40
Charmonium spectroscopy from Lattice QCD Daniel Mohler Baltimore, April 9, 2015 Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 1 / 32

Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Charmonium spectroscopy from Lattice QCD

Daniel Mohler

Baltimore,April 9, 2015

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 1 / 32

Page 2: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Outline

1 Introduction

2 Charmonia from single-hadron operatorsLow lying charmoniaNew results on the 1S hyperfine splittingNew results on charmonium 1P states and 2S statesExited state energy levels from q̄qGluonic excitations

3 Charmonia including meson-meson statesThe ψ(2S) and Ψ(3770)χ ′c0 and X/Y(3915)Lattice results for the X(3872)Searches for Zc and Y(4140)

4 Conclusions and Outlook

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 2 / 32

Page 3: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Outline

1 Introduction

2 Charmonia from single-hadron operatorsLow lying charmoniaNew results on the 1S hyperfine splittingNew results on charmonium 1P states and 2S statesExited state energy levels from q̄qGluonic excitations

3 Charmonia including meson-meson statesThe ψ(2S) and Ψ(3770)χ ′c0 and X/Y(3915)Lattice results for the X(3872)Searches for Zc and Y(4140)

4 Conclusions and Outlook

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 3 / 32

Page 4: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Two kinds of progress...

Precision results:

1.14 1.18 1.22 1.26

=+

+=

+=

QCDSF/UKQCD 07 ETM 09 ETM 10D (stat. err. only) BGR 11 ALPHA 13

our estimate for =

MILC 04 NPLQCD 06 HPQCD/UKQCD 07 RBC/UKQCD 08 PACS-CS 08, 08A Aubin 08 MILC 09 MILC 09A JLQCD/TWQCD 09A (stat. err. only) BMW 10 PACS-CS 09 RBC/UKQCD 10A JLQCD/TWQCD 10 MILC 10 Laiho 11 RBC/UKQCD 12

our estimate for = +

ETM 10E (stat. err. only) MILC 11 (stat. err. only) MILC 13A HPQCD 13A ETM 13F

our estimate for = + +

/

Example: FLAG reviewSee http://itpwiki.unibe.ch/flag/

Exploratory studies:

-500

-300

-100

600 800 1000 1200 1400 1600

Example: πK-ηK-scatteringDudek et al. PRL 113 182001 (2014)

See talk by David Wilson Fri

I will report on both kind of progress with regard to charmonium

There will be preliminary data - use with caution

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 4 / 32

Page 5: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Outline

1 Introduction

2 Charmonia from single-hadron operatorsLow lying charmoniaNew results on the 1S hyperfine splittingNew results on charmonium 1P states and 2S statesExited state energy levels from q̄qGluonic excitations

3 Charmonia including meson-meson statesThe ψ(2S) and Ψ(3770)χ ′c0 and X/Y(3915)Lattice results for the X(3872)Searches for Zc and Y(4140)

4 Conclusions and Outlook

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 5 / 32

Page 6: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Low-lying charmonium: A precision benchmark

Well understood from potential modelsWell determined in experimentWell separated from open-charm threshold(s)Spin-dependent mass splittings extremely sensitive to the charm-quarkmass and heavy-quark discretization

meson mass width

ηc 2983.7(7) 32.0(9) MeV

J/Ψ 3096.916(11) 92.9(2.8) keV

χc0 3414.75(31) 10.3(6) MeV

χc1 3510.66(3) 0.86(5) MeV

χc2 3556.20(9) 1.97(11) MeV

hc 3525.38(11) 0.7(4) MeV

ηc(2S) 3639.4(1.3) 11.3(+3.2)(−2.9) MeV

Ψ(2S) 3686.109(+12)(−14) 299(8) keV

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 6 / 32

Page 7: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Preliminary results from Fermilab-MILC

Fermilab Lattice and MILC collaborations - to be published

We use the Fermilab method for the charm quarkEl-Khadra et al., PRD 55, 3933 (1997)

mc tuned by demanding the Ds meson kinetic mass to be physical

We quote splittings among charmonium states

5 lattice spacings with two different light sea-quark masses→ Controlled extrapolation to the chiral-continuum limit

2+1 flavor simulation with high statistics

Follows previous effortsT. Burch et al. PRD 81 034508, 2010

Charm annihilation contributions are omitted

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 7 / 32

Page 8: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Fermilab-MILC results for the 1S hyperfine splitting

0 0.05 0.1 0.15 0.2a [fm]

