Check Dam Prog

Embed Size (px)

Citation preview

  • 8/8/2019 Check Dam Prog

    1/46

    1.0 Name of Village Surauli Bujurg

    2.0 Name of Block Sumerpur

    3.0 Name of District Hamirpur

    4.0 Name of river /nalla Baredi Nala

    5.0 Catchment Area 12 Sq.Km.

    6.0 Nature of Catchment Average

    7.0 Average annual rainfall 1000 mm

    8.0 Bed level of river 98.4 M

    9.0 Height of crest 2.15 M

    10.0 Ground Level of left Bank 102.93 M

    11.0 Ground Level of right Bank 100.95 M

    12.0 Bed width of river/nalla 5.70 M

    13.0 Top width of river/nalla 12.00 M14.0 Bed slope of river/nalla 0.66 M/Km.

    15.0 H.F.L. of river/nalla 101.9 M

    16.0 Discharge factor 14

    17.0 Manning's rugosity coefficient 0.03

    18.0 Silt factor 1

    19.0 Exit gradient 0.167

    20.0 Specific gravity of concrete 2.24

    21.0 X-Sectional area at H.F.L. 32.74 M

    22.0 Wetted Perimeter at H.F.L. 16.80 M

    6.31

  • 8/8/2019 Check Dam Prog

    2/46

  • 8/8/2019 Check Dam Prog

    3/46

    WIDTH OF CREST 1.250 FALSE M

    PROVIDE WIDTH OF CREST 1.250 M

    Total waterway 14.000 M

    14.000 MCheck Dam

    ENTER TRIAL VALUE OF D2 - 2.88O.K.

    VALUE OF D1 CORRESPONDING D2 0.80

    PROVIDE LE

  • 8/8/2019 Check Dam Prog

    4/46

    1.00

  • 8/8/2019 Check Dam Prog

    5/46

    Design of Check Dam

    Data :

    Name of Village Surauli Bujurg

    Name of Block Sumerpur

    Name of District Hamirpur

    Name of river /nalla Baredi Nala

    Catchment Area 12.00 Sq.K

    Nature of Catchment Average

    Average annual rainfall 1000 MM

    Bed level of river 98.395 M

    Height of crest 2.15 M

    Ground Level of left Bank 102.930 M

    Ground Level of right Bank 100.950 M

    Bed width of river/nalla 5.70 M

    Top width of river/nalla 12.00 M

    Bed slope of river/nalla 0.66 M/KmH.F.L. of river/nalla 101.895 M

    Discharge factor 14

    Manning's rugosity coefficient 0.03

    Silt factor 1

    Exit gradient 0.17

    Specific gravity of concrete 2.24

    X-Sectional area at H.F.L. 32.740

    Wetted Perimeter at H.F.L. 16.800

    A Yield from Catchment

    Design rainfall at 60 percent dependability

    = 1000 60 100 600 mm

    Catchment Type - 2 Average

    From Strange's Table,

    For Design rain fall = 600 mm,

    Rainfal Yield = 14.69 %

    Yield/Sq.Km.= 0.6 14.69 100 = 0.09 MCM

    Yield From The Catchment = 12.00 0.09 = 1.06 MCM

    B. Design Flood Discharge

    As per Dicken's formula

    = 14 12.00 = 90.26 cumec

    As per Manning's Equation

    1/N = 1 0.03 = 40

    A = 32.740

    P = 16.800

    R = A/P = 32.740 16.800 = 1.95

    1.95 = 1.560.00066 = 0.03

    H Q 40 32 740 1 56 0 03 53 12

    Q = C A 3/4

    Q = (1/N) A (R)2/3 S1/2

    R2/3 =S1/2 =

    x / =

    x /x

    x ( )3/4

    /

    /

    2/3( )1/2( )

    x

  • 8/8/2019 Check Dam Prog

    6/46

    Design of Check Dam

    Hence, adopt maximum of two i.e. 90.26 Cumec

    C. Water Way

    Hence, L = 4.83 90.26 = 45.89 m

    As the top width of river at crest level = 12.00 m

    Adopt length of crest = top width of river at crest + 1 m on each bank

    = 12.00 2.00 14.00 m

    Hence , Length of crest = 14.00 m

    D. Scour Depth

    Where,

    q = Discharge per unit length = Q/L

    90.26 14.00 = 6.45 cumec

    f = silt factor = 1

    Thus, R = 1.35 6.45 1.00 4.68 m

    Design Scour Depth = 1.5 x R = 7.020 m

    H.F.L. before construction of check dam - 101.895 mPermissible afflux = 1.00 m

    Thus, u.s. H.F.L. = H.F.L. + afflux =

    101.895 1.00 102.895 m

    Velocity of approach = q / R = 6.45 4.68 1.38 m/s

    = 1.38 1.38 9.81 0.10m

    u/s T.E.L. = u/s H.F.L + velocity head = 102.895 0.1 102.995

    d/s T.E.L. = d/s H.F.L. + velocity head= 101.895 0.1 101.995

    Crest Level of Check dam = 100.545 m

    Head over crest = 102.995 100.545 = 2.450 m

    Head Loss (HL) = u/s T.E.L - d/s T.E.L. = 102.995 101.995 1

    For broad crested weir, discharge passing over crest

    Q =Cd x L x H 3/2

    1.71 14.00 2.450 91.54 cumec > 90

    Hence the assumed waterway and the crest level is in order.

