the  computer  science  world  –  it  is  not  just  science  fiction  anymore.    There  are  books,  conferences,  associations  and  investments  (including  some  large  investments  from  silicon  valley  billionaires)  flowing  into  the  field.    For  many,  the  goal  is  to  get  there  as  soon  as  possible  because  they  believe  in  the  progress  this  will  deliver  for  humanity  –  or  at  least  

Page 7: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 7 some  of  humanity.    The  opportunity  for  extraordinary  profits  may  also  be  a  motivation,  albeit  a  less  public  one.        There  is  even  a  new  social  movement  called  Trans-­‐humanism  that  is  promoting  the  concept  and  goal  of  super-­‐intelligence  –  the  idea  of  humanity  evolving,  in  conjunction  with  digital  technology,  beyond  the  capabilities  and  constraints  of  the  human  body  and  mind.      Ray  Kurzweil  helped  popularize  these  concepts  in  his  book  The  Singularity.    Ray  is  66  years  old  –  a  brilliant  computer  scientist  and  inventor  now  serving  as  Google’s  Director  of  Engineering.    He  is  convinced  that  super-­‐intelligence  will  arrive  quickly  and  will  bring  with  it  the  effective  end  of  human  mortality.    His  personal  goal  is  to  make  sure  he  lives  long  enough  to  achieve  immortality  –  he  reportedly  takes  hundreds  of  nutritional  supplements  daily.    This  is  a  man  who  is  committed  to  his  goals!    Nick  Bostrom  is  also  a  very  smart  guy  and,  to  my  mind,  more  circumspect  than  Kurzweil.    He  is  the  Director  of  the  Future  of  Humanity  Institute  and  very  concerned  with  issues  of  existential  risk  for  the  human  race.    Earlier  this  year  he  released  a  book,  Super-­‐intelligence  –  Paths,  Dangers,  Strategies,  and  in  recent  months  he  has  been  quoted  and  interviewed  a  number  of  times  in  the  media.    Bostrom  identifies  five  pathways  to  Super-­‐intelligence,  including:    

∗ Artificial  Intelligence  –  an  intelligent  computer  program  ∗ Brain  Emulation  –  reverse  engineering  and  simulating  the  brain  ∗ Biological  Cognition  –  a  synthetic  biological  brain,  also  known  as  “wet  AI”  ∗ Human-­‐IT  Interface  –  symbiotic  integration  of  smart  hardware  and  humans  ∗ Networks  /  Organization  –  an  “emergent”  super  intelligence  

 He  also  discusses  at  length  the  key  risks  associated  with  a  developing  super-­‐intelligence.    These  include  concerns  with  Kinetics,  Strategic  Advantage  and  Cognitive  Superpowers  and  the  issues  of  dealing  with  a  Super-­‐intelligent  Will.    Kinetics  refers  to  the  possible  speed  and  surprise  that  may  be  associated  with  the  evolution  of  super-­‐intelligence,  once  human-­‐level  intelligence  is  achieved.    Bostrom  suggests  that  super-­‐intelligence  could  emerge  in  a  matter  of  hours  or  days  –  and  what  emerges  could  be  radically  different  from  the  programmers’  expectations.    Even  if  the  process  took  many  months,  Bostrom  points  out  that  the  first  program  or  entity  (or  the  corporate  or  government  team  creating  it)  would  have  a  significant  strategic  advantage  over  any  subsequent  efforts.    Arguably,  this  would  leave  the  world  with  single  monopoly  super-­‐intelligence.    Even  if  multiple  efforts  resulted  in  a  variety  of  competing  super  intelligent  entities,  all  of  them  would  in  some  manner  exhibit  cognitive  superpowers  –  the  ability  to  out-­‐think  its  human  creators  faster  than  the  blink  of  an  eye.    If  robots  can  already  learn  to  lie,  it  is  sobering  to  wonder  what  a  super-­‐intelligent  computer  will  learn  in  the  first  few  moments  of  its  existence.    These  scenarios  lead  to  the  larger  issue  of  dealing  with  a  Super-­‐intelligent  will.    Can  we  

Page 8: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 8 control  what  choices  and  actions  the  super  intelligent  machine  will  take.    If  we  are  able  technically  to  impose  such  a  control  mechanism,  what  structure  of  values  and  ethics  should  be  embodied  in  those  controls,  and  how  can  we  “teach”  them  to  the  entity  we  have  created.    Human  values  are  complex  and  often  conflicting  –  how  do  we  choose  what  values  to  teach?        

