Chapter9 A

Embed Size (px)

Citation preview

  • 7/30/2019 Chapter9 A

    1/14

    S2 0.21868:= P2 138.83:=

    State 3, Wet Vapor at TC: Hliq 15.187:= Hvap 104.471:= P3 26.617:=

    State 4, Wet Vapor at TC: Sliq 0.03408:= Svap 0.22418:= P4 26.617:=

    (a) The pressures in (psia) appear above.

    (b) Steps 3--2 and 1--4 (Fig. 8.2) are isentropic, for which S3=S2 and S1=S4.

    Thus by Eq. 6.82):

    x3S2 Sliq

    Svap Sliq:= x3 0.971= x4

    S1 Sliq

    Svap Sliq:= x4 0.302=

    (c) Heat addition, Step 4--3:

    H3 Hliq x3 Hvap Hliq ( )+:= H4 Hliq x4 Hvap Hliq ( )+:=

    H3 101.888= H4 42.118=

    Q43 H3 H4( ):= Q43 59.77= (Btu/lbm)

    Chapter 9 - Section A - Mathcad Solutions

    9.2 TH 20 273.15+( )K:= TH 293.15K=

    TC 20 273.15+( )K:= TC 253.15K=

    QdotC 125000kJ

    day:=

    CarnotTC

    TH TC:= (9.3) 0.6 Carnot:= 3.797=

    Wdot

    QdotC

    :=(9.2)

    Wdot 0.381kW=

    Cost0.08

    kW hrWdot:= Cost 267.183

    dollars

    yr= Ans.

    9.4 Basis: 1 lbm of tetrafluoroethane

    The following property values are found from Table 9.1:

    State 1, Sat. Liquid at TH: H1 44.943:= S1 0.09142:= P1 138.83:=

    State 2, Sat. Vapor at TH: H2 116.166:=

    298

  • 7/30/2019 Chapter9 A

    2/14

    (Refrigerator)

    By Eq. (5.8): Carnot 1TC

    TH:= Carnot 0.43=

    By Eq. (9.3): CarnotT'C

    T'H T'C

    := Carnot 10.926=

    By definition: Wengine

    QH=

    Q'C

    Wrefrig=

    But Wengine Wrefrig= Q'C 35kJ

    sec:=

    Whence QHQ'C

    Carnot Carnot:= QH 7.448

    kJ

    sec= Ans.

    Given that: 0.6 Carnot:= 0.6 Carnot:= 6.556=

    QHQ'C

    := QH 20.689

    kJ

    sec= Ans.

    (d) Heat rejection, Step 2--1:

    Q21 H1 H2( ):= Q21 71.223= (Btu/lbm)

    (e) W21 0:= W43 0:=W32 H2 H3( ):= W32 14.278=

    W14 H4 H1( ):= W14 2.825=

    (f) Q43

    W14 W32+:= 5.219=

    Note that the first law is satisfied:

    Q Q21 Q43+:= W W32 W14+:= Q W+ 0=

    9.7 TC 298.15 K:= TH 523.15 K:= (Engine)

    T'C 273.15 K:= T'H 298.15 K:=

    299

  • 7/30/2019 Chapter9 A

    3/14

    (isentropic compression)S'3 S2=

    H4 37.978Btu

    lbm:=T4 539.67 rankine:=

    From Table 9.1

    for sat. liquid

    S2

    0.22244

    0.22325

    0.22418

    0.22525

    0.22647

    Btu

    lbm rankine:=H2

    107.320

    105.907

    104.471

    103.015

    101.542

    Btu

    lbm:=

    QdotC

    600

    500

    400

    300

    200

    Btu

    sec

    :=

    0.79

    0.78

    0.77

    0.76

    0.75

    :=T2

    489.67

    479.67

    469.67

    459.67

    449.67

    rankine:=

    The following vectors contain data for parts (a) through (e). Subscripts

    refer to Fig. 9.1. Values of H2 and S2 for saturated vapor come from

    Table 9.1.

    9.9

    or -45.4 degC

    Ans.TC 227.75K=

    9.8 (a) QC 4kJ

    sec:= W 1.5 kW:=

    QC

    W:= 2.667= Ans.

    (b) QH QC W+:= QH 5.5kJ

    sec= Ans.