    Assuming free board = 0.50 m

    Top of Bund Level (TBL) = 102.995 0.50 = 103.

    E. Shape of crest

    Adopt , Top width ; 1.25m

    u/s slope ; 1 : 8

    Waterway as per Lacey's, L = 4.83 x Q 1/2

    ) 1/2

    Scour Depth, R = 1.35 x ( q2 / f )1/3

    Velocity head = V2 / 2g

    3/2

    x ( 2 / ) 1/3 =

    /

    x (

    +

    + =

    + =

    / =

    / ( 2 xx ) =

    + =

    +

    - =

    -

    =x

    x=

  • 8/8/2019 Check Dam Prog

    7/46

    Design of Check Dam

    F. Depth of Cistern

    Depth of cistern = dc/3

    Where, dc = 6.45 9.81 1Hence, Depth of cistern = 1.62 3.0 0

    But limiting depth of cistern = 0.50 m

    Hence, Provide depth of cistern = 0.50 m

    G. Level and Length of Downstream floor

    u.s. Bed level = 98.395m

    d.s. Bed level = 98.395m

    Here for ,

    q = 6.45 cumec/m

    and 1.00 mFrom Blench curve, Ef2 = 3.14

    R.L. of d/s floor = d/s H.F.L. -Ef2

    101.895 3.14 98.755 m

    Adopt cistern level = 98.395m

    3.14 1.00 4.14 m

    Values of D1 & D2 corresponding to Ef1 & Ef2,

    D1 = 0.80 m

    D2 = 2.88 m

    Cistern length required = 5 (D2 - D1)

    2.88 0.80 10.40 m

    = 3.8 x 1.619 0.42 1.00 = 7.57 m

    Hence, provide length of cistern = 10.40m

    Say - 10.40 m

    H. Vertical Cut-offs

    normal scour depth, R = 4

    Below Bed Level = 4.68 102.895 98.395 0.

    (I) Depth of u/s cut-off:as per scour depth consideration = 1.1 R 5.

    Below Bed Level = 5.148 102.895 98.395 0.

    as per water depth consideration =

    Depth of u/s cutoff, d1 = d/3 + 0.60

    4.50 2

    Provide, 0.5 m wide and 2.10 m deep cutoff.

    R.L. of bottom of cut-off = 98.395 2.10 96.

    (II) Depth of d/s cut-off:

    as per scour depth consideration = 1.25R 5.85m

    Below Bed Level = 5.850 101.895 98.395 2.

    as per water depth consideration =Depth of d/s cutoff, d2 = d/2 + 0.60

    3 50 2 35 m

    (q2

    /g)1/3

    HL =

    Again Ef1 = Ef2 + HL

    Lp= 3.8 x dc + 0.415 + H

    L

    2

    / )1/3

    == (/ =

    - ==

    = +

    = 5 x( - ) =

    = / 3 + 0.60

    / 2 + 0 60

    - ( - ) =

    - ( - ) =

    - ( - ) =

    - =

    + +

  • 8/8/2019 Check Dam Prog

    8/46

    100.545 98.395 2.150 m

    Design of Check Dam

    Hence, provide d/s cutoff of 0.5 m wide & 2.35 m dee

    R.L. of bottom of cut-off = 98.395 2.35 96.

    I. Total Floor Length and Exit Gradient

    u.s. F.S.L. = 100.545 m

    d.s. Floor level = 98.395 m

    Max. static head (Hs) = 100.545 98.395 2.15 m

    Depth of d/s cut-off, d2 = 2.35 m

    Now, GE = (1 / ).Hs / d2

    (1/) = GE.d2/Hs

    Here,

    GE = 0.167

    (1/) = 0.167 2.35 2.15 0.18

    From Khosla,s curve, = 5.02 m

    say - 5.00 m

    Total floor length required = d2

    5.00 2.35 11.75 m

    Provide Total floor length, b = 11.80m

    Width of crest = 1.25 m

    slope of u/s face 1 :

    slope of d/s face 1 :

    The length will be provided as under :

