39
Shock compression of liquid nitrogen Thermodynamic analysis of new experimental data in megabar range Annual Moscow Workshop Nonideal Plasma Physics Russian Academy of Science November 2324, 2011 1,5 2,0 2,5 3,0 3,5 4,0 0 50 100 150 200 250 300 350 3 3* 2 1 , g/cm 3 Р, GPa Igor Iosilevskiy Joint Institute for High Temperature (Russian Academy of Science) Moscow Institute of Physics and Technology (State University) Victor Gryaznov Institute of Problem of Chemical Physics (Russian Academy of Science) Sarov, 2011 Chernogolovka, 2010 EMMI_GSI, 2011

Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

  • Upload
    lyhanh

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Shock compression of liquid nitrogenThermodynamic analysis of new experimental data in megabar range

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Igor

IosilevskiyJoint Institute for High Temperature (Russian Academy of Science)Moscow Institute of Physics and Technology (State University)

Victor GryaznovInstitute of Problem of Chemical Physics (Russian Academy of Science)

Sarov 2011 Chernogolovka 2010EMMI_GSI 2011

Mochalov

M Zhernokletov

M Ilʹkaev

R Mikhailov

A Mezhevov

A Kovalev

A Kirshanov

S Grigorieva

Yu Novikov

M Shuikin

А

Fortov V Gryaznov V Iosilevskiy I

JETP 137 77 (2010)Density temperature

and electroconductivity

measurements in shock compressed

condensed nitrogen

at megabar

pressure

CollaborationEugene amp

Lidia Yakyb

(Odessa University Ukraine)

Trunin

R Boriskov

G Bykov

A Medvedev

A Simakov

G Shuikin

AJETP Letters

88

(3) 189 (2008)

Shock compression

of condensed nitrogen

at megabar

pressure

1

2

Shock compression of liquid nitrogen(new experimental data in megabar pressure range)

Shock Hugoniot

of liquid nitrogen(primary experimental data in kinematic variables)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 182

4

6

8

10

12

14

16

18

20

22

24

3

2

1

Жидкий азот

D км

с

U кмс

D

and

U

ndash shock and mass velocitiesArrows

ndash

hypothetical transitions between molecular (1) polymeric (2) and plasma

(3) states

Trunin

et al

(2008)

Mochalov

et al

2010

Mochalov

et al

2010

(spherical)

Approximations (Mochalov

et al2010)1

D

= 1365U +

1572 2

D

=

3375U ndash

0337U 2

+ 0015U 3

ndash

20083

D

= 1407U

ndash

1174

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010)

Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Mochalov

et al2010

(flat

geometry)

U kms

D -

U

D U

1203 plusmn

025 911

1460 plusmn

026 1129

1619 plusmn

036 1224

1728 plusmn

040 1314

2090 plusmn

068 1571

229 plusmn

04 174

Initial stateρ0

= 081(T0

= 77 K)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

)(01 UDD DUpp 001

2)(

2

22

01UDDhh

Shock Hugoniot

of liquid nitrogen(experimental data in thermodynamic variables)

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010)

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

P GPa ρ

gcm3

884 plusmn

2 3325 plusmn

02

1333 plusmn

3 356 plusmn

015

1600 plusmn

3 331 plusmn

025

1830 plusmn

3 337 plusmn

035

2650 plusmn

5 325 plusmn

025

323 337 plusmn

020

ρρ0412

441410

418

403

416

()

(ρρ0

)ideal gas

= 40

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

E(PT)

reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal energy is close to be linear function of pressure

Internal Energy Pressure of sock compressed nitrogen

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

The region of approximate constancy for Gruneizen parameter

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Hugoniot

~ ρ

asymp

const

(33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Approximately linear function E ~ E0

+ constmiddotP

ρ

asymp

33

plusmn01

gcc 90

lt

P

lt 330

GPa

)(1121

0110

01 ppEE

NB

() Gridgas

= 23

asymp

067What does it mean

Temperature of shock compressed nitrogenmeasurements of thermal equation of state

2

ndash

linear approximation of experimental data

asymp

90 ndash 300 ГПа)

Experiment

(Mochalov

M Zhernokletov

M et al

JETF

137 77

(2010)

0 100 200 3000

10

20

30

40

50

60

70

80

nN2

P ГПа

T kK

2

T kK

P GPa T

kK

884 plusmn

2 162 plusmn

09

1333 plusmn

3 246 plusmn

05

1600 plusmn

3 284 plusmn

22

1830 plusmn

3 -

2650 plusmn

5 560 plusmn

152

323 -

JETF

137 77

(2010)

