22
Revista Mexicana de Física 31 No. 2 (1985) 199.220 CHEMICAL COMPOSITION OF PLANETARY NEBULAEt Silvia Torres-Peimbert 199 Instituto Apartado Postal de Astronomfa, 70-264, México ABSTRACf UNAH 04510, D.F. Contemporary ideas about the characteristics of Planetary Nebulae are surnmarized. The chemical composition of the objects are presented in more detail¡ and the derived information about their progenitor stars is discussed. A description on the influence of intermediate mass stars on the galactic interstellar medium is also given. RESlMEN Se presentan brevemente las ideas contemporáneas respecto a las características de las nebulosas planetarias. Se hace énfasis en la com- posición química y en la información que se deriva de ésta acerca de las estrellas progenitoras. Finalmente se hace una breve relación de la influen cia que las estrellas de masa intermedia tienen sobre el medio intereste- - lar galactico. t Presentado en la asamblea general ordinaria de la SMF efectuada en junio de 1983.

CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

Revista Mexicana de Física 31 No. 2 (1985) 199.220

CHEMICAL COMPOSITIONOF PLANETARY NEBULAEt

Silvia Torres-Peimbert

199

InstitutoApartado Postal

de Astronomfa,70-264, México

ABSTRACf

UNAH

04510, D.F.

Contemporary ideas about the characteristics of Planetary Nebulaeare surnmarized. The chemical composition of the objects are presented inmore detail¡ and the derived information about their progenitor stars isdiscussed. A description on the influence of intermediate mass stars onthe galactic interstellar medium is also given.

RESlMEN

Se presentan brevemente las ideas contemporáneas respecto a lascaracterísticas de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta acerca de lasestrellas progenitoras. Finalmente se hace una breve relación de la influencia que las estrellas de masa intermedia tienen sobre el medio intereste- -lar galactico.

t Presentado en la asamblea general ordinaria de la SMF efectuada en juniode 1983.

Page 2: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

2~O

l. INTRODUCfION

The beautIful appearance of Planetary Nebulae (PN) has arousedthe interest oí sky observers since their discovery. PN have a150 becn asource of considerable scientific knowledge because of their physicalconclítions that lcad to straightforward interpretations oí the observations.To date the mast complete catalogue of planetary nebulae is the Strasbourgcatalogue(l) containing a list of 1455 objects. There are several recentmonographs on the subject of PN. (2,3) In Fig. l a sample of 4 PN isshown.

PN have been observed to be associated with a blue star at thecenter caHed the nuc1eus of too nebula. lt has also been known that thenucleus is the original saurce oí energy powering the nchula. With theadvances of the theory of stellar evolution and detailed analysis of o~servational data it becarne quite clear that the nuclei oí planetary nebulaerepresent a rathcr late stage in the evolution oí a star not much moTemassive than too sun. The data also suggested that further evolution ofthese stars leads naturally to the white dwarf stage. The nature oí theprecursors to the planetary nchula nucleus W3S not, howevcr, invnediatelyclear although the early work in the field suggested that red giants andlong period variables are the promising candidates. During the last decadeconsiderable progress has taken place in our understanding of these latephases oí stellar evolution; the evolutionary cormcction between planetarynehulae and their immcdiate precursors, the red giants, 5cems to havcbeen clearly established.

From spectroscopic measurements of their cxpansion velocities,and froro their increase with time in angular size it is apparent than thenebular expansion lead to the eventual dispersal of the stellar materialthat forms these shells into the interstellar medium. Since too PN stageoccurs late in the life of the stars it is conceivable that part oí thematerial thus returncd has undergone thc effects oí stellar nucleosynthesis.This points out thc need to study the role of planetary nebulae on thcgeneral scheme oí .hemical evolution oí galaxies. Thc cxact manncr in~nich chemical cvolution enrichrnent h~soccurred in galaxies is a subjectof enonmous current interest. Analysis oí nebular spectra indicates that

Page 3: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

201

., . "

,,

.

, .

(a)

, .(e)

'.•

.'

(b)

•(d)

Fig. l. Direct photographs oi planetary nebulae. a) NGC 7293 the HelixNebula (Anglo-Australian Telescope Board). b) NGC 6853 DumbbellNebula (Hale Observatories). el NGC 6781 in red light. (86) d)NGC 6302 (Anglo-Australian Telescope Board), it ls a bipolar nebulaof Type l.

Page 4: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

202PNcontribute signific<.U1tly to thi5 proccss of enrichrrcnt.

The main purposc oí thi5 paper is to rcvicw the present ideas onthe chemical composition anJ thc influence oí PN in the chemical evolutionof the inte1'5te11armcdium. To achicve thi5 purpose we present in 92 adescription of chemical abtmdance determinat ionsel gaseous nebulac. in 93we describe the curren! thco1'etica1 ideas on the evolution of intermediatemass 5tar5. in 94 wc prescnt thc corr.parisonof observed abundances oí PKwi th theo1'et ical predict ions and in s5 \,'C present sorne ideas on theimportance of PN on the chemical cvolution of the inter5te11a1' medium.

2. OIDIICAL ABUNDANCEDETEllIotIMTIONS OF GASEOUS NEBULAE

It is oí grcat interes! to derive thc abtmdance of as manyelements as possiblc in the 10nizoo ncbulac. In general, abLmdanees arederivcd only from a few seleeted ions that show emission lines in thevisible region of the speetrum. In the last few years the availablewavelength ranges have bcen extended to the VV, this extension approx~ltclydoubled the ionie stages that ean be observed. To derive chemacal abLmdances it is neccssary first to determine the physieal eonditions in theobserved regions sinee the line ernissivity of forbidden lines is verysensitive to temperatuJ~s (ano in sorneeases it is also sensitivo todensity).

be in the8000. to

For mast objects eloetron densities have been found to3 •• ~ s10 to 10 cm ,and clcctron temperatures to be in the

range.From the kn"",,'ledgeoí densi ty and temperature the ionie abtmd.an-

ces ean be detennined. In Flg. Z a samplc spcetnun of the planetarynebu1a Hul-2 is presented. In Tab1e I a list of the typica1 lines thatare uscd to derive the ionie abundances is presented. Not all PN show all

range of12000. K

lines 1isted in Tnble J. sorne show preferentially high or 10\,' ionie stages

dcpending on the excltlng stellar spectrum and conditions in the nebulae.Also it is knmoTIthat the spectnnn varies \~'ithposition "ithin the PN, thehigher stages of ionization, being in general closer to the central star.