    (c) TC

    TH TC= TH 40 273.15+( ) K:= TH 313.15K=

    TC TH

    1+

    :=

    300

  • 7/30/2019 Chapter9 A

    4/14

    Ans.Wdot

    94.5

    100.5

    99.2

    90.8

    72.4

    kW=Wdot mdot H23( )

    :=

    Ans.QdotH

    689.6

    595.2

    494

    386.1

    268.6

    Btu

    sec=QdotH mdot H4 H3( )

    :=

    Ans.mdot

    8.653

    7.361

    6.016

    4.613

    3.146

    lbm

    sec

    =mdotQdotC

    H2 H1

    :=

    H3

    273.711

    276.438

    279.336

    283.026

    286.918

    kJ

    kg=H23

    24.084

    30.098

    36.337

    43.414

    50.732

    kJ

    kg=H1 88.337

    kJ

    kg=

    H1 H4:=

    H3 H2 H23+:=H23H'3 H2

    :=H'3

    115.5

    116.0

    116.5

    117.2

    117.9

    Btu

    lbm:=

    The saturation pressure at Point 4 from Table 9.1 is 101.37(psia). For

    isentropic compression, from Point 2 to Point 3', we must read values for

    the enthalpy at Point 3' from Fig. G.2 at this pressure and at the entropy

    values S2. This cannot be done with much accuracy. The most

    satisfactory procedure is probably to read an enthalpy at S=0.22 (H=114)and at S=0.24 (H=126) and interpolate linearly for intermediate values of

    H. This leads to the following values (rounded to 1 decimal):

    301

  • 7/30/2019 Chapter9 A

    5/14

    H23 402.368kJ

    kg=

    H1 H4:=H23H'3 H2

    :=H'3 2814.7

    kJ

    kg:=

    The saturation pressure at Point 4 from Table F.1 is 5.318 kPa. We must

    find in Table F.2 the enthalpy (Point 3') at this pressure and at the

    entropy S2. This requires double interpolation. The pressure lies

    between entries for pressures of 1 and 10 kPa, and linear interpolation

    with P is unsatisfactory. Steam is here very nearly an ideal gas, for

    which the entropy is linear in the logarithm of P, and interpolation must

    be in accord with this relation. The enthalpy, on the other hand, changes

    very little with P and can be interpolated linearly. Linear interpolation

    with temperture is satisfactory in either case.

    The result of interpolation is

    (isentropic compression)S'2 S2=H4 142.4 kJkg:=

    S2 9.0526kJ

    kg K:=H2 2508.9

    kJ

    kg:=QdotC 1200

    kJ

    sec:=

    0.76:=T4 34 273.15+( ) K:=T2 4 273.15+( ) K:=

    Subscripts in the following refer to Fig. 9.1. All property values come from

    Tables F.1 and F.2.

    9.10

    Ans.Carnot

    9.793

    7.995

    6.71

    5.746

    4.996

    =CarnotTC

    TH TC

    :=

    TH T4:=TC T2:=

    Ans.

    6.697

    5.25

    4.256

    3.485

    2.914

    =QdotC

    Wdot

    :=

    302

  • 7/30/2019 Chapter9 A

    6/14

    H2 Hvap:=Hvap 100.799Btu

    lbm:=Hliq 7.505

    Btu

    lbm:=

    At the conditions of Point 2 [t = -15 degF and

    P = 14.667(psia)] for sat. liquid and sat. vapor from Table 9.1:

    Parts (a) & (b): subscripts refer to Fig. 9.19.11

    Ans.Carnot 9.238=CarnotT2

    T4 T2:=

    Ans. 5.881=QdotC

    Wdot:=

    Ans.Wdot 204kW=Wdot mdot H23:=

    Ans.QdotH 1404kJ

    sec=QdotH mdot H4 H3( ):=

    Ans.mdot 0.507 kgsec=

    mdotQdot

    CH2 H1:=

    H3 2.911 103

    kJ

    kg=H3 H2 H23+:=

    303

  • 7/30/2019 Chapter9 A

    7/14

    mdot 0.0759lbm

    sec= Ans.

    (c) The sat. vapor from the evaporator is superheated in the heat

    exchanger to 70 degF at a pressure of 14.667(psia). Property values

    for this state are read (with considerable uncertainty) from Fig. G.2:

    H2A 117.5Btu

    lbm:= S2A 0.262

    Btu

    lbm rankine:=

    mdotQdotC

    H2A H4:= mdot 0.0629

    lbm

    sec= Ans.

    (d) For isentropic compression of the sat. vapor at Point 2,

    S3 Svap:= and from Fig. G.2 at this entropy and P=101.37(psia)

    H3 118.3Btu

    lbm:= Eq. (9.4) may now beapplied to the two cases:

    In the first case H1 has the value of H4:

    aH2 H4

    H3 H2:= a 3.5896= Ans.

    Sliq 0.01733Btu

    lbm rankine:= Svap 0.22714

    Btu

    lbm rankine:=

    For sat. liquid at Point 4 (80 degF):

    H4 37.978Btu

    lbm:= S4 0.07892

    Btu

    lbm rankine:=

    (a) Isenthalpic expansion: H1 H4:=

    QdotC 5Btu

    sec:= mdot

    QdotC

    H2 H1:= mdot 0.0796

    lbm

    sec= Ans.