0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

∆MH

F r

1

lattice data 0.2 mh

lattice data 0.1 mh

fit results at lattice parameters

leading + subleading shapes

χ2

aug/d.o.f.

aug = 2.84/7

PRELIMINARY

Curves for physical (black), 0.1ms, and 0.2ms light-quark massesThis corresponds to MJ/Ψ−Mηc = 118.1(2.1)

(−1.5−4.0

)Errors include statistics, chiral and continuum extrapolationsContribution from disconnected diagrams expected

(−1.5−4.0

)Levkova and DeTar, PRD 83 074504, 2011

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 8 / 32

Page 9: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Results from the χQCD Collaboration

χQCD Collaboration, Yang et al. arXiv:1410.3343

0.6

0.8

1

1.2

1.4

1.6

r0(fm) mc ms MJ/ψ-Mηc

Mχc0

Mχc1

MhcfDs

Ra

tio

1.09(3)0.095(5)

0.1166(12)3.41475(31)

3.51066(7)3.52541(16)

0.2575(61)

0.458(14)1.111(24)

0.103(9)0.1120(61)

3.408(47)3.496(49)

3.516(29)0.256(5)

Exp (PDG)this work (MDs

, MDs* and MJ/ψ as Input)

Results from Overlap fermions on 2+1 flavor domain wall gaugeconfigurationsUncertainty do not include charm-quark annihilation effects

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 9 / 32

Page 10: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Preliminary results from the HPQCD Collaboration

HPQCD, Galloway et al. PoS LATTICE2014 (2014) 092

0.0 0.2 0.4 0.6 0.8

(amc)2

100

105

110

115

120

MJ/Ψ−Mηc

/M

eV

HISQ on HISQ 2+1+1 ml/ms = 1/5

HISQ on HISQ 2+1+1 ml/ms = 1/10

HISQ on HISQ 2+1+1 ml/ms = phys

expt (PDG)

Uses MILC 2+1+1 flavor HISQ (Highly Improved Staggered Quarks)ensembles

Systematics on 1S hyperfine dominated by estimate of annihilationeffects

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 10 / 32

Page 11: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

A comparison of hyperfine splittings

105 110 115 120 125 130 135 140M

J/ψ-Mηc[MeV]

PDG

FNAL-MILC ’09

HPQCD ’12

ETMC ’12

Briceno et al ’12

χQCD ’14

FNAL-MILC preliminary

HPQCD preliminary

All results at physical quark masses and in the continuum limitLattice numbers exclude (now dominant?) annihilation effectsEstimate from data expects a shift of -1.5..-4.5 MeV

Levkova and DeTar, PRD 83 074504, 2011

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 11 / 32

Page 12: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Fermilab-MILC 1P-1S and 1P hyperfine splittings

0 0.05 0.1a [fm]

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

(M1P

- M

1S)

r 1

lattice data 0.2mh

lattice data 0.1mh

fit result at lattice parameters

leading + subleading shapes

χ2

aug/d.o.f.

aug = 9.79/7

PRELIMINARY0 0.05 0.1

a[fm]-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(M1P

-Mh c)r

1

leading + subleading shapes

χ2

aug/d.o.f.

aug = 4.28/7

PRELIMINARY

Not yet included: Scale-setting uncertainty

Mass difference This analysis [MeV] Experiment [MeV]

1P1S 457.3±3.6 457.5±0.31P hyperfine −6.2±4.1 −0.10±0.22

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 12 / 32

Page 13: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Fermilab-MILC P-wave spin-orbit and tensor splittings

∆MSpin−Orbit = (5Mχc2 −3Mχc1 −2Mχc0 )/9

0 0.05 0.1 0.15 0.2a [fm]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

∆MSO

r1

lattice data 0.2 mh

lattice data 0.1 mh

fit result at lattice parameters

leading + subleading shapes

χ2

aug/d.o.f.

aug = 5.79/7

PRELIMINARY

∆MTensor = (3Mχc1 −Mχc2 −2Mχc0 )/9

0 0.05 0.1 0.15 0.2a [fm]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

∆MT

e r1

lattice data 0.2 mh

lattice data 0.1 mh

fit result at lattice parameters

leading + subleading shapes

χ2

aug/d.o.f.

aug = 9.07/7

PRELIMINARY

Mass difference This analysis [MeV] Experiment [MeV]

1P spin-orbit 49.5±2.5 46.6±0.11P tensor 17.3±2.9 16.25±0.07

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 13 / 32

Page 14: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Preliminary results from the HPQCD Collaboration

HPQCD, Galloway et al. PoS LATTICE2014 (2014) 092

0−+ 1−− 1+− 0++ 1++

JPC

3.0

3.2

3.4

3.6

3.8

Mass

/G

eV χc0

χc1

ηc

η′c

hc

J/Ψ

Ψ′

expt (PDG)

m`/ms = 1/5

m`/ms = 1/10

m`/ms = phys

0.000 0.005 0.010 0.015 0.020 0.025

a2/fm2

550

600

650

700

750

Ch

arm

on

ium

spin

-avg.