    Length below the toe of weir = 10.40 m

    Length of d/s weir =

    0.33 101.895 98.395 1.170 m

    Width of crest = 1.25 m

    Length of u/s weir =

    0.13 101.895 98.395 0.440 m

    u/s floor balance = -1.020m

    Provide u/s floor length = 1.800 m

    Hence, Total floor length provided = 15.060 m

    Assume u/s floor thickness near cut-off = 0.60 m

    Assume d/s floor thickness near cut-off = 0.60 m

    L. Pressure calculation

    (i) Upstream cutoff

    d1 = 2.10 m

    b = 15.060m

    = b/d1 7.17

    4.12

    Y = (-1)/ 0.76

    12.90

    87.10%

    18.79

    81.21%5.89%

    C ti i 1 f d th 1 68%

    =(1+1+2)/2

    D = 1/cos-1(Y)

    D1 =

    100 -D

    E = 1/cos-1((-2)/)

    C1 =100 -ED1

    -c1

    =

    = - =

    - =

    - =

    x( ) / =

    = x =

    = x ( - ) =

    = x ( - ) =

  • 8/8/2019 Check Dam Prog

    9/46

    Design of Check Dam

    (ii) Downstream cutoff

    d = 2.35 m

    b = 15.060 m

    = b/d1 6.41

    3.74

    Y = (-1)/ 0.73

    13.72

    19.82

    D2 - E2 = -6.10 % (-)ve

    Correction in E2 for depth = -1.557% (-)ve

    Corrected E2 =E2 + correction 18.26%

    (iii)Toe of glacis

    pressure = E2+((c1-E2)xLp/b) 75.22 %

    M. Impervious floor thickness

    u/s floor:

    Floor thickness in u/s 0.60 m

    (ii) Next point of unbalanced head from the downward end =

    2.60

    % pressure = 32.50 %

    Thickness required = 0.56 m

    Provide thickness 0.60 m

    (iii)Next point of unbalanced head from the downward end =

    5.20 m

    % pressure = 46.74 %

    Thickness required = 0.81 m

    Provide thickness 0.90 m

    (iv) Next point of unbalanced head from the downward end =

    7.80 m

    % pressure = 60.98 %

    Thickness required = 1.06 m

    Provide thickness 1.10 m (v) At the toe of weir:

    Next point of unbalanced head from the downward end =

    10.40 m

    % pressure = 75.22 %

    Thickness required = 1.30 m

    Provide thickness 1.30 m

    Design of Check Dam

    N. U/S protection

    U/s scour depth, R 4.68 m

    Anticipated scour = 1.5 R = 1.5 4.68 7.02 m

    U/s scour level = 102.895 -7.020 = 95.875 m

    =(1+1+2)/2

    D2 = 1/cos-1(Y)

    E2 = 1/cos-1((-2)/)

    x =

  • 8/8/2019 Check Dam Prog

    10/46

    98.395 -95.875 = 2.520 m

    (i) Block protection

    volume = d1 2.52 cum./

    Thickness of protection = 1.20 m

    Length of protection = 2.52 1.20 2.10 m

    Length of block = 0.80 mNos. of row = 2.10 0.80 2.63

    say- 3.00

    Length to be provided = 3.00 0.80 2.40 m

    Hence Provide 1.20 m thick and 2.40 m long

    block protection.

    (ii) Lanching apron.

    volume = 2.25xd1

    2.25 2.52 5.67 cum./

    Thickness of protection = 1.20 m

    Length of protection = 4.73 m

    Hence Provide 1.20 m thick and 5.00 m long

    launching apron.

    O. d/S protection

    D/s scour depth, R 4.68 m

    Anticipated scour = 2 R = 2.0 4.68 9.36 m

    d/s scour level = 101.895 -9.360 = 92.535 m

    Scour depth 'D' below d/s floor =

    98.395 -92.535 = 5.860 m

    (i) (a) Inverted filter

    Volume = d2 5.86 cum./

    Thickness of protection = 1.2 m

    Design Length = 5.86 1.2 5.00 m

    Minimum Length required = 5.90m

    Length of block with 100 mm thick jhirri filled with bajri = 0.90

    Nos. of row = 5.90 / 0.90 = 6.56

    Say- 7

    Hence provide length of filter = 6.20m

    (i) (b) Toe wall of concrete at the end of filter:width = 0.40 m

    depth = 1.2 + 0.30 = 1.50 m

    (ii) Luanching apron

    Volume = 2.25 d2

    2.25 5.86 13.19 cum./

    Design of Check Dam

    Minimum Length = 1.5D

    1.50 5.86 8.79 m

    Design Thickness = 13.19 8.79 1.50 mProvide- 1.50 m

    Length of launching apron =

    Provide 0.8 m x 0.8 m x 0.6 m C.C. block over 600 mm thick invertedfilter.

    Provide 0.8 m x 0.8 m x 0.6 m C.C. block over 600 mm thickinverted filter.