 

5. How  Real  is  This?    The  scenarios  outlined  by  Bostrom  are  rather  frightening.    Should  we  be  concerned  about  this?    The  obvious  answer  is  -­‐  Yes.    According  to  recent  surveys  of  experts  reported  by  Bostrom,  there  is  a  50%  probability  of  achieving  human  level  general  intelligence  by  2040.    Many  advocates,  including  Kurzweil,  are  counting  on  something  a  lot  sooner.        Should  we  panic?    I  don’t  think  so.    In  the  paragraphs  below,  I  raise  four  factors  that  I  believe  will  significantly  extend  the  time  period  for  the  achievement  of  super-­‐intelligence.    In  fact,  it  may  prove  to  be  impossible.    These  four  factors  are:  

a) The  Law  of  Diminishing  Returns  b) Human  complexity  c) Hard  limits  in  math  and  science    d) The  problem  of  consciousness  

 

a) The  Law  of  Diminishing  Returns    The  images  of  exponential  growth  that  we  have  seen  in  the  various  charts  in  Chapter  II  and  III  are  compelling  and  tend  to  capture  the  human  imagination  to  the  extent  that  we  believe  that  exponential  growth  is  a  fact,  and  not  a  contingency.    However,  the  future  is  always  contingent,  and  any  particular  trend  is  contingent  on  limitations  and  constraints  that  may  not  be  obvious  and  may  not  have  applied  in  the  past.    In  the  finite  world  we  live  in,  such  limitations  and  constraints  are  inevitable.    In  economics,  the  reality  of  such  constraints  is  reflected  in  the  Law  of  Diminishing  Returns,  a  concept  attributed  to  Adam  Smith  and  other  early  economists.      The  Law  states  that  increasing  a  single  factor  of  production,  while  holding  all  others  constant,  will  at  some  point  yield  lower  incremental  per-­‐unit  returns.    While  we  can  continue  over  time  to  drive  down  the  cost  of  computing,  or  increase  computing  speed  or  capacity  per  dollar,  eventually  the  opportunity  for  exponential  growth  will  be  exhausted.    Chart  4  below  shows  a  simple  graph  (the  scale  is  linear,  not  logarithmic)  of  exponential  growth.    This  could  be  a  chart  showing  bacterial  growth  in  a  petri  dish,  or  the  penetration  

NOTE:  The  Singularity  does  not  appear  to  require  that  computers  acquire  consciousness,  but  most  experts  assume  that  this  will  be  the  case.    

The  consequences  discussed  above  may  be  the  same  in  either  case.

Page 9: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 9

Growth appears exponential

Growth slows down

of  a  new  digital  technology  in  the  global  marketplace.    As  long  as  there  are  no  limitations  in  the  time  period  considered,  the  growth  demonstrates  an  exponential,  accelerating  trend.    Chart  4.    Simple  exponential  curve.  

   Chart  5  shows  what  begins  to  happen  when  limitations  are  encountered.    The  graph  starts  out  looking  the  same  as  Chart  4,  but  then  changes  shape  and  levels  out.    This  would  happen,  for  example,  when  the  bacterial  colony  reaches  the  edge  of  the  petri  dish  and  begins  to  run  out  of  food,  or  when  the  digital  technology  begins  to  saturate  the  market.    The  growth  slows  down  and  eventually  stops.    The  resulting  graph  resembles  what  is  known  as  a  “logistic”  curve  –  the  parameter  being  measured  reaches  a  maximum  point  beyond  which  further  increases  are  impossible.      The  increases  have  to  stop  –  no  new  bacteria  can  fit  in  the  petri  dish  –  there  are  no  more  new  customers  for  the  digital  technology.    In  case  of  the  bacteria,  the  curve  may  actually  reverse  as  the  population  collapses  from  lack  of  food.    Chart  5.    Example  of  logistic  curve  –  growth  under  constraint  

                             

     

Page 10: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 10 The  Law  of  Diminishing  returns  has  other  formulations  that  demonstrate  the  same  principle.    We  often  hear  that  you  can  get  80%  of  the  way  to  the  goal  with  20%  of  the  effort  –  but  it  takes  80%  of  the  effort  to  complete  the  project.    Just  ask  any  NFL  football  Team  who  is  in  the  Red  Zone  how  hard  it  is  to  get  to  the  goal.  