Mochalov

et al

JETP (2010)

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

Compressibility factor

(PVRT)

is almost

constant

on nitrogen isochore

What does it mean

ρ

asymp

33 plusmn01

gcc

(90

lt

P lt 330

GPa)

PVRTIdeal gas N2 Z= 05Ideal gas N

Z= 10

Id gas N+ + e Z= 20

Temperature is close to be linear function of pressure+

isochoric behavior of nitrogen Hugoniot

NB

Initial stateρ0

= 081

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 2: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Mochalov

M Zhernokletov

M Ilʹkaev

R Mikhailov

A Mezhevov

A Kovalev

A Kirshanov

S Grigorieva

Yu Novikov

M Shuikin

А

Fortov V Gryaznov V Iosilevskiy I

JETP 137 77 (2010)Density temperature

and electroconductivity

measurements in shock compressed

condensed nitrogen

at megabar

pressure

CollaborationEugene amp

Lidia Yakyb

(Odessa University Ukraine)

Trunin

R Boriskov

G Bykov

A Medvedev

A Simakov

G Shuikin

AJETP Letters

88

(3) 189 (2008)

Shock compression

of condensed nitrogen

at megabar

pressure

1

2

Shock compression of liquid nitrogen(new experimental data in megabar pressure range)

Shock Hugoniot

of liquid nitrogen(primary experimental data in kinematic variables)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 182

4

6

8

10

12

14

16

18

20

22

24

3

2

1

Жидкий азот

D км

с

U кмс

D

and

U

ndash shock and mass velocitiesArrows

ndash

hypothetical transitions between molecular (1) polymeric (2) and plasma

(3) states

Trunin

et al

(2008)

Mochalov

et al

2010

Mochalov

et al

2010

(spherical)

Approximations (Mochalov

et al2010)1

D

= 1365U +

1572 2

D

=

3375U ndash

0337U 2

+ 0015U 3

ndash

20083

D

= 1407U

ndash

1174

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010)

Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Mochalov

et al2010

(flat

geometry)

U kms

D -

U

D U

1203 plusmn

025 911

1460 plusmn

026 1129

1619 plusmn

036 1224

1728 plusmn

040 1314

2090 plusmn

068 1571

229 plusmn

04 174

Initial stateρ0

= 081(T0

= 77 K)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

)(01 UDD DUpp 001

2)(

2

22

01UDDhh

Shock Hugoniot

of liquid nitrogen(experimental data in thermodynamic variables)

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010)

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

P GPa ρ

gcm3

884 plusmn

2 3325 plusmn

02

1333 plusmn

3 356 plusmn

015

1600 plusmn

3 331 plusmn

025

1830 plusmn

3 337 plusmn

035

2650 plusmn

5 325 plusmn

025

323 337 plusmn

020

ρρ0412

441410

418

403

416

()

(ρρ0

)ideal gas

= 40

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

E(PT)

reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal energy is close to be linear function of pressure

Internal Energy Pressure of sock compressed nitrogen

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

The region of approximate constancy for Gruneizen parameter

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Hugoniot

~ ρ

asymp

const

(33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Approximately linear function E ~ E0

+ constmiddotP

ρ

asymp

33

plusmn01

gcc 90

lt

P

lt 330

GPa

)(1121

0110

01 ppEE

NB

() Gridgas

= 23

asymp

067What does it mean

Temperature of shock compressed nitrogenmeasurements of thermal equation of state

2

ndash

linear approximation of experimental data

asymp

90 ndash 300 ГПа)

Experiment

(Mochalov

M Zhernokletov

M et al

JETF

137 77

(2010)

0 100 200 3000

10

20

30

40

50

60

70

80

nN2

P ГПа

T kK

2

T kK

P GPa T

kK

884 plusmn

2 162 plusmn

09

1333 plusmn

3 246 plusmn

05

1600 plusmn

3 284 plusmn

22

1830 plusmn

3 -

2650 plusmn

5 560 plusmn

152

323 -

JETF

137 77

(2010)

Mochalov

et al

JETP (2010)

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

Compressibility factor

(PVRT)

is almost

constant

on nitrogen isochore

What does it mean

ρ

asymp

33 plusmn01

gcc

(90

lt

P lt 330

GPa)