For the interpretatíon of lines excited by clectron collisionsit is assumcu that the rate coefficicnt may be writtcn

Page 5: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

?ig. 2. Blue spectrum of the planetary nebula Hu1-2 obtained by the author. The lower part is the samesection of the spectrurn as the upper part, that has beeo amplified to display the weak emissionlines. The strongest line i5 ASOO? ~ of 0++.

No'"

52004800).(11)44004000

Hu 1-2om

N.m + H.om

on N.m I Hy H.nH8 lpm

~•

":z:+CD:z:

íf1AllZ"

H.nA ___ ...3600

.< 1.5••'"'"'E1.0u

'"-"!:lg0.5""¡¡:0.0

•• 4o<{.'"'" 3

•Eu

~ 2

"••Q""¡¡:

O

Page 6: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

204

TABLE

,--~_ .._~-Ion lI'avelength (A) Notes i Ion líavelength (A) Notes

.._--~• Balmcr 1ines O.11 r 2470, 37Z6. 3729 f

H:/ 4471, 5876, 6678 r 0.2 1663, 4959, 500, fHc+2 1640, 4686 r O., 1402 rc. 2326 f I\e +;- 3869 f

C.2 {1335 dr Ke+3 2423, 2425 sf

1906, 1909 sf t\e +1+ 3426 r

e+3 {1548, 1550 P Si+? 1892 sf

2297 dr 5. 6717, 6731 rN. 5" •

b548, 6584 f 6311 , 9071, 9535 f",+2 1747-1754 sf C1+2 5518, 5538 fN+J 1487 sf A.' 7136 fN+" 1239, 1241 P A.' 4711 , 4740 f

Notes: r - emission lines froro cxcited statcs of ion X (r) from the rccom-

bination of ion X{r+l)

dr - lines [rom dielectronic recombination processf forbiddcn lines; thc values of the Einstein probability

~ -2-1cocfficicnt for spontancous emission is A'v 10 ssf scmiforbidden lines; A",102 5-

1

P pennitted lines; Ai(,IO' s.,

Table l. The most important UV and optical emission lines in PN froro whichto derive ionic abundances

qli~ j) = 8.63< IQ-'l.(r,j! exp 1- M:(l,j)/kTl(.1 T 1. - ~i e

, -,(cm s )

If collisional excitatíon is foUowed by radiativc dccay. \ihich is a gooJapproximation at thc de~~itie~which are relevant, the cncrgy radiatcd intransitiens back te the grOlmo state is

N N(x"'.) q (i. j) hv ..e ')

-] - 1(erg cm s )

Page 7: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

205

where N denotes a number density. This expression may be compared withthat for the Ha line of hydrogen

•N.,NOl ) a (Ha) hVawhere a(HB) is the radiative recombination coefficicnt. Integratingemission along the line of sight, we obtain

I(A .. ) 4861 q(i+j) N(Xm+)1J

--- = -0- --.-

I(Ha) A(A) a(Ha) N(H)

where I(Aij)/I(Ha) is the intensity of the emission line at \;avelength A,relative to H6 and corrected for interstellar reddening. The line intensityratio is strongly dependent on the electron temperature, Te' through theexponential in the exprcssion for the excitation Tate coefficient. Itfollows that the electron temperature must be accurately determined inarder to obtain reliable abundance ratios.

That is, forbidden lines are very sensitive to temperature andthe accuracy oí the intcrpretation oí the linc intcnsities in tcrms oícolumn density of emitting ions is highly dependent on the accuracy of thetemperature determination. On the other hand, in the case of observedlines due to permitted transitions frem excited IeveIs that have beenreached in the process of recombination, their emissivities have the samedependence on ternperature as HB; and the derived ablDldance of the ion whichlDldergoes recombination relative to H+ is not sensitive to the temperatureW1certainty.

It is particularly important to derive the abundance of carbon,since it is the IDOSt abundant eIernent heavier than helium. In the opticalspectral range there is only one faint carbon line available, thc A 4267 C+line which is produced by recombination of C++; in thc u1traviolet range

+ +2 +3there are 1ines of e ,e and e (see Table I). There has been sornequestion in the literature on whethcr thc 4267 linc is produced only byrecombination or by sorne additional mcchanism; in thc latter case theablDldance dcrivcd from it wauld be in excess to thc real abundance. Theabundances derived frem thc collisionally excited lincs in the ultraviolct,

Page 8: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

206as explained befare, are very sensitive to thc adoptcd temperature. Indifferential studies of PN it has been found that there is a systematicallyhigher C++ abundance (by a factor of 1.5) derived from optical studies thanfrom UV work. (4,5,6)

In arder to derive total abundances it is neccssary to correetfor the elements in other stages of ionization which are not available forobservation. There are two different approaches to this problem, ene isto empirically calculate the abundance of tOo unseen ions based on thehypothesis that ions with sUmilar ionization potentials have a similarbehavioT. Another approach is to compute theoretically ionization struct~res model and adjust the best fit to the observable parameters. In practice a combination of both techniques is the most feasible method. Atpresent more than 100 objects have been analyzed and their chemical abun-dances have beco derived. (2,6,7,8,9,10) The nebular abundanccs are to afirst approximation similar to thc so cal1ed "cosmic abundance". For IDOst

PN the differences are relatively small and for that reason it is difficultto make comparisons among objects that have been analyzed by differentinvestigators.