    / =

    / =

    x

    = x =

    x =

    / =

    = x =

    = x =

    / =

  • 8/8/2019 Check Dam Prog

    11/46

    say- 8.80 m

  • 8/8/2019 Check Dam Prog

    12/46

  • 8/8/2019 Check Dam Prog

    13/46

    m

    m

  • 8/8/2019 Check Dam Prog

    14/46

    m

    m

    m

    m

    m

    m

    m

    m

  • 8/8/2019 Check Dam Prog

    15/46

    m

    8

    3

  • 8/8/2019 Check Dam Prog

    16/46

    ###

  • 8/8/2019 Check Dam Prog

    17/46

  • 8/8/2019 Check Dam Prog

    18/46

  • 8/8/2019 Check Dam Prog

    19/46

    Design of Check Dam

    STABILITY CHECK FOR BODY WALL

    Case 1. Empty Condition

    No.

    Particulars

    Force L.A.Toe MomentL D Density Constant

    W1 1.25 2.15 1.90 5.110 1.8 9.172W2 0.440 2.15 1.90 0.50 0.900 2.567 2.310

    W3 1.170 2.15 1.90 0.50 2.390 0.780 1.864

    PV = 8.400

    H = 0 M = 13.35

    Factor of safety against rupture from tension

    Excess Moment, Me = M1 -M2 = 13.35 0 = 13.35 T-M

    V = Total Vertical Force = 8.400 T

    X = Me / V = 13.35 8.400 = 1.59 m

    e = Eccentricity = b/2 - X = 2.860 1.59 = -0.16 mb/ 6 = 2.860 6 = 0.48 m

    e < b/6, Hence safe.

    Factor of safety against Compression or crushing

    Pmax = [V / b] [1+6e/b]

    Here, [1+6e/b] = 1 -0.16 2.86 0.66 T/m2

    V / b = 8.400 2.86 = 2.94

    Pmax = 2.94 0.66 = 1.94 T/m2 < 300, Hence safe.

    Pmin = [V / b] [1-6e/b]

    Here, [1-6e/b] = 1 -0.16 2.86 1.34 T/m2Pmin = 2.94 1.34 = 3.940 T/m2 < 300, Hence safe.

    b

    W3

    (b-a-c)ac

    W1

    W2

    H

    FSL

    1:3

    1:8

    -

    /

    / 2 -/

    [+ 6 x / ] =

    x

    [ - 6 x ] =/

    /

    x

  • 8/8/2019 Check Dam Prog

    20/46

    Design of Check Dam

    Case 2. FSL Condition

    No.

    Particulars

    Force L.A.Toe MomentL D Density Constant

    W1 1.250 2.15 1.90 5.110 1.795 9.172

    W2 0.440 2.15 1.90 0.50 0.900 2.567 2.310

    W3 1.170 2.15 1.90 0.50 2.390 0.780 1.864

    P 2.150 2.15 1.00 0.50 2.310 0.720 1.663

    U 2.860 2.15 1.00 0.50 3.070 1.910 5.864V = 5.330 M1 = 13.346H = 2.310 M2 = 7.527

    Factor of safety against overturning

    Restoring Moment, M1 = 13.35 T-m

    Overturnig moment, M2 = 7.53 T-m

    FOS = M1 / M2 = 13.35 7.53 = 1.77

    > 1, Hence safe.

    Factor of safety against rupture from tension

    Excess Moment, Me = M1 -M2 = 13.35 7.53 = 5.82 T-M

    V = Total Vertical Force = 5.330 T

    X = Me / V = 5.82 5.33 = 1.09 m

    e = Eccentricity = b/2 - X = 2.86 1.09 = 0.34 m

    b/ 6 2 86 6 0 48

    HbU

    P

    b

    (b-a-c)ac

    W1

    W2

    H

    FSL

    1:31:8

    -

    // 2 -/

    /

  • 8/8/2019 Check Dam Prog

    21/46

    Design of Check Dam

    Factor of safety against Compression or crushing

    Pmax = [V / b] [1+6e/b]

    Here, [1+6e/b] = 1 0.34 2.86 1.71V / b = 5.330 2.86 = 1.86

    Pmax = 1.86 1.71 = 3.18 T/m2 < 300, Hence safe.

    Pmin = [V / b] [1-6e/b]

    Here, [1-6e/b] = 1 0.34 2.86 0.29

    Pmin = 1.86 0.29 = 0.54 T/m2 < 300, Hence safe.

    Factor of safety against Sliding

    = Coefficient of sliding = 0.67

    FOS sliding = V/H = 0.67 5.33 2.31 1.55> 1, Hence safe.

    Case 2. Afflux HFL Condition

    [+ 6 x / ] =

    x

    [- 6 x ] =/

    /

    x

    /x =

    b

    (b-a-c)ac

    W1

    W2

    H b

    HFL

    1:31:8

    (Hb + H +h) U 1U 2

    (Hb + H )

    W3

    W4

    W5

    P1

    P2

    P3

    P4

    H(H+h) w7

    w6w8

    Afflux HFL

  • 8/8/2019 Check Dam Prog

    22/46

    Design of Check Dam

    No.