PVRTIdeal gas N2 Z= 05Ideal gas N

Z= 10

Id gas N+ + e Z= 20

Temperature is close to be linear function of pressure+

isochoric behavior of nitrogen Hugoniot

NB

Initial stateρ0

= 081

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 3: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Shock Hugoniot

of liquid nitrogen(primary experimental data in kinematic variables)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 182

4

6

8

10

12

14

16

18

20

22

24

3

2

1

Жидкий азот

D км

с

U кмс

D

and

U

ndash shock and mass velocitiesArrows

ndash

hypothetical transitions between molecular (1) polymeric (2) and plasma

(3) states

Trunin

et al

(2008)

Mochalov

et al

2010

Mochalov

et al

2010

(spherical)

Approximations (Mochalov

et al2010)1

D

= 1365U +

1572 2

D

=

3375U ndash

0337U 2

+ 0015U 3

ndash

20083

D

= 1407U

ndash

1174

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010)

Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Mochalov

et al2010

(flat

geometry)

U kms

D -

U

D U

1203 plusmn

025 911

1460 plusmn

026 1129

1619 plusmn

036 1224

1728 plusmn

040 1314

2090 plusmn

068 1571

229 plusmn

04 174

Initial stateρ0

= 081(T0

= 77 K)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

)(01 UDD DUpp 001

2)(

2

22

01UDDhh

Shock Hugoniot

of liquid nitrogen(experimental data in thermodynamic variables)

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010)

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

P GPa ρ

gcm3

884 plusmn

2 3325 plusmn

02

1333 plusmn

3 356 plusmn

015

1600 plusmn

3 331 plusmn

025

1830 plusmn

3 337 plusmn

035

2650 plusmn

5 325 plusmn

025

323 337 plusmn

020

ρρ0412

441410

418

403

416

()

(ρρ0

)ideal gas

= 40

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

E(PT)

reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal energy is close to be linear function of pressure

Internal Energy Pressure of sock compressed nitrogen

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

The region of approximate constancy for Gruneizen parameter

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Hugoniot

~ ρ

asymp

const

(33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Approximately linear function E ~ E0

+ constmiddotP

ρ

asymp

33

plusmn01

gcc 90

lt

P

lt 330

GPa

)(1121

0110

01 ppEE

NB

() Gridgas

= 23

asymp

067What does it mean

Temperature of shock compressed nitrogenmeasurements of thermal equation of state

2

ndash

linear approximation of experimental data

asymp

90 ndash 300 ГПа)

Experiment

(Mochalov

M Zhernokletov

M et al

JETF

137 77

(2010)

0 100 200 3000

10

20

30

40

50

60

70

80

nN2

P ГПа

T kK

2

T kK

P GPa T

kK

884 plusmn

2 162 plusmn

09

1333 plusmn

3 246 plusmn

05

1600 plusmn

3 284 plusmn

22

1830 plusmn

3 -

2650 plusmn

5 560 plusmn

152

323 -

JETF

137 77

(2010)

Mochalov

et al

JETP (2010)

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

Compressibility factor

(PVRT)

is almost

constant

on nitrogen isochore

What does it mean

ρ

asymp

33 plusmn01

gcc

(90

lt

P lt 330

GPa)

PVRTIdeal gas N2 Z= 05Ideal gas N

Z= 10

Id gas N+ + e Z= 20

Temperature is close to be linear function of pressure+

isochoric behavior of nitrogen Hugoniot

NB

Initial stateρ0

= 081

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 4: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

)(01 UDD DUpp 001

2)(

2

22

01UDDhh

Shock Hugoniot

of liquid nitrogen(experimental data in thermodynamic variables)

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010)

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

P GPa ρ

gcm3

884 plusmn

2 3325 plusmn

02

1333 plusmn

3 356 plusmn

015

1600 plusmn

3 331 plusmn

025

1830 plusmn

3 337 plusmn

035

2650 plusmn

5 325 plusmn

025

323 337 plusmn

020

ρρ0412

441410

418

403

416

()

(ρρ0

)ideal gas

= 40

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

E(PT)

reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal energy is close to be linear function of pressure

Internal Energy Pressure of sock compressed nitrogen

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

The region of approximate constancy for Gruneizen parameter

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Hugoniot

~ ρ

asymp

const

(33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Approximately linear function E ~ E0

+ constmiddotP

ρ

asymp

33

plusmn01

gcc 90

lt

P

lt 330

GPa

)(1121

0110

01 ppEE

NB

() Gridgas

= 23

asymp

067What does it mean

Temperature of shock compressed nitrogenmeasurements of thermal equation of state