There are nevertheless certaín general features that have beenidentified. Peimbert(ll) proposed a scheme to divide the galactic PN intofour types: Type 1 (He-Ne rich), Type 11 (intermediate population), Type111 (high velocity objects) and Type IV (halo population). From a varietyoí arguments related to stellar dynamics and stellar evolution it seemsthat this scheme is not only a chemical composition classification, butthat it corresponds to progenitor stars oí different masses in the mainsequence. There have been several recent reviews dedicated to differentaspects of chemical abundancel85) and of this classification. (5,12,13)

In Table Il the abundances of planetary nebulae for the uifferenttypes are presented. Also sorre oí the rore accurate abundance determinat-ions for too SlU1 and for galactic and extragalactic H II regions are givenin Table 11, where the Orion Nebula is representativc of the solar neigh-borhood, and average valucs for several H 11 regions in the LargeMagellanic Cloud (OC) and thc small Magellanic Cloud (S1>C). ~lost of theabundanccs oí Table 11 were obtaincd frem observations made with ground~ased optical telescopes; howcver abundances oí carbon and sorne ions oí

Page 9: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

207

nitrogen and neon were obtained from observations made with theInternationa1 U1travio1et Sate11ite (IUE).

TABLEII

TypeE1ement P.eferences

He C N O Ne

P1anetary Nebu1ae

(He-N)rich 11.18 8.3-9.1 8.6 8.6 7.9 (11,15)

Intennediate 11. 04 8.4-9.2 8.1 8.7 8.1 (5,12,13)

Halo 10.99 8.9 6.7-8.3 7.9 6.2-8.0 (14,16)

Other Objects

Drion 11.01 8.57 7.68 8.65 7.80 (17,18)

!MC (H II reg) 10.92 7.86 7.03 8.34 7.44 (19,20,22)

S'4C (H II reg) 10.89 7.00 6.41 7.89 7.03 (19,21,22)

Sun 8.67 7.99 8.92 8.12 (23,24,25)

Table 11. Chemical abundances expressed as log N{X} and scaled toN(H) = 12.00.

3. STELLAREVOLUfIONSI1JDIESOF INTERMEDIATEMASSSfARS

The study of PNenve10pes a110ws us to derive information aboutnucleosynthesis and stellar evolution processes that the progenitors haveundergone during their lifetime.

It is thought that asymptotic giant branch stars (AGB), losetheir outer 1ayers to fom PN and to expose their nuc1ei which wi11 beresponsible for the ionization oí the nebular envelopes. The low velocityof expansion of the nebular matter in PN 1ed Shk10vsky(26) to suggest thatthe ejection took place while the parent star was a red giant, MOreover,on the basis oí the luminosity of the central stars of PN Paczyñski(27)suggested that AGBstars undergoing doub1e shell burning are the immediateprogenitors of PN.

PN are formed by ste11ar mass 1055 in the fom of winds and dif-

Page 10: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

20B

ferent types oí winds have been discusscd in the literature, this tapie hasbeen reviewed by Iben. (2B) It seems that there are at least two differentways to produce PN: by mass ejection at a high rate (superwind) and bymass ejection at a lower rate (ordinary wind) followed by hot windcompression.

General descriptions(30) of the evolution of the surface abundances of He, e, N and o intermediate mass stars (1 S M/M s B) from the main~sequence until the ejection of the PN envelope or until ignition of e inthe core are available. (29,30,31) They take into account two processesaffecting the surface composition:

i) three phases of convective dredge-ups andii) nuclear burning in the deepest layers of the convective envelope.

The predictions are for an increase oí H and N and e in the surface oí thestars during their evolution; the exact anK:llDlt depending on the mass oí thestar.

The computations by Renzini and Voli (29) have bcen made conside!ing two parameters: o = ~/L, the ratio of the mixing length to the pressurescale height, and n, which multiplied by the Reimcrs' rate(3s) gives thernass 1055 rate during thc AGBphasc. The computations were made forn = 1/3 and 2/3 and o = O, 1, 1.5 and 2, with most of them for n = 1/3 ando = O and 1.S. The values of o and n are not well known and they may varywith stellar evolution stage, initial stellar mass and chemical composition.Values oí a and n can be obtained by comparing the stellar evolutionpredictions with observed abundances in AGB stars and PN, as well as withobserved abundances in the interstellar medium that depend on models ofgalactic chemica1 evo1ution. lt has been estimated semiempirica11y thatD is in the 1/3 to 3 rangc and that for stars with M < 2 Me it is in the 1/3to 1/2 range (e.g.,references 34,28 and references therein).

4. GlH-l1CAL o:::MPOSITIONOF PLANETARY NEBULAE

al Type I Pianetahij Nebulae

N/O> 0.5Thcy have been defined as those objects(where bcth ratios are givcn by number).

with IIe/H> 0.125 or~lost He and N rich PN

Page 11: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

209

are very filamentary and show a bipolar strueture (elass B). In generaltheir speetra present very strong forbidden lines ranging from [O I], [N lJand [5 Il] up to [Ne VI.

Only a few central stars of 1YPe 1 PN have been located in theHRdiagram, and in general their locations correspond to tracks oí moremassive cores than those of most PN nuclei. (8) ~léndez and Niemela (38) haveclassified PN central stars in the ~~ sequence and it is found that mastobjects of spectral type classified in the WC2-WC4 range are of PN of type1, while Heap(39,40) concludes that central stars of PN with WC spectramay be among the most massive stars of the sample of central stars of PNstudied with the IUE. Grieg(41) based onthe galactic kinematical propertiesof Class B PN found that these objects have the most massive progenitors of.111 PN and that they are of repulatian 1. Acker(42,43) from the study oflb rich PN found that their spatial and kinematical parameters correspondto ~li'" 3 M~.

