Chemical and Engineering Thermodynamics- Solutions Manual

Embed Size (px)

Citation preview

preface.pdf

v

Preface

This manual contains more or less complete solutions for every problem in thebook. Should you find errors in any of the solutions, please bring them to my attention.

Over the years, I have tried to enrich my lectures by including historicalinformation on the significant developments in thermodynamics, and biographicalsketches of the people involved. The multivolume Dictionary of Scientific Biography,edited by Charles C. Gillispie and published by C. Scribners, New York, has beenespecially useful for obtaining biographical and, to some extent, historical information.[For example, the entry on Anders Celsius points out that he chose the zero of histemperature scale to be the boiling point of water, and 100 to be the freezing point.Also, the intense rivalry between the English and German scientific communities forcredit for developing thermodynamics is discussed in the biographies of J.R. Mayer, J. P.Joule, R. Clausius (who introduced the word entropy) and others.] Other sources ofbiographical information include various encyclopedias, Asimovs BiographicalEncyclopedia of Science and Technology by I. Asimov, published by Doubleday & Co.,(N.Y., 1972), and, to a lesser extent, Nobel Prize Winners in Physics 1901-1951, byN.H. deV. Heathcote, published by H. Schuman, N.Y.

Historical information is usually best gotten from reading the original literature.Many of the important papers have been reproduced, with some commentary, in a seriesof books entitled Benchmark Papers on Energy distributed by Halsted Press, a divisionof John Wiley and Sons, N.Y. Of particular interest are:

Volume 1, Energy: Historical Development of the Concept, by R. Bruce Lindsay.

Volume 2, Applications of Energy, 19th Century, by R. Bruce Lindsay.

Volume 5, The Second Law of Thermodynamics, by J. Kestin and

Volume 6, Irreversible Processes, also by J. Kestin.

The first volume was published in 1975, the remainder in 1976.

vi

Other useful sources of historical information are The Early Development of theConcepts of Temperature and Heat: The Rise and Decline of the Caloric Theory by D.Roller in Volume 1 of Harvard Case Histories in Experimental Science edited by J.B.Conant and published by Harvard University Press in 1957; articles in Physics Today,such as A Sketch for a History of Early Thermodynamics by E. Mendoza (February,1961, p.32), Carnots Contribution to Thermodynamics by M.J. Klein (August, 1974,p. 23); articles in Scientific American; and various books on the history of science. Ofspecial interest is the book The Second Law by P.W. Atkins published by ScientificAmerican Books, W.H. Freeman and Company (New York, 1984) which contains a veryextensive discussion of the entropy, the second law of thermodynamics, chaos andsymmetry.

I also use several simple classroom demonstrations in my thermodynamics courses.For example, we have used a simple constant-volume ideal gas thermometer, and aninstrumented vapor compression refrigeration cycle (heat pump or air conditioner) thatcan brought into the classroom. To demonstrate the pressure dependence of the meltingpoint of ice, I do a simple regelation experiment using a cylinder of ice (produced byfreezing water in a test tube), and a 0.005 inch diameter wire, both ends of which aretied to the same 500 gram weight. (The wire, when placed across the supported cylinderof ice, will cut through it in about 5 minutes, though by refreezing or regelation, the icecylinder remains intact.This experiment also provides an opportunity to discuss themovement of glaciers.) Scientific toys, such as Love Meters and drinking HappyBirds, available at novelty shops, have been used to illustrate how one can makepractical use of the temperature dependence of the vapor pressure. I also use someprofessionally prepared teaching aids, such as the three-dimensional phase diagrams forcarbon dioxide and water, that are available from laboratory equipment distributors.

Despite these diversions, the courses I teach are quite problem oriented. Myobjective has been to provide a clear exposition of the principles of thermodynamics, andthen to reinforce these fundamentals by requiring the student to consider a greatdiversity of the applications. My approach to teaching thermodynamics is, perhaps,similar to the view of John Tyndall expressed in the quotation

It is thus that I should like to teach you all things; showing you the way toprofitable exertion, but leaving the exertion to youmore anxious to bring outyour manliness in the presence of difficulty than to make your way smooth bytoning the difficulties down.

Which appeared in The Forms of Water, published by D. Appleton (New York, 1872).

Solutions to Chemical and Engineering Thermodynamics, 3e vii

Finally, I usually conclude a course in thermodynamics with the following quotation by Albert Einstein:

A theory is more impressive the greater the simplicity of its premises is, themore different kinds of things it relates, and the more extended its area ofapplicability. Therefore, the deep impression classical thermodynamics madeupon me. It is the only physical theory of universal content which, within theframework of the applicability of its basic concepts, I am convinced will neverby overthrown.

ch02.pdf

D %\ DQ HQHUJ\ EDODQFH WKH ELF\FOH VWRSV ZKHQ ILQDO SRWHQWLDO HQHUJ\ HTXDOV

LQLWLDONLQHWLFHQHUJ\7KHUHIRUH

PY PJK KY

JL I I

L

u u

u

RU

NP

KU

P

NP

KU

VHFP

VHF

RUK P

E 7KHHQHUJ\EDODQFHQRZLV

PY PY PJK Y Y JKI L L I L L RU

Y I

P

u u u u

NP

KU

PP

NP

KU

VHF

VHF

Y I NPKU$Q\RQHZKRKDVELF\FOHGUHDOL]HV WKDW WKLVQXPEHU LVPXFK

WRRKLJKZKLFKGHPRQVWUDWHVWKHLPSRUWDQFHRIDLUDQGZLQGUHVLVWDQFH

7KHYHORFLW\FKDQJHGXHWRWKHPIDOOLV

'Y

P

2 7 u u u u

VHF

VHFPP

NP

KU

Y I NPKU1RZWKLVYHORFLW\FRPSRQHQWLVLQWKHYHUWLFDOGLUHFWLRQ7KH

LQLWLDOYHORFLW\RINPKUZDVREYLRXVO\ LQ WKHKRUL]RQWDOGLUHFWLRQ6R WKH ILQDO

YHORFLW\LV

Y Y Y[ \

NP

KU

D 6\VWHPFRQWHQWVRIWKHSLVWRQDQGF\OLQGHU

FORVHGLVREDULF FRQVWDQWSUHVVXUH

0% 0 0 0 0 0 0 '

(% 0 8 08 'M H3 8

0 4 Ws

0I 3G9

0 8 8 4 3G9 4 3 G9 4 3 9 9 I I2 7 0 50 8 8 4 30 9 9 2 7 2 7

4 0 8 8 0 39 39 0 8 39 8 39

0 + +

2 7 2 7 2 7 2 7

2 7

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

3 | EDU 03D9 8 +

7

7

/LQHDULQWHUSRODWLRQ

7 q & ,QLWLDOVWDWH

)LQDOVWDWH 3 03D 9 PNJ

7 q &

7 q &

/LQHDULQWHUSRODWLRQ

q

77 &

++

4 NJ N- NJ N-

: 3G9 9 9 u u

u u

u

u

I

EDU EDU P NJ

EDU3D

EDU

NJ

P V 3D

-

P V NJ P NJ

N- NJ

0 5

E 6\VWHPLVFORVHGDQGFRQVWDQWYROXPH

0% 0 0 0

(% 0 8 08 'M H3 8

0 4 Ws

0PdVI

0

4 0 8 8 2 7

+HUH ILQDO VWDWH LV 3 u a EDU 03D 9 9 P NJ

VLQFHSLVWRQF\OLQGHUYROXPHLVIL[HG

3 03D 9

7q& 9 8

a

7

7 q &

88

N- NJ

4 u N-NJ N- NJ

F 6WHDPDVDQLGHDOJDVFRQVWDQWSUHVVXUH

139

57

39

57

39

57

EXW9 9 3 3

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

39

7

3 9

77 7

7

7 7

u

u q

.

. &

4 1 + u u u

'

J NJ

J PRO - PRO. .

N-

-

N-

: 3G9 3 9 3157

3

157

315 7 7

u u

I '

0 5

N-

G ,GHDOJDVFRQVWDQWYROXPH

39

57

39

57

KHUH9 9 3 3

6RDJDLQ39

7

3 9

7

7 7 .

4 1 8 u u u'

J NJ

J PRO

& & 59 3 4 N-

0 8 0 8 : 0 JZ Z I Z Z L V ZHLJKW P u u

0 0Z ZHLJKW NJ

NJ NJ P V P-

P NJ V-3 I L

u u u u & 7 70 5

J

NJ - J.NJ

u u u '7

'7 u

u

. .

)URP,OOXVWUDWLRQZHKDYH WKDW + 7 3 + 7 3 0 5 0 5 IRUD-RXOH7KRPVRQH[SDQVLRQ2QWKH0ROOLHUGLDJUDPIRUVWHDP)LJD WKHXSVWUHDPDQG

GRZQVWUHDPFRQGLWLRQVDUHFRQQHFWHGE\DKRUL]RQWDOOLQH7KXVJUDSKLFDOO\

ZHILQGWKDW 7 a . $OWHUQDWLYHO\RQHFRXOGDOVRXVHWKH6WHDP7DEOHV

RI$SSHQGL[,,,

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

)RU WKH LGHDO JDV HQWKDOS\ LV D IXQFWLRQ RI WHPSHUDWXUH RQO\ 7KXV

+ 7 3 + 7 3 0 5 0 5 EHFRPHV + 7 + 7 0 5 0 5 ZKLFK LPSOLHV WKDW7 7 q&

6\VWHP&RQWHQWVRI'UXPRSHQV\VWHP

PDVVEDODQFH 0 0 0W W '

HQHUJ\EDODQFH

08 08 0+ 4 : 3G9W W

I' LQ VEXW4 E\SUREOHPVWDWHPHQW:V

DQG 3G9 3 9I ' LV QHJOLJLEOH 1RWH 9 7 q u & P NJ 9 7 q u & P NJ $OVRIURPWKH6WHDP7DEOHV

+ + 7 3LQ & N- NJ q EDU N3D

DQGUHFRJQL]LQJ WKDW WKH LQWHUQDOHQHUJ\RI D OLTXLGGRHVQRWGHSHQGRQSUHVVXUH

JLYHV

8 8 7 8 7W

q q & EDU VDW & N- NJ

DQG

8 8 7 8 7W

q q & EDU VDW & N- NJ

1RZXVLQJPDVVEDODQFHDQGHQHUJ\EDODQFHVZLWK 0W

NJ \LHOGV

VWHDP

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

0 0W W

N- N- u u u N-

7KXV

0W u

0W

NJ DQG '0 0 0W W

NJ RIVWHDPDGGHG

D &RQVLGHUDFKDQJHIURPDJLYHQVWDWHWRDJLYHQVWDWHLQDFORVHGV\VWHP

6LQFH LQLWLDODQGILQDOVWDWHVDUHIL[HG 88

9

9

3

3

HWFDUHDOO

IL[HG7KHHQHUJ\EDODQFHIRUWKHFORVHGV\VWHPLV

8 8 4 : 3G9 4 : IV

ZKHUH: : 3G9 IV WRWDOZRUN$OVR4 VLQFHWKHFKDQJHRIVWDWHLVDGLDEDWLF7KXV8 8 :

6LQFH8DQG8

DUHIL[HGWKDWLVWKHHQGVWDWHVDUHIL[HGUHJDUGOHVVRIWKH

SDWK LW IROORZV WKDW: LV WKH VDPH IRU DOO DGLDEDWLF SDWKV 7KLV LV QRW LQ

FRQWUDGLFWLRQZLWK,OOXVWUDWLRQZKLFKHVWDEOLVKHGWKDWWKHVXP4 : LV

WKH VDPH IRU DOO SDWKV ,I ZH FRQVLGHU RQO\ WKH VXEVHW RI SDWKV IRU ZKLFK

4 LWIROORZVIURPWKDWLOOXVWUDWLRQWKDW:PXVWEHSDWKLQGHSHQGHQW

E &RQVLGHU WZR GLIIHUHQW DGLDEDWLF SDWKV EHWZHHQ WKH JLYHQ LQLWLDO DQG ILQDO

VWDWHVDQGOHW: DQG:

EH WKHZRUNREWDLQHGDORQJHDFKRI WKHVHSDWKV

LH

Path 1: 8 8 :

; Path 2: 8 8 :

1RZ VXSSRVH D F\FOH LV FRQVWUXFWHG LQ ZKLFK SDWK LV IROORZHG IURP WKH

LQLWLDO WR WKH ILQDO VWDWH DQGSDWK LQ UHYHUVH IURP WKH ILQDO VWDWH VWDWH

EDFNWRVWDWH7KHHQHUJ\EDODQFHIRUWKLVF\FOHLV

8 8 :

8 8 :

: :

0 5

7KXV LI WKHZRUN DORQJ WKH WZR SDWKV LV GLIIHUHQW LH : :

z ZH KDYH

FUHDWHGHQHUJ\

6\VWHP FRQWHQWVRIWDQNDWDQ\WLPH

PDVVEDODQFH 0 0 0 '

HQHUJ\EDODQFH 08 08 0+ 2 7 2 7 '

LQ

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

D 7DQNLVLQLWLDOO\HYDFXDWHG 0

7KXV 0 0 ' DQG 8 + +

q

LQEDU & N- NJ E\

LQWHUSRODWLRQ 7KHQ " 8 8 3 7

EDU N- NJ %\

LQWHUSRODWLRQXVLQJWKH6WHDP7DEOHV$SSHQGL[,,, 7 q &

9 3 7 q # EDU & P NJ

7KHUHIRUH 0 9 9 NJP P NJ 2 7 E 7DQN LV LQLWLDOO\ ILOOHG ZLWK VWHDP DW EDU DQG q&

q 9 9 3 7 EDU & P NJ DQG 8

N- NJ

0 9 9 9

NJ 7KXV 0 0 ' NJ (QHUJ\EDODQFH

LV 0 8 0

u u 6ROYHE\JXHVVLQJYDOXHRI

7 XVLQJ 7

DQG 3

EDU WR ILQG 9

DQG 8

LQ WKH 6WHDP 7DEOHV

$SSHQGL[ ,,, 6HH LIHQHUJ\EDODQFHDQG 0 9

P DUHVDWLVILHG %\

WULDO DQG HUURU 7 a q& DQG 0 # NJ RI ZKLFK NJ ZDV

SUHVHQWLQWDQNLQWLDOO\7KXV '0 0 0 NJ

D8VHNLQHWLFHQHUJ\ PYWRILQGYHORFLW\

-

NJ

P

NJ

Pu Y

VHF VHFVRY PVHF

E+HDWVXSSOLHG VSHFLILFKHDWFDSDFLW\uWHPSHUDWXUHFKDQJHVR

-JPRO

J

-

PRO .u u

u '7 VR'7 .