2

ndash

linear approximation of experimental data

asymp

90 ndash 300 ГПа)

Experiment

(Mochalov

M Zhernokletov

M et al

JETF

137 77

(2010)

0 100 200 3000

10

20

30

40

50

60

70

80

nN2

P ГПа

T kK

2

T kK

P GPa T

kK

884 plusmn

2 162 plusmn

09

1333 plusmn

3 246 plusmn

05

1600 plusmn

3 284 plusmn

22

1830 plusmn

3 -

2650 plusmn

5 560 plusmn

152

323 -

JETF

137 77

(2010)

Mochalov

et al

JETP (2010)

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

Compressibility factor

(PVRT)

is almost

constant

on nitrogen isochore

What does it mean

ρ

asymp

33 plusmn01

gcc

(90

lt

P lt 330

GPa)

PVRTIdeal gas N2 Z= 05Ideal gas N

Z= 10

Id gas N+ + e Z= 20

Temperature is close to be linear function of pressure+

isochoric behavior of nitrogen Hugoniot

NB

Initial stateρ0

= 081

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 5: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

E(PT)

reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal energy is close to be linear function of pressure

Internal Energy Pressure of sock compressed nitrogen

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

The region of approximate constancy for Gruneizen parameter

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Hugoniot

~ ρ

asymp

const

(33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Approximately linear function E ~ E0

+ constmiddotP

ρ

asymp

33

plusmn01

gcc 90

lt

P

lt 330

GPa

)(1121

0110

01 ppEE

NB

() Gridgas

= 23

asymp

067What does it mean

Temperature of shock compressed nitrogenmeasurements of thermal equation of state

2

ndash

linear approximation of experimental data

asymp

90 ndash 300 ГПа)

Experiment

(Mochalov

M Zhernokletov

M et al

JETF

137 77

(2010)

0 100 200 3000

10

20

30

40

50

60

70

80

nN2

P ГПа

T kK

2

T kK

P GPa T

kK

884 plusmn

2 162 plusmn

09

1333 plusmn

3 246 plusmn

05

1600 plusmn

3 284 plusmn

22

1830 plusmn

3 -

2650 plusmn

5 560 plusmn

152

323 -

JETF

137 77

(2010)

Mochalov

et al

JETP (2010)

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

Compressibility factor

(PVRT)

is almost

constant

on nitrogen isochore

What does it mean

ρ

asymp

33 plusmn01

gcc

(90

lt

P lt 330

GPa)

PVRTIdeal gas N2 Z= 05Ideal gas N

Z= 10

Id gas N+ + e Z= 20

Temperature is close to be linear function of pressure+

isochoric behavior of nitrogen Hugoniot

NB

Initial stateρ0

= 081

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 6: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Temperature of shock compressed nitrogenmeasurements of thermal equation of state

2

ndash

linear approximation of experimental data

asymp

90 ndash 300 ГПа)

Experiment

(Mochalov

M Zhernokletov

M et al

JETF

137 77

(2010)

0 100 200 3000

10

20

30

40

50

60

70

80

nN2

P ГПа

T kK

2

T kK

P GPa T

kK

884 plusmn

2 162 plusmn

09

1333 plusmn

3 246 plusmn

05

1600 plusmn

3 284 plusmn

22

1830 plusmn

3 -

2650 plusmn

5 560 plusmn

152

323 -

JETF

137 77

(2010)

Mochalov

et al

JETP (2010)

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

Compressibility factor

(PVRT)

is almost

constant

on nitrogen isochore

What does it mean

ρ

asymp

33 plusmn01

gcc

(90

lt

P lt 330

GPa)

PVRTIdeal gas N2 Z= 05Ideal gas N

Z= 10

Id gas N+ + e Z= 20

Temperature is close to be linear function of pressure+

isochoric behavior of nitrogen Hugoniot

NB

Initial stateρ0

= 081

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 7: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Mochalov

et al

JETP (2010)

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

Compressibility factor

(PVRT)

is almost

constant

on nitrogen isochore

What does it mean

ρ

asymp

33 plusmn01

gcc

(90

lt

P lt 330

GPa)

PVRTIdeal gas N2 Z= 05Ideal gas N

Z= 10

Id gas N+ + e Z= 20

Temperature is close to be linear function of pressure+

isochoric behavior of nitrogen Hugoniot

NB

Initial stateρ0

= 081

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 8: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

Сv

equiv

(partEpartT)v

asymp

const

asymp

20 (JgK)