A substantial fraction of type 1 PN shows bipolar structures con-sisting oí low density material with filaments, labes and ansae along themajor axis and oí higher density material along the minar axis. Severalideas have becn proposed in the literature to explain this configuration.In what follows some of them will be briefly described: i) two phases ofwind ejection by a single star, (39,44) ii) two phases of wind ejection bya binary system, (45,46,47) iii) stellar rotation and gravitational brak-ing. (48) The first two mcchanisms need a thick toroid that acts as a focussing element for the ste11ar wind, as that included in the model by Cant6. (4"9")calvet and Peimbert(44) noted that main sequcnce stars with M> 2.4 M have

~high rotation velocities and that a large fraction of their angular momentumcan be lost on the AGB phase by mass loss. A slow stellar wind withpreferential ejection along the eq.Jatorial plane then creates a toroidalcirctmlStellar envelope. Whenthe central starevolves to too PNnuclei phasea fast stcllar wind is generated that interacts with the circumstellarenvelope previously formed and that shapes a bipolar nebula along the axisof rotation.

A similar idea was develeped by fbap(39) to explain the bipolarmorphology prescnt in most PN with WC central stars. Thc idea is that therotationally enhaneed ejection would result in a nebula initially concen-

Page 12: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

210

trated in aplane and the fast wind phase no longer rotationally daminatedwould enhance the asymmetry by pushing out most effectively the less densepolar regions. l~ap(5l) has found that if angular momentum in red giantsis conserved, and the core spins-up, then the PN central 5tar would rotateat very high velocity for a 3.5 M

Qstar, while it would be very slow for a

1.5 MQ star; in this case rotationally enhanced ejection may be importantin PN with massive progenitors.

An alternative suggestion has been the possibility of formingbipolar nebulae by binary systems(45,46,47) during the evolution of theprimary to the red giant branch. The proposed mechanisms are different !lJt

in any case the ejected mattcr should be concentrated to the orbital planeat the time of ejection and as the nebula ages another less massive nebularcomponent produced by the wind, and moving at a srnrewhat higher speed, isexpectcd in the directian oí the orbital axis. It has not yet been prevenwhether or not both nechanisms, the single 5tar ane and thc clase binaryonc, proposed to explain the morphology of type 1 PN are in operation. Foreither case, detailed models of the nature of the ejection are yet to beco~uted.

A crude estimate of the mass of the progenitors of Type 1 PN havebeen made for sorneobjects; these are NGC 3132, NGC 2346 andNGC 2818. (49,52,53,54) The average mass for these objects is 2.4 Me' SinceNGC 3132 and NGC 2346 are mild examples of He-N enrichment, the lower masslimit for which the process is expected to take place is around 2.4 MQ• Intheir study of stars of intermediate mas" Renzini and Voli(29) predict thatthe He and N rich PN are those that have undergone substantíal 2nd dredge-up and that they ~orrespond to progenitors with M> 3 Me' The abcve mentíoned additional evidence is a1so in agreement with this idea.

The N/a, C/O co~ared to f~/H abundances froo Pcimbert and Torres-Peimbert(55) and the prediction from(29) are presented in Fig. 3. In thisfigure there is a very satisfactory agreement between thc observed valuesand the predicted ones from models that allow hot burning at the base ofthe convective envelope (a: 1 and 2 of(29)). The agreemcnt correspondsto progenitors in the 3.3-8 MQ range.

Page 13: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

2 11

-",\t'I\ ,'\ +15'02\.,

1- o1I,m -.

llI-o

'''' N/O '1•.•....•.8

tOQ e/oI 1.!J1

0.0

h,/ . r'0.0

1 r.' /'I 1-. : I d.'l. ,. I

.L , ;'"

, o.,• • I =ot • ~

-o.~ •1 0.0•• ••• x•• -o.,+ ++

++-1.0 1 -.

+ Jr,m-+-0.6

0.'0 O.l!l 0.20 0.0 0.12-He/H 0.'11 He/H o.to

Fig. 3. Observed abundances of PN. Filled circles are abundances oíindividual Type Iobjects (55) + symbols are Type 11 PN (52).Predieted surface abundances of interrnediate mass stars (29):salid lioes correspond to rnodels with no nuclear buroing at thebase oí the convective envelope: dashed lines correspond to modelsfer different values oí the mixing length a = 1,1.5,2; numbersalong the tick marks are the masses af the maio sequence parentstars. The cross correspond to initia! composition of stellarmodels.

For PN of 1)'pe I there is an anticorrelation between the O/H andthe N/O observed ratios that seems to be real. It is presented in Fig. 4.This anticorrelation cannot be explained with the available models. TheO depletion reaches factors of 2 to 3 while the mest favorable theoreticalmodels produce depletions of a factor of 1/3. (29,34) That is, the O/Hversus N/O anticorrelation i~l ies that most of the N is of secondaryongm but that it canes from O and not fran C. This result is very impo!:.tant for metal-peor galaxies where the C/O ratio is considerably smallerthat in the solar vicinity.

Page 14: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

21 2

lOO .Q..:t!iH

'.0

111111111111111111111111111":...

1III1111111111 .

'"'"'"e.'