6\VWHP UHVLVWRU

(QHUJ\EDODQFH G8 GW : 4 V

ZKHUH : ( ,V DQG VLQFH ZH DUH LQWHUHVWHG RQO\ LQ VWHDG\ VWDWH G8 GW

7KXV

u u q 4 : 7V DPS YROWV & - V

DQGZDWW u YROW DPS - V

u

q q7

ZDWW

- V ZDWW

- V .& &

6\VWHP JDVFRQWDLQHGLQSLVWRQDQGF\OLQGHUFORVHG

(QHUJ\EDODQFH8 8 4W W Ws

0I 3G9

D 9 FRQVWDQW 3G9I 4 8 8 1 8 8 1& 7 7W W W W 3 8 0 59)URPLGHDOJDVODZ

139

57

u

u

P

.

3D

3D P PRO .PRO

VHHQRWHIROORZLQJ

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

7KXV

7 74

1& .

-

.

u

9 PRO - PRO .

6LQFH1DQG9DUHIL[HGZHKDYHIURPWKHLGHDOJDVODZWKDW

3

3

7

7

RU 37

73

u u

N3D 3D

E 3 FRQVWDQW u 3D

& & 53 9 - PRO .

(QHUJ\EDODQFH8 8 4 3 9W W ' VLQFH3 FRQVWDQW

1& 7 7 4 3 9 9 4 1 57 57

4 1& 7 7

9

3

0 5 0 5 0 50 5

7 74

1&

u

3

.

DQG

''

915 7

3

9

u u

PRO 3D P PRO . .

3DP

P

1RWH7KHLQLWLDOSUHVVXUH 3 3 3 DWP ZW RI SLVWRQ

3DWP EDU N3D u

3ZW SLVWRQ

P

1V

NJ PP V 1 P 3D

N3D

u

u

NJ

7KXVLQWLDOSUHVVXUH N3D

6\VWHP FRQWHQWVRIVWRUDJHWDQNRSHQV\VWHP

0DVVEDODQFH 0 0 0 '

(QHUJ\ EDODQFH 08 08 0 + 2 7 2 7 ' LQ VLQFH 4 : DQG VWHDP

HQWHULQJLVRIFRQVWDQWSURSHUWLHV

,QLWLDOO\ V\VWHP FRQWDLQV P RI OLTXLG ZDWHU DQG P RI

VWHDP

6LQFH YDSRU DQG OLTXLG DUH LQ HTXLOLEULXP DW q& IURP 6WHDP 7DEOHV

3 3D $OVR IURP 6WHDP 7DEOHV 9 / P NJ

9 9 P NJ +9 N- NJ +/ N- NJ

8 / N- NJ DQG 8 9 N- NJ

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

0

0

0 0 0

NJ

P

NJ

/

9

/ 9

P

P NJ

P NJNJ

(

)KK

*KK

8 N- u u

$OVR

+LQ N- NJ u u

3RVVLELOLWLHVIRUILQDOVWDWHYDSRUOLTXLGPL[WXUHDOOYDSRUDQGDOOOLTXLG

)LUVW SRVVLELOLW\ LV PRVW OLNHO\ VR ZH ZLOO DVVXPH 9/ PL[WXUH 6LQFH

3 EDU 7PXVWEHq&7KXVZHFDQILQGSURSHUWLHVRIVDWXUDWHGYDSRU

DQG VDWXUDWHG OLTXLG LQ WKH 6WHDP 7DEOHV 9 / P NJ

9 9 P NJ 8 / N- NJ +9 N- NJ DQG

8 9 N- NJ

9 [ [ [ P NJ ZKHUH

[ TXDOLW\ 8 [ [ [ N- NJ

6XEVWLWXWLQJLQWRHQHUJ\EDODQFH

0 [ 0 0 5

ZKHUH

09

9 [

P

6ROYLQJ E\ WULDO DQG HUURU \LHOGV [ TXDOLW\ 0 NJ DQG

'0 NJ $OVRWKHILQDOVWDWHLVDYDSRUOLTXLGPL[WXUHDVDVVXPHG

6\VWHP WDQNDQGLWVFRQWHQWVRSHQV\VWHP

D 6WHDG\VWDWHPDVVEDODQFH

G0

GW0 0 0

0 0 0

1 6 NJ PLQ

6WHDG\VWDWHHQHUJ\EDODQFH

G8

GW0 + 0 + 0 +

0

0

0

7 7

7

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

+ + + H[LWVWUHDP DWWHPSHUDWXUHRIWDQNFRQWHQWV

$OVR 7 7 WHPSHUDWXUH RIWDQNFRQWHQWV

1RZ + + & 7 7 30 5 DVVXPLQJ&3 LVQRWDIXQFWLRQRIWHPSHUDWXUH

q

+ & 7 7 + & 7 7 + & 7 7

77 7

7 7

3 3 3

&

0 5< A 0 5< A 0 5< A

0 5

E PDVVEDODQFHG0

GW0 0 0

QRXVHIXOLQIRUPDWLRQKHUH

HQHUJ\EDODQFHG8

GW0 + 0 + 0 +

EXWG8

GW

G

GW08 0

G8

GW0&

G7

GW0&

G7

GW

a2 7 9 3 VLQFH & &3 9| IRU

OLTXLGV7KXV 0&G7

GW& 7 & 7 & 7

3 3 3 3

DQG 0 NJ

G7

GW7 7 $H &W W PLQXWHV

$W Wof 7 & q&

$W W 7 $ & $ q q& &

6RILQDOO\ 7 H W

q q & & W PLQXWHV

(% 0 8 0 8 0+) ) L LLQ

'

0 8 0 8 0 8 0 8 0 0 + +/)

/)

9)

9)

/L

/L

9L

9L

/)

9)

/ LQ 9 LQ 2 7 2 7

$OVRNQRZQLVWKDW9 0 9 0 9 P /)

/)

9)

9) HTXDWLRQVDQGXQNQRZQV

9 0 9

90

9

)9)

/) /

)

9 0 9

98 0 8 0 8 0 8

9 0 9

90 + +

!

"$#

9)

9)

/) /

)9)

9)

/L

/L

9L

9L

9)

9)

/) 9

)/ LQ 9 LQ

2 7

7KHUPRG\QDPLFSURSHUWLHVRIVWHDPIURPWKH6WHDP7DEOHV

,QLWLDOFRQGLWLRQV

6SHFLILFYROXPHRIOLTXLGDQGRIYDSRU

9 9/L

9L

P

NJ

P

NJ u

6SHFLILFLQWHUQDOHQHUJ\RIOLTXLGDQGRIYDSRU

8 8/L

9LN-

NJ

N-

NJ

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

0% 0 0 0I L L '

0 0 0L /L

9L 0

9/L

/L

OLWHUV

NJ

09

9L

9L

P OLWHUV

NJDQGVR0L NJ

(%

0 8 0 8 0+I I L L LQ '

0 8 0 8 0 8 0 8 0 0 + +/I

/I

9I

9I

/L

/L

9L

9L

/I

9I

/ LQ 9 LQ 2 7 2 7

7RWDOLQWHUQDOHQHUJ\RIVWHDPZDWHULQWKHWDQN

uu uN-

3URSHUWLHVRIVWHDPHQWHULQJTXDOLW\

6SHFLILFYROXPH 9LQ uuu PNJ

6SHFLILFHQWKDOS\ +LQ uu uN-NJ

$OVRKDYHWKDW9 0 9 0 9 P /I

/I

9I

9I

7KLVJLYHVWZRHTXDWLRQVDQGWZRXQNQRZQV 0 0/I

9IDQG

7KHVROXWLRQXVLQJ0$7+&$'LV 0 0/I

9I NJDQG NJ

7KHUHIRUHWKHIUDFWLRQRIWKHWDQNFRQWHQWVWKDWLVOLTXLGE\ZHLJKWLV

6\VWHP FRQWHQWVRIERWKFKDPEHUVFORVHGDGLDEDWLFV\VWHPRIFRQVWDQWYROXPH

$OVR:V

(QHUJ\EDODQFH8 W 8 W 0 5 0 5 RU8 W 8 W 0 5 0 5 D )RU WKH LGHDO JDV X LV D IXQFWLRQ RI WHPSHUDWXUH RQO\ 7KXV

8 W 8 W 7 W 7 W .0 5 0 5 0 5 0 5 )URPLGHDOJDVODZ

39 1 57 1 1

39 1 57 7 7

9 9

EXW VLQFHV\VWHPLVFORVHG

VHHDERYH

DQG VHHSUREOHPVWDWHPHQW

3 3 7 3

. EDU 03D 03D

E )RU VWHDP WKH DQDO\VLV DERYH OHDGV WR 8 W 8 W 0 5 0 5 RU VLQFH WKH V\VWHP LVFORVHG 8 W 8 W 0 5 0 5 9 W 9 W 0 5 0 5 )URPWKH6WHDP7DEOHV$SSHQGL[,,,

8 W 8 7 3 8 7 3

9 W 9 7 3

.

0 5

0 5

q

#

q #

03D & 03D

N- NJ

& 03D P NJ

7KHUHIRUH 8 W 8 W 0 5 0 5 NJ NJ DQG 9 W 9 W 0 5 0 5 P NJ %\ HVVHQWLDOO\ WULDO DQG HUURU ILQG WKDW7 a q& 3 a 03D

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

F +HUH 8 W 8 W 0 5 0 5 DV EHIRUH H[FHSW WKDW 8 W 8 W 8 W 0 5 0 5 0 5 , ,, ZKHUHVXSHUVFULSWGHQRWHVFKDPEHU

$OVR 0 W 0 W 0 W , ,, 0 5 0 5 ^PDVVEDODQFH`DQG9 W 9 0 W 9 0 W 0 W 0 5 0 5 0 5 0 5 , ,,

)RUWKHLGHDOJDVXVLQJPDVVEDODQFHZHKDYH

3 9

7

3 9

7

3 9

7

3

7

3

7

3

7

0 5

,

,

,,

,,

,

,

,,

,,

(QHUJ\EDODQFH 1 8 1 8 1 8 , , ,, ,,

6XEVWLWXWH8 8 1& 7 7 90 5 DQGFDQFHOWHUPVXVH 1 39 57 DQGJHW 3 3 3

, ,, (2)

8VLQJ (TQV DQG JHW 3 u 3D 03D DQG

7 q . &

G )RUVWHDPVROXWLRQLVVLPLODUWRE8VH6WHDP7DEOHWRJHW 0, DQG 0

,, LQ

WHUPVRI9

&KDPEHU 8 , N- NJ 9

, P NJ

0 9 9 9, ,

&KDPEHU 8 8 7 3 . ,, 03D N- NJ 0 5

9 ,, P NJ 0 9 9 9,, ,,

7KXV

99

0 0

9

9 9

, ,,

P NJ

8 0 8 0 8 0 0

, , ,, ,, , ,, N- NJ2 7 1 6%\WULDODQGHUURU 7 a q & . DQG 3 a 03D

6\VWHPFRQWHQWVRIWKHWXUELQHRSHQVWHDG\VWDWH

D DGLDEDWLF

PDVVEDODQFHG0

GW0 0 0 0

HQHUJ\EDODQFHG8

GW0 + 0 + Q 0 V: 3

dV

dt

0

: 0 + + 0V N- NJ 2 7 u 0

2 7 - NJ

%XW :V ZDWW - V u u

0

u

u u

- V

- NJ NJ V NJ K

E (QHUJ\EDODQFHLV

G8

GW0 + 0 + 4 : 3

V

dV

dt

0

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

Z 4 0KHUH N- NJ 0 5 + + q & 03D N- NJ

7KXV

u

:V NJ V N- NJ N- V

ZDWW N:

6\VWHPNJRIZDWHUFORVHGV\VWHP

:RUNRIYDSRUL]DWLRQ I I3G9 3 G9 3 9' VLQFH3 LV FRQVWDQW DWEDU$OVRIURP6WHDP7DEOHV 9 / P NJ 9 9 P NJ ' 9 P NJ

(QHUJ\EDODQFHIRUFORVHGV\VWHPNJ

8 8 4 3G9 4

4

u u

u

I 3D P NJ - NJ

8

8

u

u

N- NJ - NJ

N- NJ - NJ

7KXV

4 8 8 : u u u

u

- NJ

: 3G9 I u - NJ

6RKHDWQHHGHGWRYDSRUL]HOLTXLG u - NJ RIZKLFK u LV

UHFRYHUHG DV ZRUN DJDLQVW WKH DWPRVSKHUH 7KH UHPDLQGHU u N- NJ

JRHVWRLQFUHDVHLQWHUQDOHQHUJ\

6\VWHP &RQWHQWVRIGHVXSHUKHDWHURSHQVWHDG\VWDWH

"

0 +

0 + + 7

q

NJ KU N- NJ

VDWGOLT & N- NJ

0DVV% 0 0 0

(QHUJ\% 0 + 0 + 0 + Q

0 0 Ws 3

dV

dt

0

'HVXSHU

KHDWHU

6XSHUKHDWHG VWHDP

7 &

3 03D

:DWHU

&

6DWXUDWHG VWHDP

03D

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

0 0 1 6 NJ KU + + 3 VDWGVWHDP 03D N- NJ7KXV

u u

0 0

0

1 6 NJ KU

7KHSURFHVVKHUH LV LGHQWLFDO WR WKDW RI ,OOXVWUDWLRQ VR WKDWZH FDQXVH WKH

HTXDWLRQ

73

3 7 & & 3 3 7

9 3 LQ

0 5

GHYHORSHG LQ WKH LOOXVWUDWLRQ +HUH 3 03D 7LQ & . q

&3 - PRO. & & 59 3 - PRO.