ρ

asymp33 plusmn01

gcc

(90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Internal energy ~ linear function on temperature at isochoreHigh-temperature part of nitrogen Hugoniot

Isochoric heat capacity

(CV

)

is almost constant

on nitrogen isochore

What does it mean

СV RN

asymp

35 NB

HugoniotHugoniot

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 9: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

0 100 200 3000

10

20

30

40

50

60

70

80

P GPa

T kK 4

γv

equiv

(vkB

)

(partppartT)v

asymp

const

asymp

ρ

asymp

33 plusmn01

gcc (90

lt

P lt 330

GPa)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

Constancy of Gruumlneizen parameter and Heat capacity at isochore

Gr

asymp

const

+

CV

asymp

const

thermal pressure coefficient γv

asymp

const

(partppartT)v

asymp

454 GPaK NB

HugoniotHugoniot

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 10: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Thermodynamics of shock compressed nitrogen

ρ

asymp

33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

Mochalov

M Zhernokletov

M et alJETF

137 77

(2010) Trunin

R Boriskov

G Bykov

A Medvedev

AJETF Letters

88 220 (2008)

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 11: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Expected behavior of nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)Experiments

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 12: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

New experiments vs

expected behavior of

nitrogen HugoniotМRoss amp FRogers

ACTEX(Rogers)

Interpolation(σmax

asymp

53)N‐polimer

N2Experiments

New experiments(σmax

asymp

41)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

New experiments are

in strong contradiction with expected behavior of

nitrogen Hugoniot

NB

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 13: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Nitrogen Hugoniot

problem in plasma state ndash what do we need

In last experimentson deuterium

compression Pmax

asymp

50

Mbar(see Mochalov

et al NPP‐2011)(Mochalov

et al JETP Lett 2010)

NB

TheoryAb

initio

RPIMC DPIMCDFTMD WPMDChemical models

SAHA‐SSAHA‐N

(Gryaznov et al)WZ‐cell modelsTF TFC MHFShellip

Wide‐range EOS‐s

IPCP RASJIHT RASCCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

‐Shock waves

-

Isentropic Compression‐

Heavy Ion Beams‐

Laser Heating etc etc

Interpolation(σmax

asymp

53)

ACTEX(Rogers)

Experiments

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 14: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Nitrogen Hugoniot(comes trough polymeric phase )

ACTEX(Rogers)

Polymeric stateis expected between

molecular and plasma

regions (see below)

NB

N‐polymerN2

Experiments

THEORYAb

initio

RPIMC DPIMCDFTMD WPMDChem modelsSAHA‐SSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOS

CCM (Sarov)

New experiments(σmax

asymp

41)

New experiments

Shock waves

Heavy Ion Beams‐

Laser Heating etc etc

N‐plasma

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 15: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

figure fromB Boates S Bonev Phys Rev Lett

102

(2009)

Ab initio calculations

DFTMD

MolecularPolymeric

Critical point

CrossoverCrossover

11stst

order PTorder PT

MeltingMelting

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 16: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Molecularfluid

Dissociated fluid

Fluidndashfluid

phase transitionin hydrogen [] ()

DFTMD

Scandolo

S PNAS

100 (2003)

Bonev S Militzer B Galli G PRB

69 (2004) WPMD

Jakob

B et al PRE

(2007) DFTMD Morales M et al PNAS

107 (2010)

DFTMD Lorenzen

W et al PRB

(2010)

Figure from

Giulia Galli SCCS-2005

Moscow= = = =

with additionsMorales et al 2010

andLorensen et al 2010

Morales et al

2010

Lorenzen

et al

2010

Ab initio calculations

DFTMD

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 17: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Experiment ndash single shock

compression ndash

reflected shock

compressionRadousky Nellis amp Ross et al Phys Rev Lett 57

(1986)Nellis Radousky

amp Hamilton et alJ Chem Phys 94

(1991)

0 50 100 150 200 250 3000

10

Tr Tr

CP

P GPa

T 103 K

Nitrogen phase diagram in the region of polymerizationPressure ndash temperature

melting (extrapolation)

HugoniotPlasma Model (SAHA‐code)