b) Human  complexity    

It  is  my  opinion  that  the  human  brain,  and  its  deep  embeddedness  within  the  human  body,  involves  a  level  of  complexity  that  is  far  deeper  and  more  intractable  than  computer  scientists  today  are  willing  to  admit.    As  a  consequence,  it  will  prove  considerably  harder  to  achieve  human  level  intelligence  than  most  practitioners  believe.        I  am  reminded  of  the  claims  that  brain  scientists  made  in  mapping  the  electrical  activity  of  the  brain  that  they  had  discovered  that  as  much  as  90%  of  that  activity  was  simply  “noise.”    Later  findings  determined  that  the  “noise”  reflects  a  very  deep  level  of  organizational  processing  -­‐  all  of  which  is  essential.    Similar  claims  were  made  by  geneticists  who  labeled  much  of  the  human  genome  as  “junk”  DNA  –  only  to  find  later  that  the  material  between  the  genes  acts  in  a  controlling  function  in  what  is  now  known  as  epigenetics  –  the  process  of  turning  on  and  turning  off  genes  in  the  extremely  complex  choreography  required  to  build  proteins  matching  the  needs  of  the  organism.    What  humans  do  and  what  “smart”  computers  do  is  quite  different.    For  example,  in  the  game  of  chess,  a  computer  approaches  the  game  largely  as  a  computational  problem,  calculating  the  position  values  of  potential  future  board  configurations  in  determining  the  optimal  value  for  its  next  move  –  and  it  is  capable  of  remembering  and  comparing  these  configurations  to  every  game  of  chess  that  was  ever  recorded.    The  human  competitor  does  not  have  the  benefit  of  such  a  computational  capability  or  memory  capacity  and  instead  draws  upon  intuition,  strategic  pattern-­‐recognition,  and  experience  in  selecting  a  move.        Notably,  in  the  famous  match  where  Deep  Blue  beat  Gary  Kasparov,  Kasparov  was  unnerved  by  an  unusual  move  the  computer  made  in  the  first  game,  and  claimed  that  he  sensed  a  human  presence.    The  Deep  Blue  programmers  later  were  said  to  confirm  that  the  move  was  a  result  of  a  bug  in  the  program  –  one  that  caused  Deep  Blue  to  select  a  move  other  than  the  one  calculated  as  optimal.    That  Kasparov  detected  such  a  non-­‐routine  move  and  attributed  it  to  human  agency  is  an  example  of  a  deep  sophistication  of  the  human  mind.    Some  observers  also  believe  that  the  move  by  Deep  Blue  unnerved  Kasparov  sufficiently  that  his  subsequent  play  was  undermined  –  leading  ultimately  to  his  defeat.      Another  example  of  the  differences  between  human  and  machine  intelligence  is  found  in  a  common  story  about  object  recognition.    Computer  scientists  designed  a  program  to  recognize  images  of  cats,  and  trained  it  with  many  thousands  of  photographs.    In  testing  

Page 11: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 11 the  program,  the  researchers  found  that  it  was  quite  accurate,  but  it  did  make  errors.    One  error  was  that  it  identified  a  photo  of  two  mugs  (with  facing  handles)  as  a  cat  –  an  error  that  no  human  4-­‐year  old  would  ever  make,  since  the  child  knows  what  a  cat  is  –  and  what  a  mug  is.    The  computer  does  not.    Based  on  what  has  so  far  been  achieved,  my  belief  is  that  reverse  engineering,  modeling,  mimicking  or  duplicating  the  brain  is  impossible  at  this  time.    There  is  too  much  we  do  not  yet  know.          