&\OLQGHU 3 7&

&7 . q

3

9LQ &

&\OLQGHU 3 03D 7 q & .

7

q

. &

&\OLQGHU 3 03D 7 q & . q7 . &

6\VWHP*DVFRQWDLQHGLQWKHF\OLQGHUFORVHGV\VWHP

D 30 J

$ u u

NJ

03DP

P V

NJP 1V

SLVWRQ

u 3D 03D

139

57

u u

u

u

PROHVRI

JDVLQLWLDOO\

LQV\VWHP

3D P

3D P PRO. .

PRO

NPRO

E (QHUJ\EDODQFH8 8 4 3G9 4 3 9 I ' VLQFH3LVFRQVWDQW'9 u P P P 3 9' u u u 3D P -

)LQDOWHPSHUDWXUH

739

15

u u

u u q

3D P

PRO 3DP PRO.. &

8 8 1 8 8 1& 7 7

u u u

u

0 5 0 59PRO - PRO. .

-

F

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

4 8 3 97

7

u u

u

' ''

'

RIJDV

ZRUNZRUN RI HQHUJ\ DEVRUEHG

- 0-

G 6\VWHP*DVFRQWDLQHGZLWKLQ3LVWRQ&\OLQGHURSHQV\VWHP

>1RWH6WXGHQWVWHQGWRDVVXPHG7 GW 7KLVLVWUXHEXWQRWREYLRXV@

PDVVEDODQFHG1

GW1

HQHUJ\EDODQFHG

GW18 1+ RXW

Q 0 3G9

GW

+HUH 3 LV FRQVWDQW ,GHDO*DV/DZ 9 157 3 7 DQG3 RI*DV

/HDYLQJ&\OLQGHU 7 3DQG RIJDVLQWKHV\VWHP7KXV

1G8

GW8G1

GW+G1

GW3G

GW

157

3

+ 8G1

GW1&

G7

GW5G

GW17

9

57G1

GW1&

G7

GW15

G7

GW57

G1

GW1 & 5

G7

GW

G7

GW

9 9

('

0 5

4

7KXV 7 7 .

1RZJRLQJEDFNWR

1G8

GW8G1

GW+G1

GW3G9

GW DQGXVLQJ

G7

GW

G8

GW

+ 8G1

GW57

G1

GW3G9

GWRU

G1

GW

3

57

G9

GW

6LQFH3DQG7DUHFRQVWDQWV

1

1

9

9

P

P

7KXV 1 PRO u PRO

'1 PRO NPRO

D 6\VWHP*DVFRQWDLQHGZLWKLQSLVWRQF\OLQGHUFORVHGV\VWHP>QHJOHFWLQJWKH

SRWHQWLDOHQHUJ\FKDQJHRIJDV@

HQHUJ\EDODQFH

G 18

GW1G8

GW4 3

G9

GW

1&

G7

GW4 3$

GK

GW9

%XW 739

15

G7

GW

3

15

G9

GW

3$

15

GK

GW

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

7KXV

4$& 3

5

GK

GW$3

GK

GW3$

&

5

GK

GW

3$&

5

GK

GW

u u u u

u

9 9 3

- PRO.

- PRO.3D P P V

- V

E 6\VWHP*DVFRQWDLQHGZLWKLQSLVWRQDQGF\OLQGHURSHQV\VWHP6WDUWIURP

UHVXOWRI3DUWG3UREOHPVHHHTQ

LQWKDWLOOXVWUDWLRQ

G1

GW

3

57

G9

GW

3$

57

GK

GW ZLWK3DQG7FRQVWDQW

6HHVROXWLRQWR3UREOHP

G1

GW

u u

uu

3D P

- PRO. . P V PRO V

NPRO V

0 5

>FKHFN u PRO VHF VHF PRO FRPSDUH ZLWK SDUW G RI

3UREOHP@

6\VWHPJDVFRQWDLQHGLQWKHF\OLQGHURSHQV\VWHP

,PSRUWDQWREVHUYDWLRQJDVOHDYLQJWKHV\VWHP7KDWLVHQWHULQJWKHH[LWYDOYH

RIWKHF\OLQGHUKDVVDPHSURSHUWLHVDVJDVLQWKHF\OLQGHU

PDVVEDODQFH

HQHUJ\EDODQFH

1RWHWKDWWKHVHDUH

(TQV GDQGHRI

,OOXVWUDWLRQ

G1

GW1

G 18

GW1+

()K

*K

3URFHHGLQJDVLQWKDWLOOXVWUDWLRQZHJHW(TQI

7 W

7

3 W

3

& 5

3

RU7 W

3 W5 &

3

.

0 5

ZKHUHZHKDYHXVHGDVOLJKWO\GLIIHUHQWQRWDWLRQ1RZXVLQJWKHPDVVEDODQFHZH

JHW

G1

GW

G

GW

39

57

9

5

G 3 7

GW1

0 5

RU

G 3 7

GW

15

9

0 5 0 5

u

PRO V 3D P PRO.

P3D . V

DQG

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

3

7

3

7W W u

W EDU . IRU3LQEDUDQGWLQVHFV

8VLQJ W PLQXWHV VHFV LQ(TQDQGVLPXOWDQHRXVO\VROYLQJ(TQV

DQG\LHOGV

7 PLQ . 3 PLQ EDU

&RPSXWDWLRQRIUDWHVRIFKDQJHIURPPDVVEDODQFH

G

GW

3

7 7

G3

GW

3G 7

GW

15

9

OQ RU

G 3

GW

G 7

GW

157

39

OQ OQ

)URPHQHUJ\EDODQFHXVLQJHTQVDERYHDQGHTQILQ,OOXVWUDWLRQ

&

5

G 7

GW

G 3 7

GW

9 OQ OQ 0 5

RU&

5

G 7

GW

G 3

GW

3 OQ OQ

1RZXVLQJ(TQLQ(TQ7KXV

&

5

G 7

GW

&

57

G7

GW

157

39

9 9OQ

RU

G7

GW

1 57

39&WW

PLQ 9 PLQ

. VHF

DQG

G3

GW

& 3

57

G7

GW

PLQ

3

PLQ

EDU V

&RQVLGHUDIL[HGPDVVRIJDVDVWKHFORVHGV\VWHPIRUWKLVSUREOHP7KHHQHUJ\

EDODQFHLV

G 18

GW1G8

GW1&

G7

GW3G9

GW

9

)URPWKHLGHDOJDVODZZHKDYH 3 157 9 7KXV

& 1G7

GW

157

9

G9

GW

&

5

G 7

GW

G 9

GW9

9

OQ OQ

RU

&

5

7

7

9

9

7

7

9

9

& 5

9

9

OQ OQ

RU

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

9 7 9 7 97& 5 & 5 & 5

9 9 9 FRQVWDQW

6XEVWLWXWLQJ WKH LGHDO JDV ODZ JLYHV 39 39& &3 9 J FRQVWDQW 1RWH WKDW WKH

KHDWFDSDFLW\PXVWEHLQGHSHQGHQWRIWHPSHUDWXUHWRGRWKHLQWHJUDWLRQLQ(TQ

DVLQGLFDWHG

6\VWHP&RQWHQWVRIWKHWDQNDWDQ\WLPH

D )LQDOWHPSHUDWXUH 7 . DQGSUHVVXUH 3 u 3D2 7 DUHNQRZQ7KXVWKHUHLVQRQHHGWRXVHEDODQFHHTXDWLRQV

139

57I

3D P

- PRO.

u u

.PRO NPRO

E $VVXPHDVXVXDOWKDWHQWKDOS\RIJDVOHDYLQJWKHF\OLQGHULVWKHVDPHDVJDV

LQWKHF\OLQGHU6HH,OOXVWUDWLRQ)URP(TQIRIWKDWLOOXVWUDWLRQZH

KDYH

3

3

7

7

& 5

I

L

I

L

3

RU7

7

3

3

5 &

I

L

I

L

3

u

u

7KXV 7I . u . 3I EDU DQG

1I PRO NPRO

([FHSWIRUWKHIDFW WKDW WKHWZRF\OLQGHUVKDYHGLIIHUHQWYROXPHV WKLVSUREOHPLV

MXVWOLNH,OOXVWUDWLRQ)ROORZLQJWKDWLOOXVWUDWLRQZHREWDLQ

3

7

3

7

3

7

L

L

I

I

I

I IRU(TQD

3 3 3L I I RU 3 3I L

IRU(TQF

DQGDJDLQJHW(TQI

7

7

3

3

& 5

I

L

I

L

3

7KHQZHREWDLQ 3I EDU 7

I . DQG 7

I .

)URPSUREOHPVWDWHPHQW 3 3 3

I I I DQG 7 7 7

I I I

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

0DVVEDODQFHRQWKHFRPSRVLWHV\VWHPRIWZRF\OLQGHUV

1 1 1

I I L RU

3

7

3

7

3

7

3

7

I

I

I

I

I

I

L

L

(QHUJ\EDODQFHRQFRPSRVLWHV\VWHP

1 8 1 8 1 8 33

L L

I I

I I I

L

EDU

EDU

u DVEHIRUH

DQG 73

37 7 7I

I

L

L L L

.

(YHQWKRXJKWKHVHFRQGF\OLQGHULVQRWLQLWLDOO\HYDFXDWHGWKLVSUREOHPVWLOOEHDUV

PDQ\ VLPLODULWLHV WR ,OOXVWUDWLRQ 3URFHHGLQJ DV LQ WKDW LOOXVWUDWLRQ ZH

REWDLQ

3

7

3

7

3

7

3

7

L

L

L

L

I

I

I

I LQVWHDGRI(TQD

3 3 3 3 3L L I I I LQVWHDGRI(TQF

>7KXV 3I u u EDU @ DQG DJDLQ UHFRYHU (TQ I IRU

&\OLQGHU

7

7

3

3

& 5

I

L

I

L

3

(TQI

6ROXWLRQLV 3 3

EDUI I 7 I . 7

I .

D 6\VWHP *DVFRQWDLQHGLQURRPRSHQV\VWHP

PDVVEDODQFHG1

GW1

HQHUJ\EDODQFHG 18

GW1+ 4 +

G1

GW4

7KXV

4G 18

GW+G1

GW8 +

G1

GW1G8

GW

)RUWKHLGHDOJDV + 8 39 57 G1

GW

G

GW

39

57

9

5

G

GW

3

7

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

4 579

5

G

GW

3

71&

G7

GW57

17

3

G

GW

3

71&

G7

GW

4157

3

G3

GW15

G7

GW1&

G7

GW

9 9

9

6LQFH 3 FRQVWDQWG3

GW 4

1& G7

GW 3 RU

G7

GW

4

&

57

39

u

u u u

3

: - PRO. .

- PRO. 3D P

. V . PLQ

E 6\VWHP *DVFRQWDLQHGLQVHDOHGURRPFORVHGV\VWHP 1

(QHUJ\EDODQFHG 18

GW1G8

GW1&

G7

GW4

Y

G7

GW

4

1&

&

&

G7

GWVHDOHGURRP 9

3

9XQVHDOHGURRP

. PLQ

. PLQ

u

,QHDFKFDVHZHPXVWGRZRUNWRJHWWKHZHLJKWVRQWKHSLVWRQHLWKHUE\SXVKLQJ

WKHSLVWRQGRZQWRZKHUHLWFDQDFFHSWWKHZHLJKWVRUE\OLIWLQJWKHZHLJKWVWRWKH

ORFDWLRQRI WKH SLVWRQ :HZLOO FRQVLGHU ERWK DOWHUQDWLYHV KHUH )LUVW QRWH WKDW

FKRRVLQJWKHJDVFRQWDLQHGZLWKLQSLVWRQDQGF\OLQGHUDVWKHV\VWHP '8 4 :