2S

-1S

splitt

ing

/M

eV HISQ on HISQ 2+1+1 ml/ms = 1/5

HISQ on HISQ 2+1+1 ml/ms = 1/10

HISQ on HISQ 2+1+1 ml/ms = phys

expt (PDG)

Uses MILC 2+1+1 flavor HISQ (Highly Improved Staggered Quarks)ensembles

Shaded region shows the systematic uncertainty

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32

Page 15: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Exited state energy levels from q̄q operators

HSC, L. Liu et al. JHEP 1207 126 (2012)

DDDD

DsDsDsDs

0-+0-+ 1--1-- 2-+2-+ 2--2-- 3--3-- 4-+4-+ 4--4-- 0++0++ 1+-1+- 1++1++ 2++2++ 3+-3+- 3++3++ 4++4++ 1-+1-+ 0+-0+- 2+-2+-0

500

1000

1500

M-

MΗc

HMeV

L

A large number of energy levels including higher spin states can beidentified

Mesons with spin-exotic quantum numbers!

Relation of energy levels to resonances not straight forward

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 15 / 32

Page 16: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Gluonic excitations

HSC, L. Liu et al. JHEP 1207 126 (2012)

DDDD

DsDsDsDs

0-+0-+ 1--1-- 2-+2-+ 1-+1-+ 0++0++ 1+-1+- 1++1++ 2++2++ 3+-3+- 0+-0+- 2+-2+-0

500

1000

1500M

-M

Ηc

HMeV

L

Hybrid mesons with both regular and spin-exotic quantum numbers

Relation of energy levels to resonances not straight forward

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 16 / 32

Page 17: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Outline

1 Introduction

2 Charmonia from single-hadron operatorsLow lying charmoniaNew results on the 1S hyperfine splittingNew results on charmonium 1P states and 2S statesExited state energy levels from q̄qGluonic excitations

3 Charmonia including meson-meson statesThe ψ(2S) and Ψ(3770)χ ′c0 and X/Y(3915)Lattice results for the X(3872)Searches for Zc and Y(4140)

4 Conclusions and Outlook

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 17 / 32

Page 18: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Single hadron interpolators: what do we see?

In practical calculations q̄q and qqq interpolators couple very weakly tomulti-hadron states

McNeile & Michael, Phys. Lett. B 556, 177 (2003); Engel et al. PRD 82, 034505 (2010);Bulava et al. PRD 82, 014507(2010); Dudek et al. PRD 82, 034508(2010);

This is not unlike observations in QCD string-breaking studiesPennanen & Michael hep-lat/0001015;Bernard et al. PRD 64 074509 2001;

Necessitates the inclusion of hadron-hadron interpolators

We know: Energy levels 6= resonance massesNaïve expectation: Correct up to O(ΓR(mπ))

Was good enough for heavy pion masses where one would deal withbound states or very narrow resonances.

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 18 / 32

Page 19: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

The Lüscher method

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354 (1991)531; Nucl. Phys. B 364 (1991) 237.

E = E(p1)+E(p2) E = E(p1)+E(p2)+∆E

En(L)(2)−→ δl

(3)−→ mR; ΓR or coupling g

(1) Extract energy levels En(L) in a finite box(2) Lüscher formula→ phase shift of the continuum scattering amplitude(3) Extract resonance parameters (similar to experiment)

2-hadron scattering and transitions well understood;progress for 3 (or more) hadrons but difficult

See LATTICE2014 plenary by Raúl A. Briceño, arXiv:1411.6944

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 19 / 32

Page 20: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Technicalities: Lattices used

ID N3L×NT Nf a[fm] L[fm] #configs mπ [MeV] mK[MeV]

(1) 163×32 2 0.1239(13) 1.98 280/279 266(3)(3) 552(2)(6)(2) 323×64 2+1 0.0907(13) 2.90 196 156(7)(2) 504(1)(7)