c) Hard  limits  in  math  and  science      While  resource  limitations  and  the  complexity  of  the  human  brain  are  barriers  likely  to  slow  down  the  progress  towards  artificial  human  intelligence,  there  are  certain  intractable  barriers,  what  I  would  refer  to  as  the  Achilles  heel  of  AI,  in  the  fields  of  mathematics  and  physics  itself.    These  include  complexity,  incompleteness,  infinity  and  quantum  physics.    For  example,  consider  the  simple  challenge  known  as  the  traveling  salesman  problem  (“TSP”).    As  a  salesman,  or  a  tourist,  if  you  want  to  plan  an  optimal  route  through  a  few  cities,  you  can  make  a  few  calculations  of  how  the  mileages  all  add  up  between  the  locations,  and  pick  a  route  that  minimizes  the  miles.    However,  as  you  add  to  the  number  of  cities,  the  complexity  of  the  required  calculations  goes  up  incredibly  fast  –  much  faster  than  exponentially!    Remarkably,  in  the  case  of  100  cities,  there  are  more  route  options  (each  of  which  needs  to  be  calculated  to  solve  the  problem  precisely)  than  there  are  atoms  in  the  known  universe.    Such  calculations  are  not  just  difficult  –  they  are  impossible.    The  TSP  is  an  example  of  a  broad  class  of  hard  problems,  some  of  which  show  up  in  fields  such  as  logistics,  the  manufacture  of  microchips  and  DNA-­‐sequencing,  to  name  just  a  few.    These  problems  are  referred  to  in  mathematics    “NP-­‐complete”2.      These  are  very  complex  problems,  contrasted  with  the  more  congenial  class  of  problems  known  as  “P”3.    P  problems  can,  at  least  in  theory,  be  solved  in  a  reasonable  amount  of  time.    It  is  unknown  whether  there  is  any  shortcut  to  any  NP-­‐complete  problem  that  would  reduce  it  to  a  P  problem.    Quite  surprisingly,  however,  there  is  a  proof  that  if  such  a  shortcut  exists,  then  all  NP-­‐complete  problems  have  such  shortcuts.    The  stakes  for  solving  this  problem  are  very  high,  and  a  Clay  Prize  of  $1M  is  being  offered  for  anyone  that  can  solve  it.    If  a  P  

2 NP refers to problems that are “nondeterministic in polynomial time”, referring to difficulty of knowing the length of time an algorithm will need to run in order to solve it. NP-complete problems are a special subclass, those into which any NP problem can be translated in polynomial time. 3 P problems can be solved by an algorithm in polynomial time – these may be exponentially difficult but are not as hard as the TSP appears to be.

Page 12: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 12 shortcut  exists  for  an  NP-­‐complete  problem,  the  challenges  of  complexity  will  be  reduced  from  “impossible”  to  “very,  very  hard.”    Incompleteness  is  a  problem  in  formal  logic,  the  foundation  for  all  mathematics,  which  was  discovered  in  the  20th  century  by  Kurt  Gödel.    Without  belaboring  the  technicalities,  Gödel  proved  that  any  logical  system  (including  something  as  basic  as  arithmetic)  could  be  either  complete  (able  to  prove  all  “truths”)  or  consistent  (you  can’t  prove  a  contradiction),  but  not  both.    Thus,  in  order  to  avoid  inconsistency,  the  bane  of  logic,  one  must  sacrifice  completeness.    This  means  that  there  are  true  statements  that  cannot  be  proved!      Incompleteness  is  a  somewhat  arcane  issue,  but  it  does  imply  that  there  are  going  to  be  things  (truths  or  facts)  that  we  cannot  know  with  certainty.    Alan  Turing,  another  brilliant  20th  century  logician  and  inventor  of  the  Turing  Test  discussed  above,  tackled  a  somewhat  more  practical  concern,  that  of  constructing  a  machine  (or  computational  algorithm)  that  can  solve  problems  in  a  finite  amount  of  time.    Among  these  problems  is  the  “halting  problem”,  encountered  in  the  context  of  an  algorithm  to  determine  whether  a  computational  algorithm  has  completed  its  task.    Turing  proved  the  existence  of  a  universal  computing  machine,  but  unfortunately  also  proved  that  some  problems,  e.g.  the  halting  problem,  are  not  amenable  to  finite  solutions  –  any  universal  computing  machine  so  constructed  would  in  many  cases  be  unable  to  complete  its  task  in  a  finite  amount  of  time.    It  is  an  NP-­‐hard  problem.    The  fact  that  mathematics  provides  the  tools  by  which  science  can  so  completely  describe  the  physical  world  is  a  mystery.    Physicist  John  Wheeler  in  1960  referred  to  this  as  “the  unreasonable  effectiveness  of  mathematics”.      However,  it  also  means  that  science,  including  computer  science,  is  subject  to  the  rules  and  limitations  of  mathematics.    As  we  have  seen  above,  this  means  there  are  problems  that  cannot  be  computed,  facts  that  cannot  be  known,  and  algorithms  that  will  never  stop.    Moreover,  based  on  the  science  of  quantum  mechanics,  there  are  also  physical  limits  to  the  hardware  on  which  computing  is  based.    The  invention  of  transistors  and  semi-­‐conductors,  and  the  subsequent  miniaturization  of  computing  devices,  drove  the  progress  of  Moore’s  law  over  the  past  decades.    But  such  miniaturization  cannot  progress  forever,  as  the  ability  to  build  smaller  devices  will  ultimately  founder  on  quantum  indeterminacy.    At  very  small  scales,  particle  behaviors  are  no  longer  deterministic  and  hence  cannot  provide  a  platform  for  digital  calculation.    There  are  theoretical  discussions  about  “quantum  computing”  that  may  provide  interesting  new  approaches  for  addressing  certain  computational  problems.    However,  this  is  simply  a  method  of  tapping  into  the  