%XW '8 VLQFH WKH JDV LV LGHDO DQG 7 FRQVWDQW $OVR

: 3G9 157 9 9 I OQ I L0 5 IRUWKHVDPHUHDVRQV7KXVLQHDFKFDVHZHKDYHWKDWWKHQHWKHDWDQGZRUNIORZVWRWKHJDVDUH

: 1579

9ZRUNGRQHRQJDV -I

L

u

u

OQ OQ

DQG4 : - UHPRYHGIURPJDV

,I PRUH ZRUN LV GHOLYHUHG WR WKH SLVWRQ WKH SLVWRQ ZLOO RVFLOODWH HYHQWXDOO\

GLVVLSDWLQJWKHDGGLWLRQZRUNDVKHDW7KXVPRUHKHDWZLOOEHUHPRYHGIURPWKH

JDVSLVWRQDQGF\OLQGHUWKDQLIRQO\WKHPLQLPXPZRUNQHFHVVDU\KDGEHHQXVHG

1RWHWKDWLQHDFKFDVHWKHDWPRVSKHUHZLOOSURYLGH

: 3 9DWPN3D P u u u ' -

DQGWKHFKDQJHLQSRWHQWLDOHQHUJ\RISLVWRQ

PJ K' u u u

u

NJ P V

P

P-

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

7KH UHPDLQGHU - PXVW EH VXSSOLHG IURP RWKHU

VRXUFHVDVDPLQLPXP

D 2QHNJZHLJKW

$QHIILFLHQWZD\RIUHWXUQLQJWKHV\VWHPWRLWVRULJLQDOVWDWHLVWRVORZO\LH

DW]HURYHORFLW\IRUFHWKHSLVWRQGRZQE\VXSSO\LQJ-RIHQHUJ\:KHQ

WKHSLVWRQLVGRZQWRLWVRULJLQDOORFDWLRQWKHNJLVVOLGVLGHZD\VRQWRWKH

SLVWRQZLWKQRHQHUJ\H[SHQGLWXUH

$Q LQHIILFLHQW SURFHVVZRXOG EH WR OLIW WKH NJZHLJKW XS WR WKH SUHVHQW

ORFDWLRQRIWKHSLVWRQDQGWKHQSXWWKHZHLJKWRQWKHSLVWRQ ,QWKLVFDVHZH

ZRXOGVXSSO\

0J K 0J9

$'

' u u

u u

u

NJ

-

P

V

P

P

NJP V

1 6

7KLVHQHUJ\ZRXOGEHWUDQVPLWWHGWRWKHJDVDVWKHSLVWRQPRYHGGRZQ7KXV

: RQJDV -DWPRVSKHUH 3( RI SLVWRQ 3( RI ZHLJKW

- -

: 4 4- - :

(IILFLHQW

,QHIILFLHQW

F\FOH F\FOH

E 7ZRNJZHLJKWV

,QWKLVFDVHZHDOVRUHFRYHUWKHSRWHQWLDOHQHUJ\RIWKHWRSPRVWZHLJKW

PJ K' u u u

NJ

P

V

P

P-

7KXVLQDQHIILFLHQWSURFHVVZHQHHGVXSSO\RQO\

-

$QHIILFLHQWSURFHVVZRXOGEHWRPRYHWKHORZHVWZHLJKWXSWRWKHSRVLWLRQRI

WKHSLVWRQE\VXSSO\LQJ

NJ

u u

u

u

P

V

P

P-

6OLGHWKLVZHLJKWRQWRWKHSLVWRQDQGOHWJR7KHWRWDOZRUNGRQHLQWKLVFDVH

LV

- DWPRVSKHUH 3( RI SLVWRQ 3( RI ZHLJKW VXSSOLHG E\ XV

' '

7KHUHIRUH

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

: 4 4- :

(IILFLHQW

,QHIILFLHQW -

F\FOH F\FOH

-

F )RXUNJZHLJKWV

,QWKLVFDVHWKHUHFRYHUHGSRWHQWLDOHQHUJ\RIZHLJKWVLV

NJ P V P

-

u u u

u

7KXVLQDQHIILFLHQWSURFHVVZHQHHGVXSSO\RQO\

-

$Q LQHIILFLHQWSURFHVVZRXOGEH WR UDLVH WKH ORZHVWZHLJKW XS WR WKHSLVWRQ

H[SHQGLQJ

-

NJ P V

P

P

u u u

u

7KXVWKHWRWDOZRUNGRQHLV

-

DQG

: 4 4

:

(IILFLHQW

,QHIILFLHQW

F\FOH F\FOH

G *UDLQVRIVDQG

6DPH DQDO\VLV DV DERYH H[FHSW WKDW VLQFH RQH JUDLQ RI VDQG KDV HVVHQWLDOO\

]HURZHLJKW: - 4 - : 4F\FOH F\FOH

6\VWHP *DVFRQWDLQHGLQWKHF\OLQGHUFORVHGV\VWHP

HQHUJ\EDODQFH G 18

GW1G8

GW1&

G7

GW3G9

GW

157

9

G9

GW

9 ^8VLQJ WKH

LGHDOJDVHTXDWLRQRIVWDWH`

6LQFH&9 DQG&3 DUHFRQVWDQW

&

5 7

G7

GW 9

G9

GW

9 RU7

7

9

9

/

/

5 & 5 &

9 9

u u

q

7

P

P

. &DQG

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

3 39

9

7

7

EDU

u u

)URPWKHGLIIHUHQFHFKDQJHRIVWDWHIRUPRIHQHUJ\EDODQFH

'8 Q0

I 9: 1& 7 7 3G9 0 5

DQG 139

57

u

u u

EDU

P NPRO .

. EDU PNPRO

u

: 8'

NPRO N- NPRO . .

N-

:KHUHKDVWKLVZRUNJRQH"

D 7RLQFUHDVHSRWHQWLDOHQHUJ\RISLVWRQ

E 7RLQFUHDVHNLQHWLFHQHUJ\RISLVWRQ

F 7RSXVKEDFNDWPRVSKHUHVRV\VWHPFDQH[SDQG

G :RUNGRQHDJDLQVWIULFWLRQDQGFRQYHUWHGWRKHDW

7RVHHWKLVZULWH1HZWRQVQG/DZRI0RWLRQIRUWKHSLVWRQ

I 0$ 3$ 3 $ PJ I PGY

GW DWP IU0 5 Y YHORFLW\RISLVWRQ

7KXV 3P

$

GY

GW3

PJ

$

I

$ DWP

IU

II I I I

'8 3G9

3 G9P

$

GY

GW

G9

GWGW

PJ

$G9

$IGY

GWGW

-

DWP IU

1RZ

$

G9

GW

GK

GWY K SLVWRQKHLJKWDQG Y

GY

GW

G

GWY

2 7

-

I3 9 PY PJ K I YGWY

DWP-

:RUN DJDLQVWDWPRVSKHUH

VLQFH -

:RUN XVHG WRLQFUHDVH SRWHQWLDOHQHUJ\ RI SLVWRQ

IU

LQLWLDO

' '

7KXV -

IPY I YGW

IU

D ,IWKHUHLVQRIULFWLRQ IIU WKHQ

Y Y

NJ

u

- P V P V

PJ )ULFWLRQDO )RUFH f )U3UHVVXUH RI JDV 3 u $

f )3DWP u $

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

E ,IZHDVVXPHRQO\VOLGLQJIULFWLRQ I NYIU

I YGY N Y GWPY N Y GWIUI I I

,Q RUGHU WR GHWHUPLQH WKH YHORFLW\ QRZZH QHHG WR NQRZ WKH FRHIILFLHQW RI

VOLGLQJIULFWLRQNDQGWKHQZRXOGKDYHWRVROYHWKHLQWHJUDOHTXDWLRQDERYHRU

LQWHJUDWHVXFFHVVLYHO\RYHUVPDOOWLPHVWHSV,WLVFOHDUKRZHYHUWKDW

Y YZLWKIULFWLRQ ZLWKRXWIULFWLRQ P V

q& u 3D 03D

NJ V

D PDVVEDODQFHVWHDG\VWDWH

0 0

0 0 NJ V

(QHUJ\EDODQFHQHJOHFWLQJ3(WHUPV

0 +Y

0 +Y

0 Y$ PQY$ U U PDVVGHQVLW\ Q PRODUGHQVLW\

Y YHORFLW\ $ SLSHDUHDP PROHFXODUZHLJKW

0

P

3

57Y$

Y

Y

PY

u

u u u u u

u

u u

NJ V

NJ NPRO

3D

. 3D PP V P

P V

NJ NPRO P V

NJ P 1V - NPRO N- NPRO

0 5

0 5

S

%DFNWRHQHUJ\EDODQFHQRZRQDPRODUEDVLV

+ +PY PY

& 7 7S

0 5

$VDILUVWJXHVVQHJOHFWNLQHWLFHQHUJ\WHUPV

& 7 7 7 7S & q0 51RZFKHFNWKLVDVVXPSWLRQ

YQ Y

Q

3Y

3

Y

u

u

P V

5HFDOFXODWHLQFOXGLQJWKHNLQHWLFHQHUJ\WHUPV

& 7 7PY YS - NPRO

0 5 2 7 2 7

6\VWHP IRU

SDUW D

6\VWHP IRU

SDUW E

q &

u 3D 0SD

NJV

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

7 7 7

u q

- NPRO

- PRO PRO NPRO&

7KXVWKHNLQHWLFHQHUJ\WHUPPDNHVVXFKDVPDOOFRQWULEXWLRQZHFDQVDIHO\

LJQRUHLW

E 0DVVEDODQFHRQFRPSUHVVRUVWHDG\VWDWH 1 1

(QHUJ\EDODQFHRQFRPSUHVVRUZKLFKLVLQVWHDG\VWDWHRSHUDWLRQ

1 + 1 + Q

0

q

: : 1 & 7 7V V S&

DGLDEDWLFFRPSUHVVRU

&DQFRPSXWH :V LI 7 LVNQRZQRUYLFHYHUVD +RZHYHUFDQQRWFRPSXWHERWK

ZLWKRXWIXUWKHULQIRUPDWLRQ

$QDO\VLVDVDERYHH[FHSWWKDW 4 z EXW :

+HUHZHJHW

%&K

'K q

1 1

4 1 & 7 7S&

&DQQRWFRPSXWH 4 XQWLO 7 LVNQRZQ

6HHVROXWLRQWR3UREOHP

D'HILQHWKHV\VWHPWREHWKHQLWURJHQJDV6LQFHD-RXOH7KRPVRQH[SDQVLRQLV

LVHQWKDOSLF + 7 3 + 7 3 0 5 0 5 8VLQJ WKH SUHVVXUH HQWKDOS\ GLDJUDP IRUQLWURJHQ)LJXUHZHKDYH + 7 7 3 + 03D . N- NJDQGWKHQ 03D N- NJ 2 7)URPZKLFKZH ILQG WKDW7 .ZLWK DSSUR[LPDWHO\ RI WKH QLWURJHQ DV

YDSRUDQGDVOLTXLG

E $VVXPLQJ QLWURJHQ WR EH DQ LGHDO JDV SRRU DVVXPSWLRQ WKHQ WKH HQWKDOS\

GHSHQGVRQO\RQWHPSHUDWXUH6LQFHD-RXOH7KRPVRQH[SDQVLRQLVLVHQWKDOSLFWKLV

LPSOLHVWKDWWKHWHPSHUDWXUHLVXQFKDQJHGVRWKDWWKHILQDOVWDWHZLOOEHDOOYDSRU

3ODQWSURGXFHV u NZK RIHQHUJ\SHU\HDU

3ODQWXVHV u u u NZK RIKHDW

FRPSUHVVRU u 3D

7 q &

u 3D

7 "

*DV FRROHU u 3D

7 "

u 3D

7 q &

Solutions to Chemical and Engineering Thermodynamics, 3e Chapter 2

NZK - u

3ODQWXVHV u u u u- \HDU

NZKNZK - \HDU

'+ 0 & 7 7RIURFNWRWDO

NJ - J. J NJ .

-

S I L

u u u

u

0 5

u u u - \HDU \HDUV -[

[ \HDUV

ch03.pdf

6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H

D 6\VWHP %DOO:DWHU

(QHUJ\EDODQFH 08 0 8 08 0 8I I L L

0 & 7 7 0 & 7 7I L I L 9 9 2 7 2 7 DOVR7 7I I 7KXV

70 & 7 0 & 7

0 & 0 &

IL L

u u u u u u

u u u u

q

9 9

9 9

&

>1RWH6LQFHRQO\ '7 VDUHLQYROYHG q& ZHUHXVHGLQVWHDGRI.@

E )RUVROLGVDQGOLTXLGVZHKDYHHTQ7KDW '6 0 &G7

70&

7

7 I 3 3 OQ

IRUWKHFDVHLQ

ZKLFK&3 LVDFRQVWDQW7KXV

%DOO J-

J .

-

.

V

:DWHU J-

J .

-

.

'

'

6

6

u u

u

%&'()*

u u

u

%&'()*

OQ

OQ

DQG

'6 %DOO :DWHU-

.

-

.

1RWHWKDWWKHV\VWHP%DOO:DWHULVLVRODWHG7KHUHIRUH

'6 6 JHQ-

.

(QHUJ\EDODQFHRQWKHFRPELQHGV\VWHPRIFDVWLQJDQGWKHRLOEDWK

0 & 7 7 0 & 7 7F FI

FL

R RI

RL

9 9 2 7 2 7 VLQFHWKHUHLVDFRPPRQILQDOWHPSHUDWXUH

NJ NJ u

u

N-

NJ ..

N-

NJ ..7 7I I3 8 3 8

7KLVKDVWKHVROXWLRQ7I R& .

6LQFH WKH ILQDO WHPSHUDWXUH LV NQRZQ WKH FKDQJH LQ HQWURS\ RI WKLV V\VWHP FDQ EH FDOFXODWHG

IURP '6 u u

u u

OQ

OQ

N-

.