Yakubliquid

solidN2 N‐polimer

Theoretical models

estimation of polymer‐molecule

boundary in liquid nitrogen

(ЕYakub

ndash

1993) estimation of polymer‐molecule

boundary in solid nitrogen

(LYakub

ndash

1993)CP

ndash

critical point of 1st

order phase

transition polymer‐molecule

(ЕYakub

ndash

1993) ndash

triple point of 1st

order phase transition

polymer‐molecule

(Е amp L Yakub

ndash

1993)ЕS Yakub Low Temp Phys

20

579 (1994)LN Yakub Low Temp Phys

19 531 (1993)

estimation of polymer‐molecule bounda‐

ry

in liquid nitrogen (Ross amp Rogers

ndash

2006)MRoss

amp

FRogers Phys Rev

B 74 (2006)Ab

initio calculations DFTMD

ndash

calculation of of

polymer‐‐

molecule boundary in liquid nitrogen

(SBonev

et al ndash

2009)

the same as ldquosmoothedrdquo

phase transitionB Boates

amp

S Bonev Phys Rev Lett

102

(2009)

Gr

gt 0

Gr

lt 0 ndash domains of positive and negative sign of Gruumlneisen

coefficient

Gr

equiv

V(partPpartE)V

hypothetical boundary between polymeric and non‐ideal plasma states

(1st‐order phase transition or continuous )

melting

N2

N‐polimer

Gr

gt 0

Gr

lt 0

N‐plasma

Gr

gt 0

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 18: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Mochalov

M Zhernokletov

M et al

JETP

137 77

(2010) ‐

Trunin

R Boriskov

G Bykov

A Medvedev

A

JETP Letters

88 220 (2008)

Phase Diagram of Dense Nitrogen(summary)

N2

Npolimer

boundaryYakub Ross amp

Rogers etc

HypotheticalPressure Ionizationfrom N‐polymer

to N‐plasma

1st‐order phase transition

Critical point(s)

Domain

Gr

lt 0

Topology of theboundary

Gr

= 0

Pre‐compressed gaseous N2

Iso‐S

N2

N‐polimer

N‐plasma

Gr

gt 0

Gr

gt 0

Gr

lt 0

New experiments

Shock waves‐ Iso‐S

Compression‐ Heavy Ion Beams‐

Laser Heating etc etc

THEORY Ab

initioRPIMC DPIMC

DFTMDChem modelsSAHA‐N

WZ‐cell modelsTFC MHFS

Wide‐range EOSEOS (IPCP

RAS)EOS (JIHT

RAS)CCM (Sarov)

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 19: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Commentsmicrophysics

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 20: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Simple molecules H2

N2

L = 074 A L = 11 A

D = 29 A D = 37 A

Triple covalent bond De

= 98 eV

(49 eVatom)

Single covalent bond De

= 30 eV

(45 eVatom)

L = 14 A

Figures after

Eugene Yakub ldquoNon‐simple

problems for simple moleculesrdquoFAIR‐Russia School laquoPhysics of high energy density in matterraquo

December

2009 Moscow

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 21: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

FZaharievAHuJHooperFZhangampTWoo PhysRev B 72214108 (2005 )

Polymeric nitrogen - structure

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 22: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Eugene and Lidia Yakub Low Temp Phys 19 (1993)

Simple molecular modelsFirst estimations of molecular-polymeric transition

1 - Hugoniot2 - Phase equilibrium line

Experiment (Nellis ea 2001)3 - Single shock4 - Double shock

NN22

NN‐‐polimerpolimer

NN22

NN‐‐polimerpolimer

1st‐orderPhase transition

Critical point

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 23: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Plasma model for nitrogen thermodynamics(code SAHA-N)

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 24: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Shock compression of nitrogen(chemical picture)

SAHA-codeGryaznov Iosilevskiy (1970-2010)

Short range repulsionldquoSoft Spheresrdquo

approximation (DYoung)

modified for mixture

of soft spheres with different radii

ndash

shift of dissociation level

N

N+ + endash Ze

e

rcA

iA+

A+

i

Coulomb interactionModified pseudopotential

model

for partially ionized plasma(I

Iosilevskiy 1980-2010)

Equilibrium

compositionN2

N N+ e N2+ Nndash

Key parameter

ndash

ratio of intrinsic volumes molecule atom ion

R(N)

R(N2

)

= 063-

in accordance with recommendations of

ldquoAtom-atomic

approximationrdquo

of EYakub LT 1993

Basic points-

All assumption are provided at micro-level-

Input Choice of Фie

Фii

and Фее

pseudopotentials - Input Approximations for binary correlation functions - Strong correlation of the pseudopotentials

for ldquofreerdquocharges and upper energy level for partition functionsfor bound states

- Priority for general equalities (normalizing conditions)valid independently on degree of non-ideality

- Non-ideality corrections through the correlationfunctions and general equalities valid for Coulombinteraction