Ensemble (1) has 2 flavors of nHYP-smeared quarksGauge ensemble from Hasenfratz et al. PRD 78 054511 (2008)

Hasenfratz et al. PRD 78 014515 (2008)

Ensemble (2) has 2+1 flavors of Wilson-Clover quarks

PACS-CS, Aoki et al. PRD 79 034503 (2009)

On the small volume we use distillationOn the larger volume we use stochastic distillation

Peardon et al. PRD 80, 054506 (2009);

Morningstar et al. PRD 83, 114505 (2011)

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 20 / 32

Page 21: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Ψ(3770) resonance from Lattice QCD

Lang, Leskovec, DM, Prelovsek, arXiv:1503.05363

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

p2[GeV

2]

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

p3 c

otδ

/√s [G

eV

2]

BW fit (i)fit (ii)

ensemble (1)

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50

p2[GeV

2]

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

p3 c

otδ

/√s [G

eV

2]

BW fit (i)fit (ii)

ensemble (2)

Proof of principle - many improvements possible

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 21 / 32

Page 22: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Ψ(3770) resonance: ResultsLang, Leskovec, DM, Prelovsek, arXiv:1503.05363

fit (i) fit (ii)

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

E [

GeV

]

fit (i) fit (ii)

D(0)D_

(0)

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

mD

++mD

-

2mD

0

mπ = 266 MeV mπ=156 MeV exp.

J/ψ

ψ(2S)

ψ(3770)

Mass [MeV] gΨ(3770)DDEnsemble(1) 3784(7)(8) 13.2 (1.2)Ensemble(2) 3786(56)(10) 24(19)Experiment 3773.15(33) 18.7(1.4)

First resonance determination of a charmonium stateProof of principle - many improvements possible

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 22 / 32

Page 23: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

χ ′c0 and X/Y(3915)

PDG is identifying the X(3915) with the χ ′c0

Based on BaBar determination of its quantum numbersSome of the reasons to doubt this assignment:

Guo, Meissner Phys. Rev. D86, 091501 (2012)

Olsen, arxiv 1410.6534

No evidence for fall-apart mode X(3915)→ D̄DSpin splitting mχc2(2P)−mχc0(2P) to smallLarge OZI suppressed X(3915)→ ωJ/ψ

Width should be significantly larger than Γχc2(2P)

Investigate D̄D scattering in S-wave on the lattice!Candidates:

m = 3837.6±11.5 MeV, Γ = 221±19 MeV Guo&Meissner

m = 3878±48 MeV, Γ = 347+316−143

MeV Olsen

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 23 / 32

Page 24: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

χ ′c0: Exploratory lattice calculation

Lang, Leskovec, DM, Prelovsek, arXiv:1503.05363

-0.6 -0.4 -0.2 0.0 0.2 0.4

p2[GeV

2]

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

p co

tδ/√

s

(a)

-0.6 -0.4 -0.2 0.0 0.2 0.4

p2[GeV

2]

(b)

-0.6 -0.4 -0.2 0.0 0.2 0.4

p2[GeV

2]

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

p co

tδ/√

s

(c)

Assumes only D̄D is relevant

Lattice data suggests a fairly narrow resonance with3.9GeV < M < 4.0GeV and Γ < 100MeV

Future experiment and lattice QCD results needed to clarify the situation

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 24 / 32

Page 25: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

An X(3872) candidate from Lattice QCD

lattice (mπ~266 MeV)

400

500

600

700

800

900

1000

1100

m -

1/4

(m

η c+3

mJ/

ψ)

[M

eV]

Exp

D(0)D*(0)

J/ψ(0)ω(0)

D(1)D*(-1)

χc1

(1P)

X(3872)

χc1

(1P)

X(3872)

O: cc O: cc DD* J/ψ ω

poleL→∞

Prelovsek, Leskovec, PRL 111

192001 (2013)

400

600

800

1000

1200

1400

E -

E(1

S) M

eV

D(0)D*(0)

D(-1)D*(1)

cc (I=0) cc + DD* (I=0) DD* (I=0)

Lee, DeTar, DM, Na,

arXiv:1411.1389

Neglects charm annihilation and J/ψω

Seen only when q̄q and D̄∗D are used

The two simulations have vastly different systematics (yet results aresimilar)

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 25 / 32

Page 26: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

An X(3872) candidate from Lattice QCD II

Padmanath, Lang, Prelovsek, arXiv:1503.03257

3.45

3.6

3.75

3.9

4.05

4.2

4.35

4.5

En [

GeV

]

Lat. - OMM17 Lat. - O

MM17 - O

-c c

D(0) -D*(0)

J/Ψ(0) ω(0)

D(1) -D* (-1)

J/Ψ(1) ω(-1)

ηc(1) σ(-1)

-30

-20

-10

0

10

Exp. Lat. Lat.-O4q [31] [32]

mX(3872)−mD−m-D*

770

790

810

830

850mX(3872)−ms.a.