    Particulars

    Force L.A.Toe MomentL D Density Constant

    W1 1.250 2.150 1.90 5.110 1.795 9.172

    W2 0.440 2.150 1.90 0.50 0.900 2.567 2.310

    W3 1.170 2.150 1.90 0.50 2.390 0.780 1.864

    W4 1.170 2.150 1.00 0.50 1.260 0.390 0.491

    W5 0.440 2.150 1.00 0.50 0.470 2.713 1.275

    W6 1.170 1.350 1.00 1.580 0.585 0.924

    W7 1.250 2.350 1.00 2.940 1.795 5.277

    W8 0.440 2.350 1.00 1.030 2.640 2.719

    P1 2.350 2.150 1.00 5.050 1.075 5.429

    P2 2.150 2.150 1.00 0.50 2.310 0.717 1.656P3 1.350 2.150 1.00 2.900 1.075 3.118

    P4 2.150 2.150 1.00 0.50 2.310 0.720 1.663

    U1 2.860 4.500 1.00 0.50 6.440 1.910 12.300

    U2 2.860 3.500 1.00 0.50 5.010 0.950 4.760V = 4.230 M1 = 6.972

    H = 2.150 M2 = 2.304

    Factor of safety against overturning

    Restoring Moment, M1 = 6.972 T-m

    Overturnig moment, M2 = 2.304 T-m

    FOS = M1 / M2 = 6.97 2.3 = 3.030

    > 1, Hence safe.

    Factor of safety against rupture from tension

    Excess Moment, Me = M1 -M2 = 6.97 2.3 = 4.67 T-M

    V = Total Vertical Force = 4.23 T

    X = Me / V = 4.67 4.23 = 1.10 m

    e = Eccentricity = b/2 - X = 2.86 1.10 = 0.33 m

    b/ 6 = 2.86 6 = 0.48 m

    e < b/6, Hence safe.

    Factor of safety against Compression or crushing

    Pmax = [V / b] [1+6e/b]

    Here, [1+6e/b] = 1 0.33 2.86 1.69

    V / b = 4.23 2.86 = 1.48

    Pmax = 1.48 1.69 = 2.5 T/m2 < 300, Hence safe.

    Pmin = [V / b] [1-6e/b]

    Here, [1-6e/b] = 1 0.33 2.86 0.31

    Pmin = 1.48 0.31 = 0.46 T/m2

    Factor of safety against Sliding

    = Coefficient of sliding = 0.67

    FOS sliding = V/H = 0.67 4.23 2.15 1.32

    -

    // 2 -/

    /

    [+ 6 x / ] =

    x

    [- 6 x ] =/

    /

    x

    /x =

  • 8/8/2019 Check Dam Prog

    23/46

    Design of Check DamDESIGN AND STABILITY CHECK FOR ABUTMENT

    Case 1 : Simply check dam

    (A) Height of abutment ; H = 103.5 98.245 5.25 m

    Base width of abutment, b = 0.75 H = 0.70 5.25 3.680 m

    Top width of abutment, a = 0.69 m

    C = 0.44 m

    Z = 2.300 m

    Y = 2.950 m

    (b-a) = 2.990 m

    c = 0.44 m

    No.

    Particulars

    Force L.A.Toe MomentL D Density Constant

    W1 0.438 5.250 1.90 0.50 2.180 0.292 0.637

    W2 0.690 5.250 1.90 6.880 0.783 5.387

    W3 2.990 5.250 1.90 0.50 14.910 2.125 31.684

    W4 1.680 2.950 1.75 0.50 4.340 2.248 9.756

    W5 1.310 2.950 1.75 6.760 3.463 23.410

    W6 1.310 2.300 2.00 0.50 3.010 2.553 7.685

    U 3.680 2.300 1.00 0.50 -4.230 2.453 -10.376

    P4 2.950 2.950 1.75 0.165 2.510 3.283 8.240

    =x =

    H

    b

    W2

    W3

    (b-a)a

    W1

    FSL

    P4

    TBL

    -

    W4

    cA

    U Z

    P1

    P2 P3

    W5

    W6

    Z

    Y

  • 8/8/2019 Check Dam Prog

    24/46

    P2 2.300 2.300 1.00 0.165 0.870 0.767 0.667

    P3 2.300 2.300 1.00 0.50 2.650 0.767 2.032V = 33.850 MR = 68.183

    H = 9.950 Mo = 15.447

    Design of Check Dam

    Factor of safety against overturning

    Restoring Moment, M1 = 68.183 T-m

    Overturnig moment, M2 = 15.447 T-m

    FOS = M1 / M2 = 68.18 15.45 = 4.41

    > 1, Hence safe.

    Factor of safety against rupture from tension

    Excess Moment, Me = M1 -M2 = 68.18 15.45 = 52.74 T-M

    V = Total Vertical Force = 33.85 T

    X = Me / V = 52.74 33.85 = 1.56 m

    e = Eccentricity = b/2 - X = 3.68 1.56 = 0.28 m

    b/ 6 = 3.68 6 = 0.61 m

    e < b/6, Hence safe.