    (b) Isentropic expansion: S1 S4:=

    x1S1 Sliq

    Svap Sliq:= H1 Hliq x1 Hvap Hliq( )+:= H1 34.892

    BTU

    lbm=

    mdotQdotC

    H2 H1:=

    304

  • 7/30/2019 Chapter9 A

    8/14

    mdot 25.634lbm

    sec=mdot

    QdotC

    H2 H1:=QdotC 2000

    Btu

    sec:=

    H1 27.885BTU

    lbm=H1 H4 H2A H2+:=

    Energy balance, heat exchanger:

    S4 0.07892Btu

    lbm R:=H4 37.978

    Btu

    lbm:=

    For sat. liquid at Point 4 (80 degF):

    S2A 0.2435Btu

    lbm rankine:=H2A 116

    Btu

    lbm:=

    At Point 2A we have a superheated vapor at the same pressure and at70 degF. From Fig. G.2:

    S2 0.22325Btu

    lbm rankine:=H2 105.907

    Btu

    lbm:=

    At the conditions of Point 2 [sat. vapor, t = 20 degF and P = 33.110(psia)]

    from Table 9.1:

    Subscripts: see figure of the preceding problem.9.12

    Ans.c 3.8791=cQdotC

    Wdot:=

    Wdot 1.289BTU

    sec=

    Wdot H3 H2A( ) mdot:=H3 138Btu

    lbm:= (Last calculated

    value of mdot)

    In Part (c), compression is at constant entropy of 0.262 to the

    final pressure. Again from Fig. G.2:

    Ans.b 3.7659=bH2 H1

    H3 H2

    :=

    In the second case H1 has its last calculated value [Part (b)]:

    305

  • 7/30/2019 Chapter9 A

    9/14

    H1 H4:=H'3

    113.3

    116.5

    119.3

    Btu

    lbm:=H4

    31.239

    37.978

    44.943

    Btu

    lbm:=

    H values for sat. liquid at Point 4 come from Table 9.1 and H values

    for Point 3` come from Fig. G.2. The vectors following give values for

    condensation temperatures of 60, 80, & 100 degF at pressures of

    72.087, 101.37, & 138.83(psia) respectively.

    S'3 S2:=S2 0.22418Btu

    lbm R:=H2 104.471

    Btu

    lbm:=

    Subscripts refer to Fig. 9.1.

    At Point 2 [sat. vapor @ 10 degF] from Table 9.1:

    9.13

    Ans.Wdot 418.032 kW=mdot 29.443lbm

    sec=

    Hcomp 13.457Btu

    lbm=Wdot mdot Hcomp:=

    HcompH'3 H2

    :=H'3 116

    Btu

    lbm:=mdot

    QdotC

    H2 H4:=

    If the heat exchanger is omitted, then H1 = H4.

    Points 2A & 2 coincide, and compression is at a constant entropy of

    0.22325 to P = 101.37(psia).

    Ans.Wdot 396.66kW=mdot 25.634lbm

    sec=

    Hcomp 14.667Btu

    lbm=Wdot mdot Hcomp:=

    HcompH'3 H2A

    := 0.75:=H'3 127Btu

    lbm:=

    For compression at constant entropy of 0.2435 to the final pressure of

    101.37(psia), by Fig. G.2:

    306

  • 7/30/2019 Chapter9 A

    10/14

    Minimum t = -4.21 degC

    Ans.KTC 268.94=

    TC Find TC( ):=

    Wdot

    0.75 TH TC( )TH TC

    TH=

    Given

    (Guess)TC 250:=

    Wdot

    QdotH

    TH TC

    TH=

    QdotH 0.75 TH TC( )=

    Wdot 1.5:=

    TH 293.15:=WINTER9.14

    Ans.

    6.221

    4.146

    3.011

    =H2 H1

    H

    :=

    Eq. (9.4) now becomes

    H H3 H2=SinceHH'3 H2

    0.75:=(b)

    Ans.

    8.294

    5.528

    4.014

    =H2 H1

    H'3 H2

    :=

    By Eq. (9.4):(a)

    307

  • 7/30/2019 Chapter9 A

    11/14

    H41033.5

    785.3

    kJ

    kg:= H9 284.7 kJ

    kg:= H15 1186.7

    1056.4

    kJ

    kg:=

    By Eq. (9.8): zH4 H15

    H9 H15

    := z0.17

    0.351

    = Ans.

    9.17 Advertized combination unit:

    TH 150 459.67+( ) rankine:= TC 30 459.67+( ) rankine:=

    TH 609.67rankine= TC 489.67rankine=

    QC 50000Btu

    hr:= WCarnot QC

    TH TC

    TC:= WCarnot 12253

    Btu

    hr=

    SUMMERTC 298.15:=

    QdotC 0.75 TH TC( ):=

    Wdot

    QdotC

    TH TC

    TC=

    TH 300:= (Guess)

    Given

    Wdot

    0.75 TH TC

    ( )

    TH TC

    TC=

    TH Find TH( ):=

    TH 322.57= K Ans.

