90
Dr. Cuong Huynh Telecommunications Department HCMUT 1 Huynh Phu Minh Cuong [email protected]  Department of Telecommunications Faculty of Electrical and Electronics Engineering Ho Chi Minh city University of Technology Chapter 4 Microwa ve Amplifier MICROW A VE INTERGRA TED CIRCUI TS

Chapter4 Microwave Amplifier

Embed Size (px)

DESCRIPTION

Chapter4 Microwave Amplifier

Citation preview

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 1

    Huynh Phu Minh Cuong [email protected]

    Department of Telecommunications

    Faculty of Electrical and Electronics Engineering

    Ho Chi Minh city University of Technology

    Chapter 4

    Microwave Amplifier

    MICROWAVE INTERGRATED CIRCUITS

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 2

    Microwave Amplifier

    Reference:

    [1] D. M. Pozar, Microwave & RF Design of Wireless Systems

    (Ch 6,9)

    [2] R. Ludwig, RF Circuit Design: Theory & Applications (Ch

    8,9)

    [3] G. Gonzalez, Microwave Transistor Amplifiers Analysis and

    Design

    [4] R. Weber, Introduction to Microwave Circuit: Radio

    Fequency & Design Applications (Ch 15 )

    [5] G. Vendelin, Design of Amplifier and Oscillator Circuit

    Design by S-Parameters Method

    [6] B. Razavi, RF Microelectronics (Ch 5-9)

    [7] S. Cripps, RF Power Amplifiers for Wireless Communications

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 3

    Microwave Amplifier

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 4

    Microwave Amplifier

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 5

    Microwave Amplifier

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 6

    Microwave Amplifier

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 7

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    Low power microwave transistor

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    High power microwave transistor

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    A two-port network with arbitrary source and load impedances.

    Transducer power gain = GT = PL/Pavs is the ratio of the power delivered to the load to the power available from the source. This depends on both ZS and ZL.

    Definition of Two-Port Power Gains

    LT

    avs

    PG

    P

    Cong suat tieu thu tren tai

    Cong suat kha dung co the cung cap t nguon

    *in S

    avs inP P

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    Definition of Two-Port Power Gains

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    Definition of Two-Port Power Gains

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    22

    11

    222

    21

    11

    )1)(1(

    outLS

    LS

    TS

    SG

    2

    22

    2

    2

    2

    2

    1

    2

    21

    11

    )1)(1(

    S

    SG

    LinS

    T

    22

    211211

    1 S

    SSS

    L

    Lin

    11

    211222

    1 S

    SSS

    S

    Sout

    Definition of Two-Port Power Gains

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT

    Power Gain Calculation

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 17

    1. Transducer Power Gain (GT ) & Stability

    22

    211211

    1 S

    SSS

    L

    Lin

    11

    211222

    1 S

    SSS

    S

    Sout

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 18

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 19

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 20

    1. Transducer Power Gain (GT ) & Stability

    Which region

    Stable / unstable ?

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 21

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 22

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 23

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 24

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 25

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 26

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 27

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 28

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 29

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 30

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 31

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 32

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 33

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 34

    1. Transducer Power Gain (GT ) & Stability

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 35

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 36

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 37

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 38

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 39

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 40

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 41

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 42

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 43

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 44

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 45

    2. Maximum Transducer Power Gain Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 46

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 47

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 48

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 49

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 50

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 51

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 52

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 53

    3. Constant Gain Circles and Specified Gain Amplifier Unilateral Transistor

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 54

    4. Low Noise Amplifier (LNA)

    Receiver sensitivity is mainly determined by LNA

    noise figure.

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 55

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 56

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 57

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 58

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 59

    4. Low Noise Amplifier (LNA)

    Constant noise figure circles in the s plane

    For a fixed noise figure F, we can show that this result defines a

    circle in the S plane.

    Define the noise figure parameter, N, as

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 60

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 61

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 62

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 63

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 64

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 65

    4. Low Noise Amplifier (LNA)

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 66

    5. BROADBAND TRANSISTOR AMPLIFIER DESIGN

    Compensated matching networks: Input and output matching sections can be designed to compensate for the gain rolloff in |S21|, but generally at the

    expense of the input and output matching.

    Resistive matching networks: Good input and output matching can be obtained by using resistive matching networks, with a corresponding loss in

    gain and increase in noise figure.

    Negative feedback: Negative feedback can be used to flatten the gain response of the transistor, improve the input and output match, and improve the

    stability of the device. Amplifier bandwidths in excess of a decade are possible

    with this method, at the expense of gain and noise figure.

    Balanced amplifiers: Two amplifiers having 90 couplers at their input and output can provide good matching over an octave bandwidth, or more. The gain

    is equal to that of a single amplifier, however, and the design requires two

    transistors and twice the DC power.

    Distributed amplifiers: Several transistors are cascaded together along a transmission line, giving good gain, matching, and noise figure over a wide

    bandwidth. The circuit is large, and does not give as much gain as a cascade

    amplifier with the same number of stages.

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 67

    5. BROADBAND TRANSISTOR AMPLIFIER DESIGN

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 68

    5. BROADBAND TRANSISTOR AMPLIFIER DESIGN

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 69

    5. BROADBAND TRANSISTOR AMPLIFIER DESIGN

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 70

    5. BROADBAND TRANSISTOR AMPLIFIER DESIGN

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 71

    5. BROADBAND TRANSISTOR AMPLIFIER DESIGN

    The concept of the distributed amplifier dates back to the 1940s, when it was used in the design of broadband vacuum tube amplifiers. Bandwidths in excess of a decade are possible, with good input and output matching. Distributed amplifiers are not capable of very high gains or very low noise figure, however, and generally are larger than an amplifier having comparable gain over a narrower bandwidth. This type of circuit is also known as a traveling wave amplifier.

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 72

    5. BROADBAND TRANSISTOR AMPLIFIER DESIGN

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 73

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 74

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 75

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 76

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 77

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 78

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 79

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 80

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 81

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 82

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 83

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 84

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 85

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 86

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 87

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 88

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 89

    6. Power Amplifier (PA) Design

  • Dr. Cuong HuynhTelecommunications DepartmentHCMUT 90

    6. Power Amplifier (PA) Design