.-, ~o.~ o o.,109 N/O

Fig. 4. Observed abundances of Type 1 PN. Shaded area i5 location ofType 11 PN! filled circles are data by Peimbert and Torres-Peimbert,(~5) parentheses are uncertain values.

b' Type 11 and III Plo.nWVty Nebu1o.e

Type 11 PNare intermediate-population objects with a distanceto the galactic plane, z, smaller than 1 kpc and a peculiar radial velocity,Vpr' smaller than 60 kms-'; while Type 111 PNare population 11 objectswith Iz 1> 1 kpc or IVpr 1> 60 km S -, that do not belong to the halo popula~.ion. In manycases, it is difficult to differentiate whether a PNis ofType 11 or 111, since this distinction is very sensitive to distancedetenninations. For the purpose of this discussion we will group Type II

and Type II 1 PNtogether.These objects have a mean distance aboye the galactic plane, <Z>,

of "'190 pc (adopting the distance sca1e by Cudworth(S6)), which correspondsto the spatial distribution of stars of <M>~1.4MQo As explained in ~3,thcory predicts that only the first dredge-up and a modest amount of thethird dredge-up, have taken place in these objects; consequent1y that Nand e have been moderately enrichcd and that He/H has increased by about0.01 by number.

From the comparison between the theoretical predictions and theobserved composition in PNof types II and II1 presented in Table II. i tis seen that in general their composition agrees well with those objectsfor M>3 M~. This limiting mass is higher than that observed frem

Page 15: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

213

kinematic properties, possibly indicating a higher efficiency in the dredge-up processes, than predicted. lbere are ",,11 established positive corre la!ions between the le/H and N/O ratios and the O/H and N/O ratios. lbese correlations are in agreement with a secondary production of N and with dif-ferent initial He, e and N abtmdances produced by galactic chemical evolu!ion and galactic abundance gradients.

It is predicted that the surface chemical composition for O andheavier elements has not becn affected by stellar evolution, and thereforethe composition oí the galactic intcrstellar medium at the time oí forma!ion oí the parent stars may be traced from the PN results. In particularradial galactoccntric gradients far O, A and S can be derived from PN.Gradients íTem PN have becn reported in the literature by severa!authors(s,7,9,s2,s7,s8). The reported O/H gradients are in agreement withthose derived from H 11 regions. (59,60,61)

oJ Type IV Ptane.taJ<.Y Nebu.lae

The abtmdances of halo PN can be more easily interpreted becausetheir initial chemical composition has not been substantially affected bygalactic chemical evolution. On the one hand, there are the chemicalelements that have nat becn altered by the progenitor nuclear evolution andthat OOlp establish the conditions of the interstellar medium at the timeoí formation oí the precursor stars, namely: S, Ar and possibly O; and ontoo other hand, there are those elernents whose abtmdances have been modifiedon too surface of the star during its lifetime: He, N and C.

At present, there are four kno~n PN which are extreme population11 objects (Type TV) one of them K 648, in the globular cluster MIS, therest are isolated objects. Prom thcir kinematic properties it follows thatthe masses of too progenitor stars of these objects are of .0.8 M •

~A compilation oí their chemical abundances is presented inTable III. lbis table can be cOll{laredwith the solar neighborhood abtmd"!'.ces presented in Table II. It can be seen that S, Ar, and O are tmdera~dant relative to population 1 objects, as is to be expected from populationII objccts. However, the abundance oí O and Ne relative to Ar and S seemto be larger than in the solar neighborhood. Por extreme population 11objects He is expected to correspond to the pregalactic abundance of

Page 16: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

214

He/H = 0.07 and since it is higher, it is consistent with the predictionthat there has been He enriclunent in the PN i tself. N/O is higher thanin Orion which is to be expccted from the first dredge-up phase in whichboth He and N are increased. It is also seen that e has been substantiallyenriched, moreover the total abundance present oí C/H is as large as solar.

TABLE !iI

H O e N Ne S A References

K648 11.00 7.67 8.73 6.5 6.7 5.15 4.26 (26,59)

H4-I 10.99 8.36 9.31 7.75 6.70 5.20 4.29 (50,66)

BB-l 10.98 7.90 9.09 8.34 8.00 5.70 4.59 (69,61,66)

DD-l 11.00 8.03 8.83 8.30 7.32 6.46 5.58 (62)

Table III. Chemical composition oi Halo PN. Given in 109 X by numberwhere 10g H z 12.00.

That is, in these objects f~, e and H have beeo enriched. Thiscan be understood in terms of the first and third dredge-ups to have

occurred.The theoretical situation for the low mass li.mits for too 3rd

dredge-up to take place is not well established. For such low mass starsRenzini and Voli(29) do not predict any 3rd dredge-up episode to proceed.However, Iben and Renzini(62,63) have succeeded in bringing e to the sur-face of a star of initial mass 0.7 MQ,of Z = 0.001; this result is very

sensitive to the opacities used in the computations.The excess e found in H4-1, BB-l and DD-l is based on observa-

tions of '4267 recombination line, while the e values presented for K648were obtained frem lUE data; (16) that is, the e/o excess is not based onlyin the recombination observations but a150 in the collisionally excitedW lines.

K648, H4-1 and BB-l showa similar pattem in their A and Sbehavior in that they have an underabundance of 1. 7 to 2.3 dex relative tosolar. The underabundance of O is 0.6 to 1. 3 dex while that of Ne is of

Page 17: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

be derived from H II regions, planetary nebulae,A review of this tapie has been given by

215

0.1 to 1.6 dex. DD-1 shows a unifonn underabundanee of A, S, O and Ne of0.8 dex. On the other hand in a11 4 halo PN the ratio C/O is 10 whi1e thatof Ne/O is essentia1ly solar (although with large scatter). Two possibili!ies have been advanced in the literature: a) that the enrichment oí O andNe in the interstellar medium proceeded earlier in the evolution oí thegalaxy than that of A, S and Fe, and b) that the O and Ne exeess relativeto A, S and Fe, are a produet of the progenitors of the PNthemselves. (64,65,67,69,70). The eonstaney in the C/O ratio supports thesecond possibility.