    Maximum t = 49.42 degC

    Data in the following vectors for Pbs. 9.15 and 9.16 come from

    Perry's Handbook, 7th ed.9.15 and 9.16

    308

  • 7/30/2019 Chapter9 A

    12/14

    TC 210:= T'H 260:= T'C 255:= TH 305:=

    By Eq. (9.3):

    TC

    TH TC:= I 0.65

    TC

    T'H TC:= II 0.65

    T'C

    TH T'C:=

    WCarnotQC

    = WI

    QC

    I= WII

    QC

    II=

    Define r as the ratio of the

    actual work, WI + WII, to the

    Carnot work:r

    1

    I

    1

    II+

    := r 1.477= Ans.

    9.19 This problem is just a reworking of Example 9.3 with different values of x.

    It could be useful as a group project.

    WI 1.5 WCarnot:= WI 18380Btu

    hr=

    This is the TOTAL power requirement for the advertized combination unit.

    The amount of heat rejected at the higher temperature of150 degF is

    QH WI QC+:= QH 68380Btu

    hr=

    For the conventional water heater, this amount of energy must be supplied

    by resistance heating, which requires power in this amount.

    For the conventional cooling unit,

    TH 120 459.67+( ) rankine:=

    WCarnot QCTH TC

    TC:= WCarnot 9190

    Btu

    hr=

    Work 1.5 WCarnot:= Work 13785Btu

    hr=

    The total power required is

    WII QH Work+:= WII 82165Btu

    hr= NO CONTEST

    9.18

    309

  • 7/30/2019 Chapter9 A

    13/14

    Calculate the high and low operating pressures using the given vapor

    pressure equation

    Guess: PL 1bar:= PH 2bar:=

    Given lnPL

    bar

    45.3274104.67

    T1

    K

    5.146 lnT1

    K

    615.0

    PL

    bar

    T1

    K

    2+=

    PL Find PL( ):= PL 6.196bar=

    Given lnPH

    bar

    45.3274104.67

    T4

    K

    5.146 lnT4

    K

    615.0

    PH

    bar

    T4

    K

    2+=

    PH Find PH( ):= PH 11.703bar=

    Calculate the heat load

    ndottoluene 50kmol

    hr

    := T1 100 273.15+( )K:= T2 20 273.15+( )K:=

    Using values from Table C.3

    QdotC ndottoluene R ICPH T1 T2, 15.133, 6.79 103, 16.35 10 6, 0,( ):=

    QdotC 177.536kW=

    9.22 TH 290K:= TC 250K:= Ws 0.40kW:=

    CarnotTC

    TH TC:= Carnot 6.25= 65%Carnot:= 4.063=

    Ans.

    QC Ws := QC 1.625 103 kg m2 sec-3= QH Ws QC+:= QH 2.025kW=

    9.23 Follow the notation from Fig. 9.1

    With air at 20 C and the specification of a minimum approach T = 10 C:T1 10 273.15+( )K:= T4 30 273.15+( )K:= T2 T1:=

    310

  • 7/30/2019 Chapter9 A

    14/14

    Vliq 27.112cm

    3

    mol=

    Estimate Hlv at 10C using Watson correlationTrn

    Tn

    Tc:= Trn 0.591= Tr1

    T1

    Tc:= Tr1 0.698=

    Hlv Hlvn1 Tr11 Trn

    0.38

    := Hlv 20.798kJ

    mol=

    Hliq41 Vliq PH PL( ) R ICPH T1 T4, 22.626, 100.75 103, 192.71 10 6, 0,( )+:=

    Hliq41 1.621kJ

    mol= x1

    Hliq41

    Hlv:= x1 0.078=

    For the evaporator

    H12 H2 H1=

    H1vap H1liq x1 Hlv+( )=

    1 x1( ) Hlv=

    H12 1 x1( ) Hlv:= H12 19.177kJ

    mol=

    ndotQdotC

    H12:= ndot 9.258

    mol

    sec= Ans.

    Since the throttling process is adiabatic: H4 H1=

    But: Hliq4 Hliq1 x1 Hlv1+= so: Hliq4 Hliq1 x1 Hlv=

    and: Hliq4 Hliq1 Vliq P4 P1( )T1

    T4

    TCpliq T( )

    d+=

    Estimate Vliq using the Rackett Eqn.

    0.253:= Tc 405.7K:= Pc 112.80bar:=

    Zc 0.242:= Vc 72.5cm

    3

    mol:= Tn 239.7K:= Hlvn 23.34

    kJ

    mol:=

    Tr 20 273.15+( )KTc

    := Tr 0.723=

    Vliq Vc Zc1 Tr( )

    2

    7

    :=

    311