Without q̄q interpolatorssignal vanishes

Simulations stillunphysical in many ways

Discretization and finitevolume effects sizable!

Makes interpretation aspure molecule or puretetraquark unlikely

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 26 / 32

Page 27: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Search for Z+c with IGJPC = 1+1+−

Lattice

D(2) D*(-2)D*(1) D*(-1)J/ψ(2) π(−2)ψ3 πD(1) D*(-1)ψ

1Dπ

D* D*η

c(1)ρ(−1)

ψ2S

πD D*j/ψ(1) π(-1)η

c ρ

J/ψ π

Exp.

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E[G

eV]

Prelovsek, Lang, Leskovec, DM, Phys.Rev. D91 014504 (2015)

Simple level counting approach

We find 13 two meson states as expected

We find no extra energy level that could point to a Zc candidate

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 27 / 32

Page 28: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Search for Y(4140) with JPC = 1++

Padmanath, Lang, Prelovsek, arXiv:1503.03257

3.45

3.6

3.75

3.9

4.05

4.2

4.35

4.5

En [

GeV

]

Expt. Lat. Lat. − O4q

Ds(0) -Ds*(0)

J/Ψ(0) φ(0)

Ds(1) -Ds* (-1)

J/Ψ(1) φ(-1)

Considered only J/ψφ and DsD̄∗sNo additional energy level seen

Further simulations necessary

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 28 / 32

Page 29: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Outline

1 Introduction

2 Charmonia from single-hadron operatorsLow lying charmoniaNew results on the 1S hyperfine splittingNew results on charmonium 1P states and 2S statesExited state energy levels from q̄qGluonic excitations

3 Charmonia including meson-meson statesThe ψ(2S) and Ψ(3770)χ ′c0 and X/Y(3915)Lattice results for the X(3872)Searches for Zc and Y(4140)

4 Conclusions and Outlook

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 29 / 32

Page 30: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Snapshot of spectrum calculations at mπ = 266MeV

ηc Ψ h

c0χ

c1χ

c2η

c2 Ψ2

Ψ3

hc3

χc3

-100

0

100

200

300

400

500

600

700

800

900

1000

1100m

-m_ c_ c [M

eV]

Ds

Ds*D

s0* D

s1D

s1D

s2*

-200-1000100200300400500600

m -

m_ Ds [

MeV

]

D D* D0*D

1D

1D2*D

2

0

200

400

600

800

m-m_

D [

MeV

]

lat: naive levelres. / bound state

First principles determination of resonances and bound states just startingProgram will have to be done with a number of lattice spacings/volumes

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 30 / 32

Page 31: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Conclusions & Outlook

Most current charmonium and charmed meson results are of anexploratory nature

Low-lying charmonium states are under good control (full error budgets)

New ideas might be needed for charm-annihilation contributions

Progress with regard to hybrids and higher spin states

Bound states and resonances close to DD̄, DD̄∗ and D∗D̄∗ can beinvestigated

No signal yet for manifestly exotic four quark states

For states well established on the lattice: calculation of radiativetransitions, etc. possible (and will be done)

A lot of progress but still much to do for excited charmonium

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 31 / 32

Page 32: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

. . .

Thank you!

... also to my collaborators Carleton DeTar, Andreas Kronfeld,Christian Lang, Song-Haeng Lee, Luka Leskovec, Ludmila Levkova,

Sasa Prelovsek and Jim Simone

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 32 / 32

Page 33: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Backup slides

. . .

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 33 / 32

Page 34: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Heavy quarks using the Fermilab method

El-Khadra et al., PRD 55,3933

We tune κ for the spin averaged kinetic mass (Mηc +3MJ/Ψ)/4 toassume its physical valueGeneral form for the dispersion relation

Bernard et al. PRD83:034503,2011

E(p) = M1 +p2

2M2− a3W4

6 ∑i

p4i −

(p2)2

8M34+ . . .