5. INTERSfELLAR MAITER ANO CIIDIlCAL EVOLlTfION

The ehemiea1 eomposition of the interste11ar mcdium can be dete~mined by studying the emission linc spectra oí gaseous nebulae. Hydrogen,helium, carbon, nitragen, oxygen, and neon are the su most abundantelements in OUT galaxy and in those galaxies for which accurate abundanceshave been deterrnined. The relative abundance oí these elcments in theinterstellar medium canand supernova rernnants.Peimbert et al. (71)

Accurate ablll1dance determinations oí H II regions have madepossib1e to find sma11 differenees in the abundanee of elements amongvarious galaxies and among different regions oí the same galaxy. Thesesmall differences occur because material produced in stellar interiors andrich in elements heavier than hydrogen has bcen injected into the interste!lar rreditDll. The enrichJnent of thc interstellar medium is due to 10S5 ofmaS5 from massive stars that explode as supernovae and frem stars ofintermediate mass that become planetary nebulae before turning into whitedwarfs.

It has been argued(69,70) that ga1axies are fonned with hydrogenand he1ium by mass in the proportion of 77% and 23% respeetively and a1mostno heavy elements.

The theory of stellar evolution predicts that in the lifetimc ofthe galaxy, only stars more massive than ~l Mg have evolved and ejectedmaterial that has modified the chcmical composition of the interstellar

Page 18: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

216

rre<1ilUTl. The stars rore massive than "'3 M produce supemovae that enrich•the interstellar medium with oxygen and heavier elements such as neon,sulfUr, argon, iron, and nickel. The intermedia te mass stars produceplanetary nebulae that enrich the interstellar medilBllwith helilBll, nitro-gen, and carbon; this can be seen by coq>aring the abt.m.dances oí theseelements in (He-N)rich and intermediate PNof the solar neighborhood withthe Orion Nebula values (see Table 11). ~~reover, these stars areresponsible for most of too carbon and nitrogen anda substantial amount oftoo helilBll enrichment of the interstellar medilBll.(74,75,76)

~ls of the evolution of too chemical comparition of galaxieshave been constructed to explain the observed abundances in the interstellar mediumof our galaxy and other galaxies; (19.77-80) in general the -

abundance at a given time in a region of a galaxy depends on (i) theinitial mass function, that isthe distribution of stars of different mass,(ii) the birth rate of stars and the chemical composition of mass lost bythe stars during their evolution, and (iii) any large-scale mass flows,like infall fran the halo or radial flows across the disk of a galaxy.Since these physical parameters are not generally knownin galaxies, theobserved abundances can be used as constraints of the galactic chemicalevolution models.

In closed roodels, in which there are no mass flows, the total mass(gas plus stars) is conserved and abundances depend only on the fractionof the initial mass of the galaxy that has been converted into starsindependently of the details of the birth rate function. (81) This resultholds as long as the time scale for gas consumption in the galaxy is nuchlonger than the lifetime of the stars that produce predominantly a givenelement: this is the Instantaneous Recycling Approximation (IRA). Such.simple model (closed plus IRA)prcdicts that the heavyelel'1Cnt abundanceincreases logarithmically with the decrease of gas fraction, M 1M l'gas tataAl! information about the contribution of individual stars is condensed inthe 'yield", which is the mass oí the newly fomed eleroonts that starseject to the interstellar medium in tDlits of the mass that is never retu~ed to i t (mass permanent1y trapped in "remnants"). The yield is definedfor a stellar generation and weighted by the initía! mass ftDlction, and ítdepends only on the assumed stellar mass 10ss composition.

Page 19: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

217

In the simple model, thcre is a clear distinction between primaryand secondary elementsJ where primary elements are those that are directlysynthesized from hydrogen and helium, and secondary elements are thosesynthesized from OOavy elements that were already present in the star wOOnit was formed. The assumption of IRA breaks down for nitrogen because tooaverage star that produce nitrogen has a smaller initial mass (around 3 M~)than too average star that produces oxygen (around 25 M

Q). Since the lHe

time oí a star is a strongly decreasing function oí its mass, this meansthat there is a delay in too injection of nitrogen into too interstellarmedium with respect to the injection of oxygen. ~Ioreover, tOOre are usua11yno strong gradients of N/O across disks of spiral galaxies, whereas O/Husually shows we11-defined gradients. This led to the suggestion thatnitrogen is primary, so that each region in a given galaxy is representedby a constant N/O while O/H may vary considerably and that there is a spreadin N/O caused by the effect of delays in too ejection of ni trogen. (82)

It has been found that the observed N/O vs. O/H relation for a11galaxies is best explained by models with (i) accretion of uncontaminatedgas,(ii) secondary nitrogen,and (iii) a yield increasing with O/H. (83)Each oí these three assumptions is necessary otherwise: if nitrogen wereprimary tOOre would be galactic regions with high O/H and low N/O; if eachregion behaved like too closed models there would not be a variation ofN/O for a given O/H and, fina11y, if thc yield were constant at a11 valuesof O/H no galaxies should be observed with high O/H at all. In thesemodels a given galaxy has the same age across its disk; O/H gradients canexist under small differences in the local gas fractions; and much smallerN/O gradients are explained by gradients in the ratio of infall rate to thestar fonnation rateo Under these assumptions, the stars that prcxluceni trogen have masses of about 1.3 M~ and larger.

If too explanation of the observed N/O vS.O/H relation is correct,IDOstoí the ni trogen oí the interstellar mediumis oí secondary origin andhas been produced by intermediate mass stars, progenitors of planetarynebulae. This is contrary to the suggestion that novae injeet mest oí thenitrogen present in the interstellar medium,(84) because the nitrogenproduced by novae is oí primary origin and, as explained, would result ina different bchavior of N/O/H.