The Liar’s Paradox – a key milestone on the path towards Godel’s

incompleteness theorem: “This sentence is false.”

Page 13: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 13 lowest  possible  limits  of  space.    The  bottom  line  is  that  below  this  limit,  information  disappears  into  the  quantum  foam  that  defines  physical  reality  below  the  Planck  scale4.  

d) The  problem  of  consciousness    One  feature  of  human  intelligence,  discussed  in  Chapter  II,  is  that  of  consciousness,  specifically  self-­‐consciousness.    As  stated:    “There  is  a  mystery  in  the  apparent  emergence  of  self-­‐referential  awareness  from  an  electrochemical  organ  (the  brain).      There  is  also  a  paradox  since  this  emergence  of  self  is  fundamentally  based  on  a  co-­‐dependency  with  other  self-­‐aware  beings.”    Despite  what  some  researchers  have  said  in  the  fields  of  neuroscience,  physics  or  psychology,  the  nature  of  self-­‐consciousness  and  its  relationship  with  human  intentionality  and  free  will  remains  a  deep  mystery.    Some  say  consciousness  is  simply  an  emergent  phenomenon  of  brain  states  –  but  that  begs  the  question  of  what  it  is  that  emerges,  and  what  causes  it  to  emerge.      Some  also  say  that  free  will  is  an  illusion,  and  our  actions  are  determined  by  our  brain  states  and  they  flow  from  strictly  physical  causes,  absent  any  non-­‐physical  agency.    But  in  both  theories,  the  emphasis  on  physical  brain  states  ignores  the  potent  reality  of  our  subjective  field  of  experience,  including  perception,  emotion,  intuition  and  cognition,  as  well  as  free  will.    The  question  of  intentionality,  purpose  and  consciousness  also  reaches  into  the  very  foundations  of  quantum  physics.    According  to  some  physicists,  without  consciousness,  there  is  no  driving  purpose  for  the  quantum  behaviors  that  create  the  physical  world.    The  universe  can  have  no  reality  without  consciousness.        At  the  moment,  these  questions  remain  metaphysical,  or  perhaps  even  theological.    I  suspect  that  as  the  fields  of  brain  science  and  psychology  advance,  they  will  encounter  similar  hard  limits  –  or  perhaps  even  the  same  ones  -­‐  as  in  math  and  physics.        

4  Quantum  foam  is  a  phrase  coined  by  John  Wheeler  in  1955.    The  Plank  scale  (to  paraphrase  Wikipedia)  is  the  energy  scale,  named  after  Max  Planck,  at  which  quantum  effects  of  gravity  become  strong  and  present  descriptions  and  theories  of  sub-­‐atomic  particle  interactions  break  down  and  become  inadequate.  