NN22

harrharr 2N2N NN22

++

harrharr NN ++

NN++ NNndashharrharr NN ++

eendash

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 25: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

[ ( ) ( )] 1n F r F r d r

Coulomb Corrections for Free Charge Subsystem

Modified Pseudopotential Approximation ()

Bound and free states of electron‐ionic pair

Effective electro-ionic potential (in Glaubermanrsquos form (1955))

2i

ie ( ) 1 e rZ err

( )

()

Iosilevskiy I High Temp 18

(1980) in ldquoEncyclopedia

of Low‐T Plasmardquo

(Suppl) Moscow FIZMATLIT 2004 pp 349

The form of i-i i-e e-e binary correlation functions-

laquoringraquo

(Debye) approximation with potential

Фie

(r)guarantee correct properties in the limit

of weak non-ideality

ltlt 1)

Binary i‐i i‐e e‐e

correlation functions

ldquoZero and second momentrdquo conditions (Stillinger amp Lovett)2

2[ ( ) ( )] 3D

rn F r F r dr

r

0e e sh ( ) 1 1 e

pr qrr

abrF r A

r r

Thermodynamic condition for the depth of i-e pseudopotentialand amplitude of electron-ionic correlation function

0 ln [ (0) ]ie ei e iF

Positive sign of all correlation functions Fab

(r) gt 0

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 26: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

F r Ae e

re

sh rrab

pr qrr( )

1 1 0

Pseudopotentials

U

= UKin

+ UPot

3PV

= 2UKin + UPot

Homogeneity of Coulomb potential

U Vn F F dpot coul ( ) r

U Vn F F dei ii 2 ( ) r

)2()2(3 potkinpot UUUUPV

2 2i i

ie ie1 e( ) (1 e (0) ~

rrZ e Z er

r r

( ))

Correlation Functions

Total Energy correction

Potential Energy Correction

-

UPot

Pressure Correction

-

P

i e i eN N U ( ) 1

Approximate relation between Coulomb corrections for chemical potential and energy

(

UN)

NB

Thermodynamic contributions inmodified pseudopotential model for Coulomb corrections

Positive shift in average kinetic energy due to non-ideality of free charges subsystem Ukin = 3PV ndash

U

Well-known relation between pressure and energy corrections for free charges subsystemU = 3PV

which is valid at weak non-ideality (Г

ltlt 1) is no longer valid in strong non-ideality conditions (Г

~ 1)

It is equivalent to additional effective electron-ion repulsion(in comparison with ordinary one-parametric Coulomb corrections depending on non-ideality parameter only

FNkT = f(Г)

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 27: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Experimental data Theoretical models

(comparison)

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 28: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 29: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Quasi‐isochoric behavior of nitrogen Hugoniot

Mochalov

M Zhernokletov

M et al

JETP

137

(2010) ‐

Trunin

R Boriskov

G et alJETP Letters

88

(2008)

15 20 25 30 35 400

100

200

300

ExperimentsTrunin et al 2008Mochalov et al 2010

P GPa

gcm3

lim

Check of theoretical models

SAHA

CCM

Ross ampRogers

CCM ndash

Compressible Covolume

Model(A Medvedev

amp

VKopyshev)

SAHA‐code (V Gryaznov amp IIosilevskiy)

ρHug

asymp

33 plusmn

01

gcm390

lt

PHug

lt 330

GPa

NN

22 NN‐‐polymerpolymer

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 30: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp

33 plusmn

01

gcc (90

lt

P

lt 330

GPa)

Gr

equiv

V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost

linear function of pressure at isochore

Summary

High-temperature part of

Hugoniot is close to isochore

(partppartT)V

asymp

const

asymp

454 (GPaK)

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 31: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

50 100 150 200 250 300 350

0

50

100

150

E k

Jg

P GPa

()

Reference point

ndash

energy of ideal atomic gas N at

Т

= 0 K

Internal Energy

Pressure (Hugonoit)

Mochalov

М et al

(2010) ‐

Trunin

R et al (2008)

Blue curve

ndash

internal energy calculated via plasma model(code SAHA

Gryaznov Iosilevskiy)

SAHA

Hugoniot

~ ρ

asymp

const (33 plusmn

01

gcc)

Gr

= V(partPpartE)V

asymp

const

asymp

062

ρ

asymp33 plusmn01

gcc90

lt

P lt 330

GPa

NB

Quasi‐linear behavior of

E(p)

at ρ

=

constThermodynamics of shock compressed nitrogen

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 32: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Thermodynamics of shock compressed nitrogen(primary thermodynamic results of experiment)