Page 20: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

218

6. SlMlARY

P1anetary nebu1ac present liS with one of the best opportunitiesoí detennining cIerrent abundances in cur own galaxy and in nearby galaxies.These possibilities have beco greatly enhanced with the advent oí ultravi~let observations. The physical processes oaxITTing in PN are relativelywell understood and the relevant atomic data can often be calculated tohigh accuracy.

In general the changcs in surface compasition oí the stars thatbecome PN appear we11 understood. ~~ of the composition differencesamong PN can be explained in tenms oí difíerent main sequence masscs oítheir progenitor stars.

Planetary nebulae have contributed to thc evolution oí the chemicalcompasition oí the interstellar material by enriching it with heliurn,carbon and nitrogen. In the case oí the variatían oí helium and nitragen,intermediate mass stars, progenitors oí planetary ncbulae, appear to bethe main contributors.

Fruitfu1 discussions with M. Peimbert and ~1. Peña are gratefullyacknowledged. This is contribution No. 159. JAUNAM.

REFEIDK:ES

1. A. Acker, J. Mercaut and F. Ochsenbein, A6~n. and A6tAophya. Suppi .•43 (1981) 265.2. ~R. Pottasch, PianetaAy N.bula., O. Reide1 (1984).

3. O.C.V. ~allik, Buit. A6tAon. Soco Jnd<a, 10 (1982) 73.4. H. French, A6tAophya. J., 273 (1983) 214.--5. L.H. AI!er, JAU Sympoaium~. 103. PianetaAy N.bula., O. Reidel, Ed.

D.R. Flower (1983) p. l.6. L.H. Aller and S.J. Czyzak, A6tAophya. J. Suppi., 51 (1982) 211.7. S. Torres-Peimbert and M. Peimbert, R.v. M.<icana A6tAon. A6tAo6., 2

(1977) 181.8. J.B. Kaler, A6tAophya. J., 271 (1983) 188.9. T. Barker, A6tAophya. J., 2~(1978) 193.10. T. Barker, A6tAophya. J., 221 (1978) 145.11. M. Peimbert, JAU Sympoaium~. 76. PtanetaAY N.bula., D. Reidel, Ed.

Y. Terzian (1978) p. 215.12. M. Peimbert, Phyaica£ P~oc••a•• in Red GLanta. D. Reidel, Eds. l. lbenJr. and A. Renz;ni (1981) p. 409.13. J.B. Kaler, JAU Sympoaium No. 103. PtanetaAy N.buLa., D. Re;de!, Ed.D.R. Flower (1983) p. 245.

Page 21: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

219

14. S. Torres-Peimbert, steUM /lucte06ynthu.w, O. Reídel, Eds. C. Chios;and A. Renzini (1984) p. 3.

15. M. Peimbert and S. Torres-Peimbert, IAU Symp06ium /lo. 103. Pta"~y/lebutae, O. Reídel, Eds. O.R. Flower (1983) p. 233.

16. S. Adams, M.J. Seaton, 1.0. Howarth, M. Aurriere, J.R. Walsch, Monthty/lot. Roy. A6tAo". Soc., 207 (1984) 471.

17. M. Peimbert and S. Torres-Peimbert, Monthiy /lot. Roy. A6tAo". Soc.,179 (1977) 217.

18. S:-Torres-Peimbert, M. Peímbert and E. Oaltabuit, A6tAophy6. J., 238(1980) 133.19. J. leQueux, M. Peimbert, J.F. Rayo, A. Serrano, S. Torres-Peimbert,A6tAo". and A6tAophY6., 80 (1979) 155.

20. ~1. Peimbert and S. TorreS-"Peimbert, A6tAophy6. J., 193 (1974) 327.21. M. Peimbert and S. Torres-Peimbert, A6tAophY6. J., 20r (1976) 581.22. R. Oufour, G.A. Shields, R.J. Talbot Jr., A6tAophY6:-J., 252 (1982) 461.23. O.L. Lambert, Monthty /lot. Roy. A6tAM. Soc., 182 (1978) 249.24. O.L. Lambert and R.E. Luck, Monthty /lot. Roy. ~o". Soc., 183 (1978)

79. -25. O.L. Bertsch, C.E. Fichtel, and O.V. Reames, A6tAophY6. J., 171 (1972) 169.26. 1.5. Shklovsky, A6tA. Zh., 33 (1956) 315. -27. B. Paczynski, Acta A6tAo".,~1 (1971) 4.28. I. lben Jr., A6tAophY6. J., '[77 (1984) 333.29. A. Renzini and M. Voli, A6tAOrC and A6tAophY6., 94 (1978) 175.30. I. lben Jr. and J.N. Truran, A6tAophy6. J., 220 \T978) 980.31. S.A. Becker and l. lben Jr., A6tAophY6. J., 232 (1979) 831.32. S.A. Becker and l. Iben Jr., A6tAophY6. J., 237 (1980) 111.33. 1. lben Jr. and A. Renzini, AM. Reo. A6tAo"~tAophY6.,21 (1983) 271.34. A. Renzini, StettaA /luete06ynthu.w, O. Reidel, Eds. C. CnTosi and A.

Renzini (1984) p. 99.35. O. Reimers, Mem. SOCo Roy. L~~ge, 6e série, 8 (1975) 369.36. M. Peimbert,lAU Symp06ium /lo. 108, stkuctuAe-and Eoo~o" 06 the

Magetta~c C!oUd6, O. Reide] , Eds. S. van den Ber9 and K.S. de Boer(1984) p. 363.

37. M. Pe;mbert, Reo. Meucana A6tAo". A6tA06.w., 10 (1985) (in press).38. R. Méndez and V.S. Niemela, IAU Sympo6ium /lo.99. Wot6-Rayet S~,

O. Reídel, Eds. C.W.H. de Loore and A.J. Wil1is (1982) p. 457.39. S. Heap, IAU Symp06ium No. 99. Wot6-Rayet~, O. Reídel, Eds. C.W.H.

de Loore and A. J. Wíllis (1982) 423.40. S. Heap, JAU Symp06ium /lo. 103. Pta"~ /lebutae, O. Reidel, Ed. O.R.