&ORVHGV\VWHPHQHUJ\DQGHQWURS\EDODQFHV

G8

GW4 : 3

G9

GWV

G6

GW

4

76

JHQ

7KXVLQJHQHUDO 4 7G6

GW76

JHQDQG

6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H

:G8

GW4 3

G9

GW

G8

GW7G6

GW76 3

G9

GWV JHQ

5HYHUVLEOHZRUN : : 6G8

GW7G6

GW3G9

GWV V

5HY 5HYJHQ 2 7

D 6\VWHPDWFRQVWDQW89 G8

GW DQG

G9

GW

W S W TdS

dts gen S 02 7 Rev

E 6\VWHPDWFRQVWDQW63 G6

GW DQG

G3

GW3G9

GW

G

GW39

VRWKDW

: 6 :G8

GW

G

GW39

G

GW8 39

G+

GWV JHQ 6 2 7 UHY

EDUR&EDU7 "

6WHDG\VWDWHEDODQFHHTXDWLRQV

G0

GW0 0

G8

GW0 + 0 + Q 0 Ws

03

dV

dt

0 0 + 0 +

RU + +

'UDZLQJDOLQHRIFRQVWDQWHQWKDOS\RQ0ROOLHU'LDJUDPZHILQGDW 3 EDU 7 # q &

$WEDUDQG & $WEDUDQG &

P NJ P NJ

N- NJ N- NJ

N- NJ. N- NJ.

q q

|

|

9 9

+ +

6 6

$OVR

G6

GW0 6 0 6

0Q

T JHQ

6

6 0 6 6JHQ 2 7 RU

6

06 6

JHQ N-

NJ .

6\VWHP

(QHUJ\EDODQFH

'8 8 8 8 8I L I L 2 7 2 7 Qadiabat i

:6 PdVIconstan

volume

:V

6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H

: 0& 7 7 0& 7 7 0& 7 7 7 7V

I L I L I L I L S S S 2 7 2 7 2 7 2 7

EXW 7 7 7:

0&7 7 7I I I V I L L

3

(QWURS\EDODQFH

'6 6 6 6 6I L I L 2 7 2 7

Q

TdtI

0adiabatic

Sgen0 for maximum wo r

6 6 6 6 0&7

70&

7

7

I L I LI

L

I

L

2 7 2 7 3 3OQ OQ

RU OQ7 7

7 7

I I

L L

%&'

()* 7 7 7 7I I L L

EXW 7 7 7I I I

7 7 7I L L2 7 2 7

RU 7 7 7I L L

DQG

:

0&7 7 7 7 7 7 7V I L L L L L L

3

D (QWURS\FKDQJHSHUPROHRIJDV

'6 &7

75

3

3

3OQ OQ

HTQ

7KXV '6

OQ OQ

-

PRO.

-

PRO.

-

PRO.

E 6\VWHP FRQWHQWVRIWXUELQHVWHDG\VWDWHV\VWHP

0DVVEDODQFHG1

GW1 1 1 1 1

(QHUJ\EDODQFHG8

GW1 + 1 + Q 0

V: 3

dV

dt

0

: 1 + + 1& 7 7V 0 5 0 53

::

1& 7 7V u

3

-

PRO..

-

PRO

0 5

F ,Q ,OOXVWUDWLRQ : - PRO EHFDXVH RI LUUHYHUVLEOLWLWLHV '6 z PRUH ZRUN LV

GRQHRQWKHJDVKHUH:KDWKDSSHQVWRWKLVDGGLWLRQDOHQHUJ\LQSXW",WDSSHDUVDVDQLQFUHDVHRI

WKHLQWHUQDOHQHUJ\WHPSHUDWXUHRIWKHJDV

+HDWORVVIURPPHWDOEORFN

G8

GW&

G7

GW4

3

EDU

.

EDU

.

6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H

%&'

:

7 7

74

4

4

KHDWRXWRIPHWDO

KHDWLQWRKHDWHQJLQH

&G7

GW

7 7

7: :GW &

7

7G7

: & 7 7 & 77

7& 7 7 7

7

7

: & 77

7

7

7

4 & G7 & 7 7 & 77

7

W

7

7

7

7

3 3

3 3 3

3

3 3 3

!

"$#

!

"$#

I I

I

0 5

0 5 0 5

0 5

OQ OQ

OQ

$OWHUQDWHZD\WRVROYHWKHSUREOHP

6\VWHPLVWKHPHWDOEORFNKHDWHQJLQHFORVHG

(%G8

GW&

G7

GW4 : 3

6%G6

GW

4

7

Sgen

0 for maximum wo r

4 7G6

GW

G8

GW7

G6

GW: G8 & G7 3 G6

&

7G7 3

:G8

GW7

G6

GW& G7 7

&

7G7 &

7

7G7

33

3

: :GW &7

7G7 &

7

7G7

: & 7 7 7 &7

7& 7

7

7

7

7

7

7

7

7

!

"$#

I I I

OQ OQ

3 3

3 3 3

0 5

7KLVSUREOHPLVQRWZHOOSRVHGVLQFHZHGRQRWNQRZH[DFWO\ZKDWLVKDSSHQLQJ7KHUHDUHVHYHUDO

SRVVLELOLWLHV

:DWHUFRQWDFW LVYHU\VKRUW VRQHLWKHUVWUHDPFKDQJHV7YHU\PXFK ,Q WKLVFDVHZHKDYH WKH

&DUQRWHIILFLHQF\

K

:

4

7 7

7

KLJK ORZ

KLJK

%RWKZDUPVXUIDFHZDWHUq&DQGFROGGHHSZDWHUq&HQWHUZRUNSURGXFLQJGHYLFHDQG

WKH\OHDYHDWDFRPPRQWHPSHUDWXUH

7

7+

7/

72

6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H

0%G0

GW0 0 0 0 0 0

+ / + /1 6

(%G8

GW0 + 0 + 0 + :

+ + / /

: 0 + 0 + 0 0 +

0 + + 0 + +

0 & 7 7 0 & 7 7

+ + / / + /

+ + / /

+ 3 + / 3 /

1 6

2 7 2 70 5 0 5

6%G6

GW0 6 0 6 0 6

+ + / /

Q

T

0Sgen

0

OQ OQ

0 6 0 6 0 0 6

0 6 6 0 6 6 0 &7

70 &

7

7

7

7

7

77 7 7

0 0

0 0 0 0

+ + / / + /

+ + / / + 3

+

/ 3

/

+ /

+ /

+ /

+ / + /RU

1 6

2 7 2 7

7 7 70 0 0 0 0 0

+ /

+ + / / + / 1 6 1 6

)URPWKLVFDQFDOFXODWH 77KHQ

: 0 & 7 7 0 & 7 7 + 3 + / 3 / 0 5 0 5

7KLVFDQEHXVHGIRUDQ\IORZUDWHUDWLR

6XSSRVHYHU\ODUJHDPRXQWRIVXUIDFHZDWHULVFRQWDFWHGZLWKDVPDOODPRXQWRIGHHSZDWHULH 0 0+ /!! 7KHQ 7 7

a

+

a : 0 & 7 7 0 & 7 7 0 & 7 7 + 3 + + / 3 + / / 3 + /0 5 0 5 0 5

6XSSRVHYHU\ODUJHDPRXQWRIGHHSZDWHULVFRQWDFWHGZLWKDVPDOODPRXQWRIVXUIDFHZDWHULH 0 0+ / 7 7

a

/

a : 0 & 7 7 0 & 7 7 0 & 7 7 + 3 / + / 3 / / + 3 / +0 5 0 5 0 5

6\VWHP FRQWHQWVRIWKHWXUELQH7KLVLVDVWHDG\VWDWHDGLDEDWLFFRQVWDQWYROXPHV\VWHP

D 0DVVEDODQFHG0

GW0 0

RU 0 0

(QHUJ\EDODQFH

G8

GW0 + 0 +

Q adiabat i : 3

V

dV

dt

constan

volume

(QWURS\EDODQFH

G6

GW0 6 0 6

Q

TSgen

0, by problem state m

7KXV 0 0

NJ K 0%

: 0 + +6

2 7 (% 6 6 6%

6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H

6WDWH

7

q&

3

EDU 7DEOHV

6WHDP o

+

N- NJ

6

N- NJ

6WDWH

3 EDU

6 6 N-

NJ.

7DEOHV

6WHDP o

7 # q &

+ | N- NJ

:V u

NJ

K

N-

NJ

N-

KN:

E 6DPHH[LWSUHVVXUH 3 EDU 0 5 DQGVWLOODGLDEDWLF : 0 + +

V 2 7 +HUHKRZHYHU

: : +V V u 3DUWD

N-

K

N-

K2 7 2 7

+

3

EDU

N- NJ

7DEOHV

6WHDP o

7

6

#

|

.

N- NJ.

7KXV

6 0 6 6JHQNJ

K

N-

NJ.

N-

. K u

2 7

F )ORZDFURVVYDOYHLVD-RXOH7KRPSVRQLVHQWKDOSLFH[SDQVLRQ6HH,OOXVWUDWLRQ

7KXV + +LQWR YDOYH RXW RI YDOYH DQGWKHLQOHWFRQGLWLRQVWRWKHWXUELQHDUH

+ + +

3

EDU

RXW RI YDOYH LQWR YDOYH N- NJ

7DEOHV

6WHDP o

7

6

| q

|

&

N- NJ.

)ORZDFURVVWXUELQHLVLVHQWURSLFDVLQSDUWD

6 6

3

EDU

N- NJ.

7DEOHV

6WHDP o

7

+

# q

|

&

N- NJ

:V u u N:

NJ

K

N-

NJ

N-

K

6LQFHFRPSUHVVLRQLVLVHQWURSLFDQGJDVLVLGHDOZLWKFRQVWDQWKHDWFDSDFLW\ZHKDYH

7

7

3

3

5 &

3

6RWKDW7 73

3

5 &

u

u

3

.

1RZXVLQJIURPVROXWLRQWR

3UREOHPWKDW : 1& 7 7V 3 0 5

6ROXWLRQV WR &KHPLFDO DQG (QJLQHHULQJ 7KHUPRG\QDPLFV H

:V u u u u

u

J

NJ

V

PRO

J

-

PRO..

NJ

- V

7KHORDGRQWKHJDVFRROHULVIURP3UREOHP

4 1& 7 7

.

u

u u

u

S

NJ V J NJ

J PRO

-

PRO.

- V

0 5

3.11 (a) This is a Joule-Thomson expansion =( ) = = ( ) = ( )=

$ ? $ . $

.

H T H T H T70 bar, 10133 400 1 400

32782

bar, C bar, C

kJ kg

and T = 447 C , $ .S = 6619 kJ kg K

(b) If turbine is adiabatic and reversible &Sgen = 0c h , then $ $ .S Sout in kJ kg K= = 6619 and P = 1013.bar. This suggests that a two-phase mixture is leaving the turbine

Let fraction vapor kJ kg K

kJ kg K

V

Lx

S

S=

=

=

$ .$ .

7 3594

13026

Then x x7 3594 1 13026 6619. . .( ) + ( )( ) = kJ kg K or x = 08778. . Therefore the enthalpy offluid leaving turbine is

$ . . . . .$ $

HH H

= + ( ) =( ) ( )

08788 26755 1 08778 417 46 2399 6V L satd, 1 bar satd, 1 bar

kJ

kg

Energy balance

0 = + +& $ & $M H M Hin in out out &Q0 + &W Ps

dV

dt

0

but & &M Min out=

= =&

& . . .W

Ms

in

kJ

kg3278 2 2399 6 8786

(c) Saturated vapor at 1 bar

$ . ; $ .

& . . .

%.

..

&

& . . .

S H

W

M

S

M

s

= =

= =

( ) = =

= =

7 3594 26755

32782 26755 602 7

602 7 100

8786686%

7 3594 6619 0740

kJ kg K kJ kg

kJ kg

Efficiency

kJ Kh

in Actual

gen

in

(d) 0

0

0

1 2 2 1

1 1 2

1 1 2

= + =

= + +

= + +

& & & &

& $ $ & &

& $ $&

&

M M M M

M H H W Q PdV

dt

M S SQ

TS

sc h

c h gen

Simplifications to balance equations

&Sgen = 0 (for maximum work); PdV

dt= 0 (constant volume)

& &Q

T

Q

T=

0

where T0 25= C (all heat transfer at ambient temperature)

W

Q

Water1 bar25 C

Steam70 bar447 C

$ .H sat'd liq, 25 CkJ

kg( ) = 10489 ; $ .S T sat'd liq, 25 C kJ

kg K= ( ) = 03674

&

&$ $Q

MT S S= 0 2 1c h ; = + =

&

&$ $ $ $ $ $ $ $

max

W

MH H T S S H T S H T Ss 1 2 0 2 1 1 0 1 2 0 2c h c h c h

=

= + =

&

& . . . . . .

. . .max

W

Ms 32782 29815 6619 10489 29815 03674

1304 75 4 65 1309 4 kJ kg

3.12 Take that portion of the methane initially in the tank that is also in the tank finally to be in thesystem. This system is isentropic S Sf i= .

(a) The ideal gas solution

S S T TP

P

NPV

RTN

PV

RTN

P V

RT

N N N

f i f if

i

R C

ii

if

f

f

f i

p

= = FHGIKJ =

FH

IK =

= = = =

= =

30035

701502

1964 6 mol; 1962

17684

8 314 36..

. .

.

.

K

= mol

mol

(b) Using Figure 2.4-2.

70 bar 7 MPa, T = 300 K $ . $S Si f= =505 kJ kg K

$ . ,.

.

.V m

N

i i

i

= = =

=

=

0019507

00195

3590 kg.

35.90 kg1282

m

kg so that

m

mkg

1000gkg

28g

mol

mol

3 3

3

At 3.5 bar = 0.35 MPa and $ .S Tf = 505 138 K. kJ kg K Also,

$ . ,.

.

.

..

V m

N

f f

f

= = =

=

=

019207

0192

3646 kg.

3646 kg1302

m

kg so that

m

mkg

1000gkg

28g

mol

mol

3 3

3

N N Nf i= = = 1302 1282 11518 mol. .