We compare results from three different fit strategiesEnergy splittings are expected to be close to physicalFor MeV values of masses

M = ∆M+Msa,phys

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 34 / 32

Page 35: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Technicalities: Lattices used

ID N3L×NT Nf a[fm] L[fm] #configs mπ [MeV] mK[MeV]

(1) 163×32 2 0.1239(13) 1.98 280/279 266(3)(3) 552(2)(6)(2) 323×64 2+1 0.0907(13) 2.90 196 156(7)(2) 504(1)(7)

Ensemble (1) has 2 flavors of nHYP-smeared quarksGauge ensemble from Hasenfratz et al. PRD 78 054511 (2008)

Hasenfratz et al. PRD 78 014515 (2008)

Ensemble (2) has 2+1 flavors of Wilson-Clover quarks

PACS-CS, Aoki et al. PRD 79 034503 (2009)

On the small volume we use distillationOn the larger volume we use stochastic distillation

Peardon et al. PRD 80, 054506 (2009);

Morningstar et al. PRD 83, 114505 (2011)

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 35 / 32

Page 36: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Testing our tuning: charm and light

Ensemble (1) Ensemble (2) Experimentmπ 266(3)(3) 156(7)(2) 139.5702(4)mK 552(1)(6) 504(1)(7) 493.677(16)mφ 1015.8(1.8)(10.7) 1018.4(2.8)(14.6) 1019.455(20)mηs 732.3(0.9)(7.7) 692.9(0.5)(9.9) 688.5(2.2)*

mJ/Ψ−mηc 107.9(0.3)(1.1) 107.1(0.2)(1.5) 113.2(0.7)mD∗s −mDs 120.4(0.6)(1.3) 142.1(0.7)(2.0) 143.8(0.4)mD∗−mD 129.4(1.8)(1.4) 148.4(5.2)(2.1) 140.66(10)2mD−mc̄c 890.9(3.3)(9.3) 882.0(6.5)(12.6) 882.4(0.3)2MDs

−mc̄c 1065.5(1.4)(11.2) 1060.7(1.1)(15.2) 1084.8(0.6)mDs−mD 96.6(0.9)(1.0) 94.0(4.6)(1.3) 98.87(29)

A single ensemble: Discrepancies due to discretization and unphysicallight-quark masses expected

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 36 / 32

Page 37: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Low-lying charmonium spectrum

ηc Ψ h

c0χ

c1χ

c2η

c2 Ψ2

Ψ3

hc3

χc3

-1000

100200300400500600700800900

10001100

Ene

rgy

diff

eren

ce [

MeV

]

JPC

: 0- +

1- -

1+ -

0+ +

1+ +

2+ +

2- +

2 - -

3- -

3+ -

3++

DM, S. Prelovsek, R. M. Woloshyn, PRD 87 034501 (2013);

Serves as further confirmation of our heavy-quark approachData from 1 ensemble; Errors statistical + scale setting

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 37 / 32

Page 38: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

Contractions

t f tiqqqq cs A1

t f ti

D

K

qqc

sC1

t f ti

D

qq

K

c

sB1

t f ti

DD

KK

c

s

D1

t f ti

DD

KK

c

s

D2

Handled efficiently within the distillation method

Peardon et al. PRD 80, 054506 (2009)Morningstar et al. PRD 83, 114505 (2011)

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 38 / 32

Page 39: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

An example: Different rho momentum frames

Lang, DM, Prelovsek, Vidmar, PRD 84 054503 (2011) & erratum ibid

0.4

0.6

0.8

1

En a

1 2 3 4 5 6 7 8

1

0.4

0.6

0.8

1

En a

1 2 3 4 5 6 7 8interpolator set

0.4

0.6

0.8

1

En a

interpolator set:

qq ππ

1: O1,2,3,4,5

, O6

2: O1,2,3,4

, O6

3: O1,2,3

, O6

4: O2,3,4,5

, O6

5: O1 , O

6

6: O1,2,3,4,5

7: O1,2,3,4

8: O1,2,3

P=(1,1,0)

P=(0,0,1)

P=(0,0,0)

with ππ without ππ

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 39 / 32

Page 40: Charmonium spectroscopy from Lattice QCD · Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 14 / 32 Exited state energy levels from ¯qq operators HSC, L

2S states

Fermilab/MILC, DeTar et al. arXiv:1410.3343

Simple analysis of 2S states lead to splittings much larger than inexperiment

Strong dependence on fit range and very noisy data

Daniel Mohler (Fermilab) Charmonium spectroscopy Baltimore, April 9, 2015 40 / 32