    Factor of safety against Compression or crushing

    Pmax = [V / b] [1+6e/b]

    Here, [1+6e/b] = 1 0.28 3.68 1.46

    V / b = 33.85 3.68 = 9.2

    Pmax = 9.2 1.46 = 13.43 T/m2 < 300, Hence safe.

    Pmin = [V / b] [1-6e/b]

    Here, [1-6e/b] = 1 0.28 3.68 0.54

    Pmin = 9.2 0.54 = 4.97 T/m2

    Factor of safety against Sliding

    = Coefficient of sliding = 0.67

    FOS sliding = V/H = 0.67 33.85 9.95 2.28

    > 1, Hence safe.

    -

    // 2 -/

    /

    [+ 6 x / ] =

    x

    [- 6 x ] =/

    /

    x

    /x =

  • 8/8/2019 Check Dam Prog

    25/46

    Design of Check DamDesign of Downstream wing wall

    1.0 Data

    Top of wing wall = 102.495 m

    Junction level of the wingwall with concrete = 98.245 m

    Height of wing wall = 4.250 m

    Pond level = 100.545 m

    Foundation level = 97.095 m

    2.0 Condition of testing

    The wing wall setion shall be tested at the junction level and the foundation level for the following conditions.

    3.0 Tentative section of wing wall

    Front face batter = 1 : 12

    Top width of wing wall = 0.50 m

    Base width of junction with concrete = 0.6 H

    = 2.55 m

    Base with of foundation level = 2.550 1.200 3.75 m

    a = 0.50 m

    Here, b = 2.55 m

    d = 0.35 m

    c = 1.700 mH = 4.250 m

    Z = 2.300 m

    " No water on the front of face and earth fill saturated upto the pond level and wet between pond level and topwing wall."

    +

    =

    U

    b

    c

    W2

    W5

    P1

    P2P3

    P4

    W3W1

    W4

    a

    H

    Y

    Z

    W6

    X

    W7

    A

  • 8/8/2019 Check Dam Prog

    26/46

    Density of masonary 1.90 T/m3

    Density of wet earth = 1.75 T/m3

    Density of saturated earth = 2.00 T/m3

    Cp = 0.33

    Density of water = 1.00 T/m3

    Density of concrete = 2.40 T/m3

    Design of Check Dam

    No.

    Particulars Force

    L.A.Toe MomentL D Density Constant V H

    W1 0.350 4.250 1.900 0.500 1.410 - 0.117 0.

    W2 0.500 4.250 1.900 4.040 - 0.600 2.4

    W3 1.700 4.250 1.900 0.500 6.860 - 1.417 9.

    W4 1.700 2.300 2.000 0.500 3.910 - 1.983 7.

    W5 0.558 1.125 1.750 0.500 0.550 - 1.222 0.

    W6 1.142 1.125 1.750 2.250 - 1.979 4.4

    W7 1.700 0.825 1.750 2.450 - 1.700 4.

    U 2.550 2.300 1.000 0.500 -2.930 - 1.700 -4.

    P4 0.825 0.825 1.750 0.165 - 0.200 2.950 0.

    P1 0.825 2.300 1.750 0.330 - 1.100 1.150 1.2

    P2 2.300 2.300 1.000 0.165 - 0.870 0.767 0.

    P3 2.300 2.300 1.000 0.500 - 2.650 0.767 2.V = 18.540 MR = 24.

    H = 4.820 Mo = 4.

    Factor of safety against overturning

    Restoring Moment, M1 = 24.373 T-mOverturnig moment, M2 = 4.555 T-m

    FOS = M1 / M2 = 24.37 4.56 = 5.35

    > 1.5, Hence safe.

    Factor of safety against rupture from tension

    Excess Moment, Me = M1 -M2 = 24.3730 4.5550 = 19.82 T-M

    V = Total Vertical Force = 18.54 T

    X = Me / V = 19.82 18.54 = 1.07 m

    e = Eccentricity = b/2 - X = 2.55 1.07 = 0.21 m

    b/ 6 = 2.55 6 = 0.43 m

    e < b/6, Hence safe.

    Factor of safety against Compression or crushing

    Pmax = [V / b] [1+6e/b]

    Here, [1+6e/b] = 1 0.21 2.55 1.48

    V / b = 18.54 2.55 = 7.27

    Pmax = 7.27 1.48 = 10.76 T/m2 < 100, Hence safe.

    Pmin = [V / b] [1-6e/b]

    Here, [1-6e/b] = 1 0.21 2.55 0.52

    Pmin = 7.27 0.52 = 3.78 T/m2 < 10, Hence safe.