Flower (1983) p. 375.41. W.E. Grie9, A6tAo". a"d A6tAophy6., 18 (1972) 70.42. A. Acker, A6tAo". a"d A6tAophY6., 89(1980) 33.43. A. Acker, IAU Symp06ium /lo. 103, P1ii"etaAY /lebutae, O. Reídel, Eds.

O.R. Flower (1983) p. 241.44. N. Calvet and M. Peimbert, Reo. Meucana A6tAo". A6tA06.w., ~ (1983)

319.45. M. Morris, A6tAophY6. J., 249 (1981) 572.46. M. Livio, A6tAo". A6tAophY6.,-rIT5 (1982) 37.47. A. Renzini, IAU Symp06~um /lo.TOJ. PtanetaAY /lebutae, O. Reidel Ed.

O.R. Flower (1983) p. 267.48. J.P. Phillips and N.K. Reay, A6tAo". A6tAophY6., 59 (1977) 91.49. J. Cantó, A6tAo". A6tAophY6., ~~ (1980) 327.

Page 22: CHEMICAL COMPOSITION OFPLANETARY NEBULAEt · características de las nebulosas planetarias. Se hace énfasis en la com-posición química y en la información que se deriva de ésta

22050. W. Mathews, IAU Symro~<um No. 76. PlanetaAyNebufae,O. Reidel, Eds.

Y. Terzian (1978) p. 251.51. S. Heap, IAU Sympo~<umNo. 103. Plan~~y Nebufae,O. Reidel Ed.

O.R. Flower (1983) p. 502.52. M. Peimbert and A. Serrano, Rev. Mexicana~tAon. ~tAo6~., 5 (1980) 9.53. R. Méndez and V.S. Niemela, ~tAophy~. J. 250 (1981) 240. -54. R.J. Oufour, ~tAophy~. J., 341 (1984) 136.55. M. Peimbert and S. Torres-PeTmOert, Rev. Mexicana ~tAon. ~tAo6~.,

(1985) (ln press).56. K.M. Cudworth, ~tAon. J., 79 (1974) 1384.57. S. O'Odorieo, M. Peimbert-and F. Sabbadin, ~tAon. ~tAophy~. 47

(1976) 341. ' ---58. L.H. Aller, Pub. ~tAon. Soco Pac.i.Mc, 88 (1976) 574.59. M. Peimbert, IAU Sympoa<umNo. 84. The Lvtge Scate CIUVLact~tich

06 the Galaxy,O. Reidel, Ed. W.B. Burton (1979) p. 307.60. O.L. Talent and R.J. Oufour, ~tAophy~. J., 233 (1979) 888.61. P.A. Shaver, R.X. MeGee, L.M. Newton, A.C. OañKS and S.R. Pottaseh,

MonlhlyNot. Roy. ~tAon. Soc., 204 (1983) 53.62. 1. Iben Jr. and A. Renzini, ~tAop¡;y~.J., 259 (1982) U9.63. 1. Iben Jr. and A. Renzini, ~tAophy~. J., ID (1982) L23.64. S. Torres-Peimbert and M. Peimbert, Rev. MeXZ-cana ~tAon. ~tAo~.,

4 (1979) 341.65. T. Barker, ~tAophy~. J., 237 (1980) 482.66. S. Torres-Peimbert, J.F. Rayo and M. Peimbert, Rev. Mexicana ~tAon.

~tAo6~., 6 (1981) 315.67. T. Barker añd K.M. Cudworth, ~tAophy~. J., 278 (1984) 610.68. T. Barker, ~tAophy~. J., 237 (1980) 482.69. M. Peimbert, Mem. Soco Roy:-5c.i..Liege, 6e serie 5 (1972) 391.70. S.A. Hawley and J.S. Miller, ~tAophy~. J., 220 (I978) 609.71. M. Peimbert, A. Serrano and S. Torres-Peimbert, Sc.i.ence,224 (1984) 345.72. M. Peimbert, Ano. Rev. ~tAon. ~tAophy~., 13 (1975) 113--.--73. B.E.J. Pagel, Phit. T~. Roy. Soco London:S~ A., 307 (1982) 19.74. A. Serrano and M. Peimbert, Rev. Mexicana ~tAon. ~tAO~., 5 (1981)

109. -75. A. Maeder, ~tAon. ~tAorhy~., 101 (1981) 385.76. C. Chios; and F.M. Mateueei. ~tAOn. ~tAophy~., 105 (1982) 140.77. R. Talbott.Jr. and W.O. Arnett, ~tAophy~. J., 19U'T1974) 605.78. B.M. Tinsley, Fundam.Coamic Phy~., 5 (1980) 28¡:-79. B.E.J. Pagel and M.G. Edmunds, Ann. ~ev. ~tAon. ~tAophy~., 1i (1981)

77.80. B.A. Twarog, ~tAophy~. J., 242 (1980) 242.81. L. Searle and W.L.W. Sargent, ~tAophy~. J., 173 (1972) 25.82. M.G. Edmunds and B.E.J. Pagel, MonthfyNot. Roy. ~t. Soc., 185 (1978)

77.83. A. Serrano and M. Peimbert, Rev.wta Mexicana ~tAon. ~.tIto~., 8(1983) 117. -

84. R.E. Williams, ~tAophy~. J., 261 (1982) L77.85. O.R. Flower, Ga4 in the Int~t~ Med<um,Rutherford Appleton

Laboratory Ed. P.M. Gondhalekar (1984) p. 100.86. R. M;nkowski, Pub!.~tAon. Soco Pac.i.6ic,76 (1964) 197.