3.13 dS CdT

TR

dV

V= + eqn. (3.4-1)

S a R bT cT dT eT

dT

TR

dV

V= ( ) + + + +LNM

OQP + zz 2 3 2

so that

S T V S T V a RT

Tb T T

cT T

dT T

eT T R

V

V

2 2 1 12

12 1 2

212

23

13

22

12 2

1

2

3 2

, , ln

ln

a f a f a f c h

c h c h

= ( ) + +

+ +

Now using

PV RTV

V

T

T

P

P

S T P S T P aT

Tb T T

cT T

dT T

eT T R

P

P

= =

= + +

+

2

1

2

1

1

2

2 2 1 12

12 1 2

212

23

13

22

12 2

1

2

3 2

, , ln

ln

a f a f a f c h

c h c h

Finally, eliminating T2 using T T P V PV2 1 2 2 1 1= yields

S P V S P V aP V

PV

b

RP V PV

c

RP V PV

d

RP V PV

eRP V PV R

P

P

2 2 1 12 2

1 12 2 1 1

2 2 22

1 12

3 2 23

1 13

2

2 22

1 12 2

1

2

3

2

, , ln

ln

a f a f a f

a f a f

a f a f

d i d i

=FHG

IKJ +

+

+

3.14 System: contents of valve (steady-state, adiabatic, constant volume system)

Mass balance 0 1 2= +& &N N

Energy balance 0 1 1 2 2= + +& &N H N H &Q0 +Ws

0P dV

dt

0

=H H1 2

Entropy balance0 1 1 2 2= + + +& & &N S N S Sgen&Q

T

0

= =S S SS

N2 1&

&gen

(a) Using the Mollier Diagram for steam (Fig. 2.4-1a) or the Steam Tables

T

P

P

H

T

S1

1

2

2

2

2

600 K

35

7

30453

293

7 277

==

==

= bar

bar

J g

C

J g K$ . $ .

$ $ .H H1 2 30453= = J g . Thus $ .S1 65598 = J g K ; Texit C= 293

$ $ $ .S S S= =2 1 0717 J g K(b) For the ideal gas, H H T T1 2 1 2 600 K= = =

S S T P S T P CT

TR

P

P

RP

P

S

= =

= =

=

2 2 1 12

1

2

1

2

1

1338

0743

, , ln ln

ln .

$ .

a f a f p

J mol K

J mol K

3.15 From the Steam Tables

At 200oC,

P

V V

U U

H H

S S

H S

L V

L V

L L

L V

=

= =

= =

= =

= =

= =

15538 MPa

0001157 012736 m

85065 25953

852 45 27932

2 3309 64323

19407 41014

.$ . / $ . /

$ . / $ . /$ . / $ . /

$ . / $ . /

$ . $ .

m kg kg

kJ kg kJ kg

kJ kg kJ kg

kJ kg K kJ kg K

kJ / kg kJ / kg K

3 3

vap vap (a) Now assuming that there will be a vapor-liquid mixture in the tank at the end, the properties

of the steam and water will be

At 150oC,

P

V V

U U

H H

S S

H S

L V

L V

L V

L V

=

= =

= =

= =

= =

= =

04578 MPa

0001091 03928 m

63168 kJ 25595

632 20 kJ 27465

18418 kJ 68379

2114 3 4 9960 kJ

.$ . / $ . /

$ . / $ . /$ . / $ . /

$ . / $ . /

$ . / $ . /

m kg kg

kg kJ kg

kg kJ kg

kg K kJ kg K

kJ kg kg K

3 3

vap vap

(b) For simplicity of calculations, assume 1 m3 volume of tank.Then

Mass steam initially = 0.8 m

0.12736 m kg kg

Mass water initially = 0.2 m

0.001157 m kg

Weight fraction of steam initially =6.2814

179.14

Weight fraction of water initially =6.2814

179.14

3

3

3

3

/.

/.

.

.

=

=

=

=

62814

17286 kg

003506

096494

The mass, energy and entropy balances on the liquid in the tank (open system) at any timeyields

dM

dtM

dM U

dtM H

dM S

dtM S

MdU

dtU

dM

dtM H H

dM

dt

MdU

dt

dM

dtH U

LL

L LL V

L LL V

LL

LL

L V VL

LL L

V L

= = =

+ = =

=

& ;$

& $$

& $

$$ & $ $

$$ $

; and

or

c hAlso, in a similar fashion, from the entropy balance be obtain

MdS

dt

dM

dtS S

dM

dtSL

L LV L

L$$ $ $= =c h vap

There are now several ways to proceed. The most correct is to use the steam tables, and to useeither the energy balance or the entropy balance and do the integrals numerically (since theinternal energy, enthalpy, entropy, and the changes on vaporization depend on temperature.This is the method we will use first. Then a simpler method will be considered.Using the energy balance, we have

dM

M

dU

H U

M M

M

U U

H UM M

U U

H U

L

L

L

V L

iL

iL

iL

iL

iL

iV

iL i

LiL i

LiL

iV

iL

=

=

= +

FHG

IKJ

+ ++

+

$

$ $ ,

$ $

$ $

$ $

$ $

or replacing the derivatives by finite differences

or finally 1 1 111

So we can start with the known initial mass of water, then using the Steam Tables and the dataat every 5oC do a finite difference calculation to obtain the results below.

i T (oC) $UiL (kJ/kg K) $Hi

V (kJ/kg K) MiL (kg)

1 200 850.65 2793.2 172.862 195 828.37 2790.0 170.883 190 806.19 2786.4 168.954 185 784.10 2782.4 167.065 180 762.09 2778.2 165.226 175 740.17 2773.6 163.427 170 718.33 2768.7 161.678 165 696.56 2763.5 159.959 160 674.87 2758.1 158.2710 155 653.24 2752.4 156.6311 150 631.68 2746.5 155.02

So the final total mass of water is 155.02 kg; using the specific volume of liquid water at150oC listed at the beginning of the problem, we have that the water occupies 0.1691 m3

leaving 0.8309 m3 for the steam. Using its specific volume, the final mass of steam is found tobe 2.12 kg. Using these results, we find that the final volume fraction of steam is 83.09%, thefinal volume fraction of water is 16.91%, and the fraction of the initial steam + water that hasbeen withdrawn is(172.86+6.28-155.02-2.12)/(172.86+6.28) = 0.1228 or 12.28%. A total of 22.00 kg of steamhas withdrawn, and 87.7% of the original mass of steam and water remain in the tank.

For comparison, using the entropy balance, we have

dM

M

dS

S S

M M

M

S S

SM M

S S

S

L

L

L

V L

iL

iL

iL

iL

iL

iiL

iL i

LiL

i

=

= = + FHG

IKJ

+ ++

+

$

$ $ ,

$ $

$

$ $

$

or replacing the derivatives by finite differences

of finally vap vap

1 11

11

So again we can start with the known initial mass of water, then using the Steam Tables andthe data at every 5oC do a finite difference calculation to obtain the results below.

i T (oC) $SiL (kJ/kg K) $Si

L (kJ/kg K) MiL (kg)

1 200 2.3309 6.4323 172.862 195 2.2835 6.4698 170.863 190 2.2359 6.5079 168.924 185 2.1879 6.5465 167.025 180 2.1396 6.5857 165.176 175 2.0909 6.6256 163.367 170 2.0419 6.6663 161.608 165 1.9925 6.7078 159.879 160 1.9427 6.7502 158.18

10 155 1.8925 6.7935 156.5311 150 1.8418 6.8379 154.91

So the final total mass of water is 154.91 kg; using the specific volume of liquid water at150oC listed at the beginning of the problem, we have that the water occupies 0.1690 m3

leaving 0.8310 m3 for the steam. Using its specific volume, the final mass of steam is found tobe 2.12 kg. Using these results, we find that the final volume fraction of steam is 83.10%, thefinal volume fraction of water is 16.90%, and the fraction of the initial steam + water that hasbeen withdrawn is(172.86+6.28-154.91-2.12)/(172.86+6.28) = 0.1234 or 12.34%. A total of 22.11 kg of steamhas withdrawn, and 87.7% of the original mass of steam and water remain in the tank.

These results are similar to that from the energy balance. The differences are the result ofround off errors in the simple finite difference calculation scheme used here (i.e., morecomplicated predictor-corrector methods would yield more accurate results.).

A simpler method of doing the calculation, avoiding numerical integration, is to assume thatthe heat capacity and change on vaporization of liquid water are independent of temperature.Since liquid water is a condensed phase and the pressure change is small, we can make thefollowing assumptions$ $ $ $ $

$ $;

$

U H H H H

dU

dt

dH

dtC

dT

dt

dS

dt

C

T

dT

dt

L L V L

L LL

L L L L

=

and

and

vap

PP

With these substitutions and approximations, we obtain from the energy balance

MdU

dt

dM

dtH U M

dH

dt

dM

dtH

M CdT

dt

dM

dtH

C H

C

H

dT

dt M

dM

dt

C

H

M

M

LL L

V L LL L

L LL

L

L

L

L

LfL

iL

$$ $

$$

$

$

$

$ ln

= =

=

=

( ) =FHG

IKJ

c h

Now using an average value of and over the temperature range we obtain

or

vap

Pvap

Pvap

Pvap

Pvap

1

150 200

and from the entropy balance

MdS

dt

dM

dtS M

C

T

dT

dt

dM

dtS

C S

C

T S

dT

dt M

dM

dt

C

S

M

M

LL L

LL L

L

L

L

L

LfL

iL

$$ $

$

$

$ln

.

.ln

= =

=

++

FH

IK =

FHG

IKJ

vap P vap

Pvap

Pvap

Pvap

Now using an average value of and over the temperature range we obtain

or1

150 27315

200 27315

From the Steam Table data listed above, we obtain the following estimates:

CU T U T

CT

TS T S T

CS T S T

L

L

L

P

o o

o o

P

P

o o

C C

C - C

kJ

kg K

or using the ln mean value (more appropriate for the entropy calculation) based on

C C kJ

kg K

= = = = =

FHG

IKJ =

= = =++

FH

IK

= FH

IK

=

$ ( ) $ ( ) . ..

ln $ $

$( ) $( )

ln..

. .

ln..

.

200 150

200 150

852 45 632 20

504 405

200 150200 27315150 27315

2 3309 184184731542315

4 3793

2

12 1a f a f

Also, obtaining average values of the property changes on vaporization, yields

$ $ $ . . .

$ $ $ . . .

H H T H T

S S T S T

vap vap o vap o

vap vap o vap o

C CkJ

kg

C CkJ

kg K

= = + = = + =

= = + = = + =

1

2150 200

1

22114 3 19407 20275

1

2150 200

1

24 9960 41014 45487

b g b g

b g b gWith this information, we can now use either the energy of the entropy balance to solve theproblem. To compare the results, we will use both (with the linear average Cp in the energybalance and the log mean in the entropy balance. First using the energy balance

C

H

M

M

M

M

LfL

iL

fL

iL

Pvap $

ln.

..

exp . .

150 2004 405 50

20275010863

010863 089706

( ) =FHG

IKJ =

=

= ( ) =

Now using the entropy balance

ln $ ln.

.

.

.ln

.

.. ln

.

.

.

..

.

M

M

C

S

M

M

fL

iL

L

fL

iL

FHG

IKJ =

++

FH

IK =

FH

IK =

FH

IK

= FHIK =

Pvap

150 27315

200 27315

4 3793

45487

42315

4731509628

42315

47315

42315

47315089805

0 9628

Given the approximations, the two results are in quite good agreement. For what follows, theenergy balance result will be used. Therefore, the mass of water finally present (per m3) is

M M

V M V

MV

L L

L L o 3

3

V3

V o

3

3

final initial

occupying final C m

Therefore, the steam occupies 0.8308 m , corresponding to

final0.8308 m

C

0.8308 mmkg

kg

( ) = ( ) =

= ( ) = =

( ) = = =

0897 15506 kg

150 15506 0001091 01692

150 039282115

. .$ . . .

$.

.

b g

b g

So the fraction of liquid in the tank by mass at the end is 155.06/(155.06+2.12) = 0.9865,though the fraction by volume is 0.1692. Similarly the fraction of the tank volume that issteam is 0.8308, though steam is only 2.12/(155.06+2.12) = 0.0135 of the mass in the tank.

(c) Initially there was 6.28 + 172.86 = 179.14 kg of combined steam and water, and finally fromthe simpler calculation above there is 155.06 + 2.12 = 157.18 kg. Therefore, 87.7% of thetotal amount of steam + water initially in the tank are there finally, or 12.3% has beenwithdrawn. This corresponds to 21.96 kg being withdrawn. This is in excellent agreementwith the more rigorous finite difference calculations done above.

3.16 (a)dN

dtN N N N= = + = 0 1 2 2 1& & ; & & or

dU

dtN H N H W Q P

dV

dtW N H N H

W

NH HS S

S= = + + + = + 0 1 1 2 2 1 1 1 21

2 1& & & & & & &

&

& or = -

dS

dtN S N S

Q

TS

S

NS S= = + + = 0 1 1 1 2

0 12 1

& &&

&&

&gengen CP

J

mol K=

37151.

= - = KP298.15K

P

&

& .W

NH H C dT C TS

T

f

f

12 1 29815z = c h if the heat capacity is independent of

temperature. First consider the reversible case,

S SC

TdT R

dP

PT

T

i

f

2 11

10

0 gives = = zz P The solution is 499.14K. Then

KJ

molP&

& . .W

NCS

rev

1

49914 29815 7467= ( ) = . The actual work is 25% greater

W W C T

T

act Srev

f

f

= = =

=

125 9334 29815

549 39

. .

.

J

molK

The solultion is K

P c h

(b) Repeat the calculation with a temperature-dependent heat capacity

C T T T TP( ) = + + 22 243 5977 10 3499 10 7 464 102 5 2 9 3. . . .

Assuming reversibility Tf = 479.44K. Repeating the calculations above with the temperature-dependent heat capacity we find Wact = 9191 J, and Tf =520.92K.So there is a significant difference between the results for the constant heat capacity and variableheat capacity cases.