    Factor of safety against Sliding

    = Coefficient of sliding = 0.65

    FOS sliding = V/H = 0.65 18.54 4.82 2.5

    -

    // 2 -/

    /

    [ + 6 x / ] =

    x

    [ - 6 x ] =/

    /

    x

    /x =

    ---

    /

  • 8/8/2019 Check Dam Prog

    27/46

    Design of Check Dam

    (ii) Checking Stability of wing wall section at foundation level.

    Parameters -

    a = 0.50 m Z' = 0.450 m

    b = 3.75 m Z= 2.300 m

    c = 2.05 m Y = 1.125 m

    d = 0.60 m X = 0.825 m

    e = 0.60 m Z+Z' = 2.750 m

    Density of masonary 1.90 T/m3

    Density of wet earth = 1.75 T/m3

    Density of saturated earth = 2.00 T/m3

    Cp = 0.33Density of water = 1.00 T/m3

    Density of concrete = 2.40 T/m3

    P1

    P2P3

    P4

    W3W1

    W4

    aa

    Z

    Y

    W6

    X

    W7

    A

    a c

    b

    e

    d

    Z'

    H

    W2

    W5

    UZ+Z'

    W8

    W9

    W10

  • 8/8/2019 Check Dam Prog

    28/46

    Design of Check Dam

    No.

    Particulars Force

    L.A.Toe MomentL D Density Constant V H

    W1 0.350 4.250 1.900 0.50 1.410 - 0.717 1.

    W2 0.500 4.250 1.900 0.00 4.040 - 1.200 4.

    W3 1.700 4.250 1.900 0.50 6.860 - 2.017 13.

    W4 1.700 2.300 2.000 0.50 3.910 - 2.583 10.

    W5 0.558 1.125 1.750 0.50 0.550 - 1.822 1.W6 1.142 1.125 1.750 - 2.250 - 2.579 5.

    W7 1.700 0.825 1.750 - 2.450 - 2.300 5.

    W8 0.600 1.950 1.750 - 2.050 - 3.800 7.

    W9 0.600 2.300 1.750 - 2.420 - 3.800 9.

    W10 3.750 0.450 2.400 - 4.050 - 1.875 7.

    U 3.750 2.750 1.000 0.50 -5.160 - 2.500 -12.

    P4 0.825 0.825 1.750 0.17 - 0.200 3.400 0.

    P1 0.825 2.300 1.750 0.33 - 1.100 1.600 1.

    P2 2.300 2.300 1.000 0.17 - 0.870 1.217 1.

    P3 2.300 2.300 1.000 0.50 - 2.650 1.217 3.2V = 24.830 MR = 53.

    H = 4.820 Mo = 6.

    Factor of safety against overturning

    Restoring Moment, M1 = 53.916 T-m

    Overturnig moment, M2 = 6.724 T-m

    FOS = M1 / M2 = 53.916 / 6.724 = 8.018

    > 1.5, Hence safe.

    Factor of safety against rupture from tension

    Excess Moment, Me = M1 -M2 = 53.916 6.724 = 47.192 T-m

    V = Total Vertical Force = 24.830 T

    X = Me / V = 47.192 / 24.830 = 1.9 m

    e = Eccentricity = b/2 - X = 3.75 1.9 = -0.03 m

    b/ 6 = 3.75 / 6 = 0.63 m

    e < b/6, Hence no tension will develop at the base.

    Factor of safety against Compression or crushing

    Pmax = [V / b] [1+6e/b]

    Here, [1+6e/b] = -0.03 3.75 0.96

    V / b = 24.83 / 3.75 = 6.62

    Pmax = 6.62 x 0.96 6.34 T/m2 < 30, Hence safe.

    Pmin = [V / b] [1-6e/b]Here, [1-6e/b] = -0.03 3.75 1.04

    Pmin = 6 62 x 1 04 6 9 T/m2 < 10 Hence safe

    -

    / 2 -

    [1+ 6 x / ] =

    =

    [1+ 6 x

    [ 1 - 6 x / ] =

  • 8/8/2019 Check Dam Prog

    29/46

  • 8/8/2019 Check Dam Prog

    30/46

  • 8/8/2019 Check Dam Prog

    31/46

  • 8/8/2019 Check Dam Prog

    32/46

  • 8/8/2019 Check Dam Prog

    33/46

  • 8/8/2019 Check Dam Prog

    34/46

  • 8/8/2019 Check Dam Prog

    35/46

  • 8/8/2019 Check Dam Prog

    36/46

  • 8/8/2019 Check Dam Prog

    37/46

  • 8/8/2019 Check Dam Prog

    38/46

  • 8/8/2019 Check Dam Prog

    39/46

  • 8/8/2019 Check Dam Prog

    40/46

  • 8/8/2019 Check Dam Prog

    41/46

    Designed and developed by Er. Rajeev Kumar, Executive Engineer, Irrigation Department of U.P.

    1 of 3

    Design of Check Dam

    Data :

    Name of Village : Surauli BujurgName of Block : Sumerpur

    Name of District : Hamirpur

    Name of river /nalla : Baredi Nala

    Catchment Area : 12.00 Sq.Km.