Page 14: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 14  

6. Conclusion    The  discussion  of  super-­‐intelligence  and  its  dangers  and  difficulties,  may  all  seem  incredibly  esoteric.    But  the  questions  are  incredibly  important.    How  will  we  go  forward  in  the  technology  race,  and  how  can  we,  technology’s  creators,  control  and  direct  that  process  towards  ends  that  serve  the  human  race?        The  worst  imaginable  outcome  is  that  we  let  the  process  of  technological  innovation  control  us.    Through  apathy,  ignorance  or  complicity,  we  run  the  risk  of  ceding  authority  over  our  future  to  an  inexorable  machine,  whether  that  machine  comes  in  the  form  of  a  super-­‐intelligence  or  merely  a  thoughtless  rush  towards  novelty  and  distraction.    In  Chapter  IV,  we  will  address  this  question,  returning  to  the  practical  digital  technologies  that  we  are  dealing  with  every  day.    By  developing  a  strategy  for  dealing  with  the  day-­‐to-­‐day,  perhaps  we  can  illuminate  a  path  for  dealing  effectively  with  the  longer  term  and  more  existential  threats  of  the  digital  transformation.                                      

Page 15: Chapter III The Technology Race copyswedenborgcenterconcord.org/wp-content/uploads/2014/12/... · 2017-10-06 · Page 2 Digital!technology!is!exerting!atransformational!influence!on!almostevery!facetof!the!

  Page 15 Selected  Bibliography:  • Nick  Bostrom:  Super-­‐intelligence  –  Paths,  Dangers,  Strategies.  2014  • Noson  S.  Yanofsky:    The  Outer  Limits  of  Reason  –  What  Science,  Mathematics  and  

Logic  Cannot  Tell  Us.    2013  • Jonathan  Haidt:    The  Righteous  Mind  –  Why  Good  People  are  Divided  by  Politics  and  

Religion  2012  • Edward  O.  Wilson:  The  Social  Conquest  of  Earth.    2012  • Nicolas  Carr:  The  Shallows  –  What  the  Internet  is  Doing  to  Our  Brains.    2011  • Stephen  Pinker:  The  Better  Angels  of  our  Nature,  2011  • Kevin  Kelly:  What  Technology  Wants,  2010  • Stuart  Brown:  Play  –  How  It  Shapes  the  Brain,  Opens  the  Imagination  and  Invigorates  

the  Soul.  2009  • Richard  Wrangham:    Catching  Fire  -­‐  How  Cooking  Made  us  Human.    2011  • Melanie  Mitchell:    Complexity  –  A  Guided  Tour.    2009  • Rudy  Rucker:    The  Lifebox,  The  Seashell  and  the  Soul  –  What  Gnarly  Computation  

Taught  Me  About  Ultimate  Reality,  the  Meaning  of  Life  and  How  to  be  Happy.    2005.  • Ray  Kurzweil:  The  Singularity  is  Near  –  When  Humans  Transcend  Biology.  2005  • Daniel  Goleman:    Emotional  Intelligence  –  Why  It  Can  Matter  More  than  IQ.  2005  • Jared  Diamond:    Germs,  Guns  and  Steel  –  The  Fates  of  Human  Societies.    1997.  • Douglas  R.  Hofstadter:  Godel,  Escher,  Bach  –  an  Eternal  Golden  Braid.    1979    ONLINE:    (Numerous  references  from  Wikipedia  and  related  sources)  

Nautilus  Magazine  online  -­‐  http://m.nautil.us    

On  Twitter  –  http://nymag.com/daily/intelligencer/2013/11/how-­‐i-­‐learned-­‐to-­‐love-­‐twitter.html  

 On  Facebook  –  http://www.nytimes.com/2014/06/30/technology/facebook-­‐tinkers-­‐with-­‐users-­‐emotions-­‐in-­‐news-­‐feed-­‐experiment-­‐stirring-­‐outcry.html?_r=0  http://www.esquire.com/blogs/news/facebook-­‐liking-­‐stacey-­‐woods  https://medium.com/@schmutzie/i-­‐quit-­‐liking-­‐things-­‐on-­‐facebook-­‐for-­‐two-­‐weeks-­‐heres-­‐how-­‐it-­‐changed-­‐my-­‐view-­‐of-­‐humanity-­‐29b5102abace  http://www.psychologytoday.com/blog/wired-­‐success/201306/do-­‐facebook-­‐and-­‐other-­‐social-­‐media-­‐encourage-­‐narcissism  http://www.newyorker.com/tech/elements/how-­‐facebook-­‐makes-­‐us-­‐unhappy  

 On  Robots:  http://www.popsci.com/scitech/article/2009-­‐08/evolving-­‐robots-­‐learn-­‐lie-­‐hide-­‐resources-­‐each-­‐other