3.17 T T Pi f i = 300 K, = 800 K, and = 1.0 bar

C T T T TP-2 -5 2 -9 3( ) = 29.088 - 0.192 10 + 0.4 10 - 0.870 10

J

mol K

C T

TdT P

dP

P

P

W C T dT

T

T

P

P

f

revT

T

i

f

i

f

i

f

P

K

K

6

PK

K

Calculated final pressure = 3.092 10 Pa.

J

mol

( )

( ) .

=

=

=

=

=

z z

z

=

= =

300

800

1

300

80041458 10

3.18 Stage 1 is as in the previous problem.Stage 2Following the same calculation as above.

Stage 2 allowed pressure = 9.563 10 Pa

= 1.458 10 J

mol = Stage 2 work

,7

rev-4

P

W

f 2

Stage 3

Following the same calculation method

= 2.957 10 Pa = Stage 3 allowed pressure.

= 1.458 10J

mol = Stage 3 work

,-9

rev4

P

W

f 3

Question for the student: Why is the calculated work the same for each stage?

3.19 The mass, energy and entropy balances aredM

dtM M M M

dU

dtM H M H Q W M H H W

W M H H

dS

dtM S M S

Q

TS M S S S

S M S S

= + = =

= = + + + + =

= +

= = + + + = + =

=

& & , & &

& $ & $ & & ; & $ $ & ;

& & $ $

& $ & $&

& & $ $ &

& & $ $

1 2 2 1

1 1 2 2 1 1 2

1 2 1

1 1 2 2 1 1 2

1 2 1

0

0 0

0 0

s s

s

gen gen

gen

c hc h

c hc h

300 05 =C, 5 bar MPa. $ .H1 3064 2= kJ kg$ .S1 7 4599= kJ kg K

100 01 =C, 1 bar MPa. $ .H2 26762= kJ kg$ .S2 7 3614= kJ kg K

&

& . .W

Ms kJ kg1

2676 2 3064 2 388 = = satisfied the energy balance.

&

&$ $ . . .

S

MS Sgen kJ kg K

12 1 7 3614 7 4599 00985= = = can not be. Therefore the process is impossible.

3.20 Steam 20 bar 2= MPa and 300 C $ .H = 30235 kJ kg$ .S = 67664 kJ kg (from Steam Tables)$ .U = 2772 6 kJ kg

Final pressure = 1 bar. For reference saturation conditions areP T= =01 99 63. . MPa, $ .U L = 417 36 $ .HL = 417 46 $ .SL = 13026$ .U V = 25061 $ .HV = 26755 $ .SV = 7 3594

(a) Adiabatic expansion valve & &W Q= =0 and 0

M.B.:dM

dtM M= + =& &1 2 0 ; & &M M2 1= ;

E.B.:dU

dtM H M H= + =& $ & $1 1 2 2 0 ; $ $H H2 1=

From Steam Tables H2 30235= . T = 250 C $ .H = 29743 kJ kg $ .S = 80333 kJ kg K

P = 01. MPa T = 300 C $ .H = 3074 3 kJ/kg $ .S = 82158 kJ/kg KBy interpolation T H= 275 C gives = 3023.5 kJ / kg$ all vapor

$ .

& $ & $ &

&

&$ $ .

S

dS

dtMS M S S

S

MS S

=

= + + =

= =

81245

0

1359

1 2 2

2 1

kJ kg K

= 8.1254 6.7664 kJ kg K

gen

gen

gen

(b) Well designed, adiabatic turbine

E.B.: & $ & $ &M H M H W1 1 2 2 0+ + = ; & $ $W H H= 2 1c hS.B.: & $ & $M S M S1 1 2 2 0+ = ; $ $S S2 1= ; $ .S2 67664= kJ kg K Two-phase mixture. Solve for fraction of liquid using entropy balance.

x x

x

( ) + ( ) == ( )7 3594 1 13026 6 7664

0 902

. . .

. not good for turbine!$ . . . . .&

& . . .

&

& .

H

W

M

W

M

2 0902 26755 0098 417 46 2454 2

2454 2 30235 569 3

569 3

= + =

= ( ) =

=

kJ kg

kJ kg

kJ kg

(c) Isorthermal turbine superheated vaporT

P

= =

OQP

300

01

C

MPa final state

.

$ .

$ .

H

S

=

=

3074 3

82158

kJ kg

kJ kg K

E.B.: & $ & $ & &M H M H Q W1 1 2 2 0+ + + =s

S.B.: & $ & $&

M S M SQ

T1 1 2 2+ + +Sgen

0= 0

&& $ & $ & $ $

&

&$ $ . . .

.&

&

&

&$ $ . . . .

Q

TM S M S M S S

Q

MT S S

W

M

Q

MH H

= =

= = +( ) ( )

=

= + = + ( ) =

1 1 2 2 1 2 1

2 1

1 2

300 27315 82158 67664

8307

8307 30235 3074 3 779 9

c h

c h

c h

kJ kg K

kJ kg

kJ kgs

get more work out than in adiabatic case, but have to put in heat.

6\VWHP FRQWHQWVRIWKHFRPSUHVVRUVWHDG\VWDWHFRQVWDQWYROXPH$OVRJDVLVLGHDO

D 0DVVEDODQFH

o 1 1 1 1

(QHUJ\EDODQFH

1 + 1 + Q 0

adiabatic

: 3V

dV

dt

0

(QWURS\EDODQFH

1 6 1 6Q

T

0Sgen

0

reversib l

compresso r

6 6

)URPWKHHQHUJ\EDODQFH : 1& 7 7V

3 0 5 RU

:

1& 7 7V 3 0 5

)URPWKHHQWURS\EDODQFH 6 6 7 73

3

5 &

3

7KXV

:

1& 7

3

3

V

5 &

!

"

$##

3

3

E 7ZRVWDJHFRPSUHVVLRQZLWKLQWHUFRROLQJVRWKDWJDVLVUHWXUQHGWRLQLWLDO WHPSHUDWXUHEHIRUH

HQWHULQJQGFRPSUHVVRU

ZRUNLQVWDJH

!

"

$##

: 1& 73

3V

,

5 &

3

3

ZKHUH 3 SUHVVXUHDIWHUVWFRPSUHVVRU

ZRUNLQVWDJH

!

"

$#

: 1& 73

3V

,,

5 &

3

3

7RWDOZRUN

!

"

$##

: : 1& 73

3

3

3:

V

,

V

,,

5 & 5 &

V3

3 3

7RILQG 3 IRUPLQLPXPZRUNVHW G: G3V

G

G3: 1& 7

5

&

3

3 3

5

&

3

3

3

3

3 33

V

5 & 5 &

5 & 5 &

%&K

'K

()K

*K

1 6

2 7 0 5

0 5 0 5

3

3 3

33

33

RU

3 33

6WXGHQWVVKRXOGFKHFNWKDWWKLVUHVXOWVLQPLQLPXPDQGQRWPD[LPXPZRUN

6\VWHPQLWURJHQFRQWDLQHGLQERWKWDQNVFORVHGDGLDEDWLFFRQVWDQWYROXPH

0DVVEDODQFH 0 0 0L I I

(QHUJ\EDODQFH 08 0 8 0 8I I I I

)LQDOSUHVVXUHFRQGLWLRQ 3 3I I

)RUWKHHQWURS\EDODQFHWKHQLWURJHQLQWKHILUVWWDQNWKDWUHPDLQVLQWKHWDQNZLOOEHWDNHQDV

WKHV\VWHP7KHQ

6 6L I

(TXDWLRQWRJHWKHUZLWKHTQRIVWDWHLQIRUPDWLRQRIWKHIRUP 6 6 7 3 8 8 7 3

DQG 9 9 7 3 ZKLFKZHFDQJHWIURP)LJSURYLGHVHTQVIRUWKHXQNQRZQV

7 3 7I I I DQG 3 I

3URFHGXUHWREHIROORZHGLQVROXWLRQ

L *XHVVDILQDOSUHVVXUH 3 I

LL 8VHHTQ)LJWRFRPSXWH 7 I FDOXFXODWH8 I

LLL 8VH)LJWRJHW 9 I FRPSXWH 099

II

LY 0 0 0I I DQG9 9 0I I

Y 8VH 3 I DQG 9 I WRJHW7I

DQG8 I

YL 6HHLIHQHUJ\EDODQFH(TQLVVDWLVILHG,ILWLVJXHVVHG 3 I LVFRUUHFW,ILWLVQRW

JXHVVQHZ S I JREDFNWRLLDQGUHSHDWFDOFXODWLRQ

6RPHSUHOLPLQDULHV

7

3

L

L

.

EDU

)LJXUH o

+

9

L

L

|

N- NJ

P NJ

7KXV 0 9 9L L P P NJ NJ

$VDILUVWJXHVVXVHLGHDOJDVVROXWLRQIRUSUHVVXUH$OVRWU\VRPHQHLJKERULQJSUHVVXUHV0\

VROXWLRQLV

3 3

7 7

7 7

I I

I I

I I

. .

EDU VDPHDVLGHDOJDVVROXWLRQ

LGHDOJDVVROXWLRQ

. LGHDOJDVVROXWLRQ .

2 7

2 7

D 6HWXSMXVWDVLQ3UREOHPDERYH6ROXWLRQDIWHUDQXPEHURILWHUDWLRQVLV 3 3I I | EDU

7 I q & DQG 7I

q &

E 6LQFHQRZWKHUHLVKHDWH[FKDQJHEHWZHHQWKHWZRFKDPEHUVZHKDYH 7 7I I 7KLVHTXDWLRQ

LV XVHG LQVWHDGRI HQWURS\ EDODQFH 6ROXWLRQ SURFHGXUH LV WR JXHVV D ILQDO SUHVVXUH DQG WKHQ

FRPSXWHILQDOWHPSHUDWXUHXVLQJILUVWWKHPDVVEDODQFH

0 0 09

9

9

9

9

9

9 9

99

9 9

99L I I

L I I I IL

7KDWLVFKRRVH 7 I XQWLOHTQLVVDWLVILHG7KHQFRPSXWH 7 I IURPHQHUJ\EDODQFHLH

0 8 0 8 0 8 0 0 8 8 8L L I I I I I I I L I 2 7

:KHQJXHVVHG 3 I LVFRUUHFW 7 I FRPSXWHGIURPHTQVDQGXVLQJWKH6WHDP7DEOHVZLOO

EHLGHQWLFDO0\VROXWLRQLV 3 I EDU DQG 7 I # q &

6\VWHP FRQWHQWVRIWXUELQHRSHQFRQVWUDQWYROXPHVWHDG\VWDWH

0DVVEDODQFHG1

GW1 1 1 1

(QHUJ\EDODQFHG1

GW1 + 1 + Q 0

adiabatic

: 3VdV

dt

0

constant

volume

: 1 + + 1 & 7 7V 0 5 0 53 IRUWKHLGHDOJDV

(QWURS\EDODQFHG1

GW1 6 1 6

Q

T

0 6JHQ

%&'

()*

OQ OQ6 1 6 6 1 &7

75

3

3JHQ 3

0 5

RU

7 73

3

6

1 &

5 &JHQ

!

"

$#

3

3

H[S

D )RU 7 WREHDPLQLPXPVLQFH6JHQ t DQG 1 ! 6JHQ PXVWEH]HUR 7KXV WKHPLQLPXP

RXWOHWWHPSHUDWXUHRFFXUVLQUHYHUVLEOHRSHUDWLRQ

E : 1 & 7 7V 30 5 6LQFH 7 7 ! WKHPD[LPXPZRUNRFFXUVZKHQ 7 LVDPLQLPXP7KXV

:VLVDPD[LPXPLQPDJQLWXGHIRUDUHYHUVLEOHSURFHVV

D )RUDQ\V\VWHP

G6

GW0 6

4

76

L L

!