    Nature of Catchment : Average

    Average annual rainfall : 1000.00 MM

    Bed level of river : 98.40 M

    Height of crest : 2.15 M

    Ground Level of left Bank : 102.93 M

    Ground Level of right Bank : 100.95 MBed width of river/nalla : 5.70 M

    Top width of river/nalla : 12.00 M

    Bed slope of river/nalla : 0.66 M/Km.

    H.F.L. of river/nalla : 101.90 M

    Discharge factor : 14.00

    Manning's rugosity coefficient : 0.03

    Silt factor : 1.00

    Exit gradient : 0.17

    Specific gravity of concrete : 2.24

    X-Sectional area at H.F.L. : 32.74

    Wetted Perimeter at H.F.L. : 16.80

    Design Report :1.0 Design Flood Discharge : 90.26 cumec

    2.0 Water Way : 45.89 m

    3.0 Length of crest adopted : 14.00m

    4.0 Normal Scour Depth : 4.68 m

    5.0 u/s T.E.L. : 103 m

    6.0 d/s T.E.L. : 102 m

    7.0 Crest Level of Check dam = : 100.55 m

    8.0 Head over crest = : 2.45 m

    9.0 Discharge passing over crest : 91.54 cumec

    10.0 Top of Bund Level (TBL) = : 103.5m

    11.0 Shape of crest

    Top width ; 1.25 m

    u/s slope ; 1 : 8

    d/s slope ; 1 : 3

  • 8/8/2019 Check Dam Prog

    42/46

    Designed and developed by Er. Rajeev Kumar, Executive Engineer, Irrigation Department of U.P.

    2 of 3

    Design of Check Dam

    11.0 Cistern Level : 98.4m12.0 Length of cistern : 10.40m

    13.0 R.L. of bottom of u/s cut-off (0.50 m) : 96.3m

    14.0 R.L. of bottom of d/s cut-off (0.50 m) : 96.05m

    15.0 d.s. Floor level : 98.4m

    16.0 u.s. floor level : 98.4m

    17.0 Total Floor Length - : 15.060 m

    Length below the toe of weir : 10.40m

    Length of d/s weir : 1.170m

    Width of crest : 1.250m

    Length of u/s weir : 0.440m

    u/s floor length : 1.800m18.0 Floor thickness in u/s : 0.60m

    19.0 Toe of crest : #REF!m

    20.0 Toe of glacis : 1.30m

    21.0 2.60 m from the toe of crest : 0.60m

    22.0 5.20 m from the toe of crest : 0.90m

    23.0 10.40 m from the toe of crest : 1.30m

    24.0 U/S protection

    (i) Block protection

    1.20 m thick and 2.40 m long

    (ii) Lanching apron.

    1.20 m thick and 5.00 m long

    25.0 d/S protection

    (i) Inverted filter

    Provide 0.8 m x 0.8 m x 0.6 m C.C. block over 600 mm thick inverted filter.

    6.20 m long.

    (ii) Toe wall of concrete at the end of filter:

    0.40 m wide and 1.50 m depth.

    (iii) Luanching apron

    1.50 m thick and 8.80 m long

    26.0 Abutment

    (i) Top Width of abutment ; : 0.69m

    (ii) : 3.680m

    Base width of Wing Wall at the foundation: 4.680

    (iii)Height of abutment : 5.250m

    (iv)Length of abutment : 2.860m

    Provide 0.8 m x 0.8 m x 0.6 m C.C. block over 600 mm thickinverted filter.

    Base width of abutment at the junction ofconcrete

  • 8/8/2019 Check Dam Prog

    43/46

    Designed and developed by Er. Rajeev Kumar, Executive Engineer, Irrigation Department of U.P.

    27.0 Wing Wall

    (A)D/S Wing Wall

    (i) Top Width of Wing Wall ; 0.50m

    3 of 3

    Design of Check Dam

    (ii)2.55m

    (iii)Base width of Wing Wall at the foundation

    3.15m

    (iv) Length of wing wall 10.40 m

    (B)U/S Wing Wall

    (i) Top Width of Wing Wall ; 0.50m

    (ii)3.15m

    (iii)Base width of Wing Wall at the foundation

    3.75m(iv) Length of wing wall 1.800 m

    Base width of Wing Wall at the junctionof concrete

    Base width of Wing Wall at the junctionof concrete

  • 8/8/2019 Check Dam Prog

    44/46

    Designed and developed by Er. Rajeev Kumar, Executive Engineer, Irrigation Department of U.P.

  • 8/8/2019 Check Dam Prog

    45/46

    Designed and developed by Er. Rajeev Kumar, Executive Engineer, Irrigation Department of U.P.

    1.43

    0.63

    1.17

    1.8

    0.44

    1.07

    2.86

  • 8/8/2019 Check Dam Prog

    46/46