"$#

JHQ

GHSHQGLQJQWKHSURFHVV 4 t RU 4 d DQG 0 6L L t RU 0 6L L d $OVR 6JHQ RU

6JHQ ! GHSHQGLQJRQZKHWKHURUQRWWKHSURFHVVLVUHYHUVLEOH7KXV G6 GW IRUDV\VWHPFDQ

EHJUHDWHUWKDQOHVVWKDQRUHTXDOWR]HUR

6LQFH E\ GHILQLWLRQ WKH XQLYHUVH FRQWDLQV HYHU\WKLQJ LW PXVW EH D FORVHG V\VWHP DQG

DGLDEDWLFVLQFHWKHUHLVQRWKLQJIRUWKHXQLYHUVHWRH[FKDQJHPDVVRUKHDWZLWK7KHUHIRUH

G6

GW6

G6

GW6 t JHQ JHQ

7KXVWKHHQWURS\RIWKHXQLYHUVHFDQQRWGHFUHDVHDQGWKHVWDWHPHQWLVWUXH

E &RQVLGHUWKHFKDQJHIURPDQ\VWDWHWRDQ\VWDWHLQDFORVHGV\VWHP7KHHQHUJ\DQGHQWURS\

EDODQFHVIRUWKLVWUDQVIRUPDWLRQDUH

%&'

8 8 4 : :

6 6 6JHQ

6LQFHWKHSURFHVVLVDGLDEDWLF

,IWKHWUDQVIRUPDWLRQLVSRVVLEOHWKHQ 6JHQ t QRZFRQVLGHUWKHWUDQVIRUPDWLRQIURPVWDWHWR

VWDWH+HUH

8 8 :

6 6 6JHQ

&RPSDULQJHTQVDQGZHKDYH: : 7KLVLVRN

&RPSDULQJHTQVDQGZHKDYH 6 6JHQ JHQ

6HSDUDWHO\ZHKDYHLIWKHSURFHVVHVDUHSRVVLEOHWKDW 6JHQ t DQG 6JHQ

t 7KHRQO\ZD\WKDW

DOO WKHVH WKUHHHTXDWLRQV IRU 6JHQ DQG 6JHQ

FDQEH VDWLVILHG LV LI 6 6JHQ JHQ

WKDW LV ERWK

SURFHVVHVDUH UHYHUVLEOH *HQHUDOO\ SURFHVVHV DUHQRW UHYHUVLEOH +RZHYHU HTQ UHTXLUHV

WKDWRQO\RQHRI 6JHQ DQG 6JHQ

FDQEHJUHDWHUWKDQ]HUR7KXV

,I 6JHQ ! o LVSRVVLEOHEXW o LVQRWSRVVLEOH

,I 6JHQ

! o LVSRVVLEOHEXW o LVQRWSRVVLEOH

7KLVLVOLNH,OOXVWUDWLRQH[FHSWWKDWWKH5DQNLQHUDWKHUWKDQYDSRUFRPSUHVVLRQUHIULJHUDWLRQ

F\FOHLVXVHG2QO\SURSHUWLHVRISRLQWDQGSDWKIURPoFKDQJHV

3RLQWLVHQWURSLF 6 N- NJ. + q N- NJ & 7 q & 6/ & q [ IUDFWLRQYDSRU 69 & q

[ [

[ +/ & q + [ [

+9 & q +

4 + +

: + +

%/

&23

,IWKHWXUELQHGULYHVFRPSUHVVRU

: + + + +

2 7 2 7

&23

9DSRUFRPSUHVVLRQF\FOHZLWKFKDQJHRI 7ORZ DQG 7KLJK

/RFDWLRQ 6WDWH 3DWK 7 q & 3N3D + N- NJ0 5 6 N- NJ0 5 6DWGOLT

LVHQWKDOS

9/PL[

3 FRQVW 6DWGYDS

LVHQWURSH p VXSHUKHDWHG

YDSRU

3 FRQVW n 6DWGOLT

,QWHUSRODWLRQ

3 N3D q& 6 + q& 6 + q& 6 +

3 N3D q& 6 + q& 6 +

DWN3D 6 DWq&DQG +

DWN3D 6 DWq&DQG +

DWN3D7 q&DQG +

4 + +

: + +

&

&23

*HQHUDODQDO\VLVRIDKHDWHQJLQH

G6

GW

4

7

4 7G6

GW 4 7G6 D E D

7

7

I DUHD

4 7G6 7 6 6 D E D

I 0 5 DUHD

,QWHJUDWLRQDURXQGDF\FOH

4 4 :

: 4 4 D E D D E D

:

4

:

4 D E D

QHW

QHW

QHW

LQ

QHW

DUHD DUHD

DUHD

DUHD

DUHDK

2ULJLQDOF\FOH,QFUHDVLQJHYDSRUDWRU7EXWQRWSUHVVXUH

2ULJLQDOF\FOH ,QFUHDVLQJHYDSRUDWRU 7 3DQG

(LWKHUZD\PRUHZRUNLVREWDLQHGZLWKRQO\DVOLJKWLQFUHDVHLQKHDWUHMHFWHG

DOPRVWDOOWKHDGGLWLRQDOKHDWLQSXWLVFRQYHUWHGWRZRUNHIILFLHQF\LPSURYHV

'HFUHDVLQJHYDSRUDWRU7

1RWHPD\JHWLQWRSKDVHUHJLRQ

$JDLQHIILFLHQF\ZLOOLQFUHDVHGXHWRPRUHZRUNEHLQJSURGXFHGDQGOHVVKHDWUHMHFWHG

D E D c c c ZLWKRXWVXSHUKHDWD E D ZLWKVXSHUKHDWLQJ

&OHDUO\JUHDWHUZRUNRXWSXWDQGKLJKHUHIILFLHQF\ZLWKVXSHUKHDW

D E D ZLWKRXWVXEFRROLQJc c c cD E D ZLWKVXEFRROLQJ

3UREDEO\LVJUHDWHUHIILFLHQF\ZLWKVXEFRROLQJEXWLVQRWDVHYLGHQWDVZLWKVXSHUKHDWLQJFDVH

LVHQWURSLF

&

&

N3D

03D

03D

7 3

6 + 9

DW 3 03D a

7 + 6

7 + 6

7 + N- NJ

:RUN P NJ N3D

P NJ 3D P NJ - P

N- NJ

o u

u u u

I9G3

K :

4

QHW

LQ

:QHW

4LQ

K

7XUELQHLVRQO\EXWDGLDEDWLF

u

:

:

WXUELQH

LGHDO

WXUELQH

DFW

+ N- NJ

6RVWDWH 3 +

7 q & + 6

7 q & + 6

q7 & 6 N- NJ.

K

03D

&

a

7

03D

+ 6P

N3D

N3D

,IWXUELQHLVRQO\HIILFLHQW

: LQSUHYLRXVFDVH: +

K u a

8 / N- NJ 6/ N- NJ. 8 / N- NJ 6/

N3D

03D

&

a&

3 7

N3D

VDW/

VXSHUKHDWHG

YDSRU

VXSHUKHDWHG

YDSRU

03D

+ 6 9

4 + + + +

: + +

:

4

LQ

K

(QHUJ\EDODQFHDURXQGZKROHF\FOH

6% 4 4 4+ / 0 4 4 40 + /

4

7

4

7

4

7

4

7

4

7

4

7

4

7

4

7

+

+

/

/

0

0

/

/

+

+

0

0

+

+

0

0

4 74

7

4

7

4

7

4

7

4

7

4

7

47 7

47 7

/ /+

+

0

0

+

+

/

/

+

0

/

0

++ /

// 0

47 7

47 7

4

4

7 7

7 7

7 7

7 7

7 7

7 7

7 7

7 7

7

7

7 7

7 7

7

7

+

+ 0

/

/ 0

/

+

+ 0

/ 0

0 +

0 +

0 /

0 /

0 +

0 /

/

+

+ 0

0 /

/

+

0 5 0 50 5 0 5

)LUVWZULWHEDODQFHHTXDWLRQVIRUWKHFRQWHQWVRIWKHWXUELQH7KLVLVDVWHDG\VWDWHFRQVWDQWYROXPH

DGLDEDWLFV\VWHP

0% 0 0 0 0

(% 0 + 0 + : : 1 + +

V V0 5

6% 0 6 0 6

Q

T

0 6JHQ

0D[LPXPZRUNUHYHUVLEOHSURFHVV 6JHQ VHH6HF 6 6 7KXVWKHLQOHWDQG

H[LWWXUELQHFRQGLWLRQVDUHFRQQHFWHGE\DYHUWLFDOOLQHRQWKH0ROOLHUGLDJUDP

D + - J

FRQQHFWLQJ.

EDUDQGEDU

9HUWLFDOOLQH o

+ 7

37

3

q

- J &

EDU6DWXUDWLRQ

IRU EDU

:

0+ +V - J - J

E 7ZRVWDJHWXUELQH8VHEDODQFHHTXDWLRQVDERYHIRUHDFKVWDJH

6WDJH

& - J

&

- J EDU

- J. - J.

7 +

3 7

+ 3

6 6

L

.

EDU

q

q

o

$IWHUUHKHDWLQJLQWKHUHDFWRU

6WDJH

EDU - J

& &

- J EDU

- J

3 +

7 7

+ 3

6 6

q q

o

1RWH 7KHUHLVQRZRUNGRQH LQUHKHDWLQJVWHSQRVKDIWZRUNDQGQRFKDQJHRIUHKHDWHUERXQGDULHV

2QO\HQHUJ\WUDQVIHUVWHSLVKHDWLQJ 4 0 - J

7RWDOZRUNRXWJ

:

0

V - J

- J DGGLWLRQDOZRUN0 5

F 6LPLODUWRSDUWEDERYHH[FHSWWKDWLQWHUPHGLDWHSUHVVXUHLVEDU

4 0

: 0V

- J

- J - J DGGLWLRQDOZRUN0 5

6\VWHPFRQWHQWVRIWKHWDQNDWDQ\WLPHRSHQDGLDEDWLFFRQVWDQWYROXPHV\VWHP

D 0DVVEDODQFHG1

GW1

LGHDOJDVODZ 139

57

139

57 ZKHUH 9 YROXPHWULFIORZUDWH

7KXVG

GW

39

57

39

579

G

GW

3

7

3

79

VLQFH9DQG 9 DUHERWKFRQVWDQW

G

GW

3

7

9

9OQ

RU

3

7

3

7

9W

9

PLQ

H[S

u

EDU

.RU

3 7 3 7 PLQ PLQ EDU . u ^ `

(QHUJ\EDODQFHG

GW18 1+ 8

G1

GW1

G8

GW+

G1

GW

RU 1G8

GW

G1

GW+ 8 57

G1

GW1&

G7

GW 9

XVLQJ 1 39 57 \LHOGV 5G3

GW

3

7&

G7

GW 3 RU 7 7

3

3

5 &

3

>1RWHFRXOGKDYHJRWWHQWKLVUHVXOWIURPWKHHQWURS\EDODQFHDOVR@

7

3

PLQPLQ

EDU

VLPXOWDQHRXVO\VROYLQJHTXDWLRQVDQG\LHOGV

3 PLQ EDUDQG7 PLQ .

E 6LQFH SXPS LV DGLDEDWLF DQG UHYHUVLEOH 6 6LQ RXW RU 7 7

3

3

5 &

3

VLQFH 3 3 7KLV HTXDWLRQ

LPSOLHVWKDW 7 7

.

1XPEHURIPROHVRIJDVLQWDQNLQLWLDOO\ 1 1

13 9

57

PRO

u u

u

EDU P - P EDU

- PRO. .

G1

GW1 1 W W W PRO PLQ PRO PLQ

D (QWURS\EDODQFHRQDQHOHPHQWRIJDVWKDWUHPDLQVLQWKHWDQNVHH,OOXVWUDWLRQ\LHOGV

6 W 67 W

7

3 W

37 W

3 W5 &

3

)URPWKHLGHDOJDVHTXDWLRQRIVWDWH

3 W 9 1 W 57 W7 W 1 W

3 W

9

5

7 1

3

7KXV

7 W

3 W W W

u

.

EDU

1RZXVLQJHTQLQHTQWRVROYHIRU 3 W DQG 7 W \LHOGV

3 W W

7 W W

u

u

%XW 7 W LV WHPSHUDWXUH LQ WKH WDQN:KDWDERXW WHPSHUDWXUHRIJDV OHDYLQJ WKH WKURWWOLQJYDOYH" *DV

JRLQJWKUXYDOYHXQGHUJRHVD-RXOH7KRPVRQH[SDQVLRQ + +LQ RXW

6LQFHJDVLVLGHDOWKLVLPSOLHV

7 7LQ RXW 7KXV 7 W W u

RXW RI YDOYH

E ,IWDQNLVLVRWKHUPDOWKHQLQVWHDGRIHTQZHKDYH

3 W

1 W

57

9

3

13 W W

EDU

DQG 7 W FRQVWDQW .

6XPPDU\

EDU

$GLDEDWLF

,VRWKHUPDO

7 . 3

W W

W

7KLVLVDWRXJKSUREOHP

6XEVFULSWGHQRWHVSURSHUWLHVLQLQLWDOO\ILOOHGWDQN

6XEVFULSWGHQRWHVSURSHUWLHVLQLQLWLDOO\HYDFXDWHGWDQN

:HZLOOXVHLDQGIVXSHUVFULSWVWRGHQRWHLQLWLDODQGILQDOSURSHUWLHVDQGZHZLOODVVXPHQHJOLJLEOHPDVV

KROGXSLQHQJLQH

0DVVEDODQFHRQFORVHGV\VWHPFRQVLVWLQJRIERWKWDQNV

1 1 1 139

7

39

7

3 9

7

3 9

7

L L I IL

L

L

L

I

I

I

I

EXW

3 3 3 37 7

I I I I

I I

u

u

u

EDUP

.

(QWURS\EDODQFHRQJDVFRQWDLQHG LQ WDQN LQLWLDOO\DQG ILQDOO\ 7KLV LVDFORVHGDGLDEDWLF UHYHUVLEOH

V\VWHP

G6

GW6 6 &

7

75

3

3

L II

L

I

L

3OQ OQ

7KXV

7 73

3

3I LI

L

5 & I

3

(TXDWLRQLPSOLHVWKDW 7DQG 3

DUHUHODWHGDVIROORZV

G 7

GW

5

&

G 3

GW

OQ OQ

3

0DVVDQGHQHUJ\EDODQFHVRQWDQN

G1

GW1 1

{ G

GW1 8 1+ 8

G1

GW1

G8

GW

0 5

RU 1 &G7

GW

G1

GW+ 8 57

G1

GW57 1

9 0 5

XVLQJHTQJLYHV

1&

&

G 3

GW1

G1

GW

9

3

OQ

EDODQFHV RQ WKH HQJLQH DGLDEDWLF UHYHUVLEOH IRU PD[LPXP ZRUN DQG VLQFH QR KROGXS RI PDVV

G1 GW

6XEVFULSWHQJUHIHUVWRJDVOHDYLQJHQJLQHDQGJRLQJLQWRWDQN

+ + 1 :

6 6 1

6 6

VHQJ

HQJ

HQJ

3 83 8

$OVR 3 3 HQJ

7 7 3 3 7 3 35 & 5 &

HQJ HQJ 3 3

2 7 0 5 1RWHWKDW7 7HQJ z

DQG

: 1& 7 7V 3 HQJ2 7

EDODQFHVRQWDQN>1RWHLUUHYHUVLEOHPL[LQJRFFXUVXQOHVVIRUWXLWRXVO\ 7 7HQJ DWDOOWLPHVF