ρ

asymp33 plusmn01

gcc

(90

lt

P

lt 330

GPa)

Gr

= V(partPpartE)V

asymp

const

asymp

062

Z

equiv

PVRT

equiv

PnN

kT

asymp

const

asymp

266 plusmn

020

СV

equiv

(partEpartT)V

asymp

const

asymp

206 (JgK)

Internal energy is almost linear on temperature at isochore

Temperature is almost linear on pressure at isochore

Internal energy is almost linear on pressure at isochore

Summary

High-temperature part nitrogen Hugoniot is close to be isochoric

(partppartT)V

asymp

const

asymp

454 (GPaK)

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 33: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

0 50 100 150 200 250 3000

10

20

30

40

50

60

70

80

00

01

02

03

04

05

06

07

08

09

10 Mochalov et al PHug (Trunin et al) + T (EOSCCM) PHug (Trunin et al) + T (EOSSAHA)

xN+

xi

xN2

P GPa

T k

K

Tr

Tr

Plasma

Temperature of shock compressed nitrogen

CP()

General P‐T

diagram

Quasi‐linear behavior of

T(p)

at ρ

=

const

SAHA

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 34: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Experiment Mochalov

M et al

JETF

137

(2010)Nellis

W Radovsky

H et al J Chem Phys 94

(1991)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Electroconductivity

of shock compressed nitrogen

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 35: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

20 25 30 351E-3

001

01

1

10

100

1000

C E B E 28061 B 29062

Con

duct

ivity

1

cm

Density gcc

Electroconductivity

of shock compressed nitrogen

Ternovoi

V et al (email ‐

30052010)

20 40 601E-4

1E-3

001

01

1

10

100

1000

1

G О

м-1см

-1

P ГПа

Experiment- Mochalov et al(2010)- Nellis et al (1991)

Experiment Mochalov

M et al

JETF

137

(2010)

Quasi‐isentropic Plane Compression of Matter at Megabar

Pressures by Using of a Layered

System to Diminish First Shock Wave IntensityTernovoi

V Pyalling

A Filimonovet

A (052010) Summary and conclusion

Explosive driven quasi‐isentropic compression generators were proposed for matter investigation in

the megabar

pressure region Results of the first experiments on quasi‐isentropic compression of

liquid nitrogen are presented It was shown that pressure ionization

of nitrogen proceeds at

densities

from 315 to 34 gcc

at a temperature

of about 3000

K

Diminishing of temperature growth

was measured during onset of nitrogen electrical conductivity

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 36: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Improvement of Plasma model (SAHA-code)- From EOS of soft spheres to EOS of exp

- 6 potential system

Improvement of Polymeric models (Е amp L Yakub)- Calibration of both model on results of ab initio calculations

(DFTMD)Collaboration (Gryaznov Iosilevskiy Е amp L Yakub)

- Incorporation of polymeric state model into SAHA-code

New approaches are desirable (new calculations and comparisons)- Ab initio RPIMC DPIMC DFTMD WPMD TBM - Wigner-Zeits cell model TFC MHFS

- Semiempirical (wide-range) EOS-s

PerspectivesModelling

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 37: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

-

Strong shock compression of liquid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of solid nitrogen at high pressure (P gt 3 Mbar)

- Strong shock compression of pre-compressed gaseous nitrogen at high pressure (mesurement of series of Hugoniots with varying initial densities (like in VNIIEF experiments with deuterium )

- Strong isentropic compression of nitrogen by explosive at Mb pressuresearch of density discontinuity (hypothetical phase transition ) on nitrogen isentrope(s)

(like in VNIIEFrsquos

experiments with deuterium (MMochalov VFortov

et al PRL 2007)

Exotics - Heavy Ion Beam and

Laser heating of cryogenic nitrogen

(new experiments)Perspectives

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 38: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Conclusions- New experimental data on shock compression of cryogenic liquid

nitrogen in megabar

pressure range ldquoopen new pagerdquo

in investigation of properties for warm dense matter of ldquosimplerdquo

molecular gases

- Simultaneous measurement of caloric and thermal equation of state (EOS) (pressure density temperature and internal energy) on the same Hugoniot

give

powerful

tool for checking theoretical models and ldquocalibrationrdquo

of wide-range EOS-s

- New experimental data in nitrogen may be considered as the thermodynamic manifestation of non-standard form of pressure ionization (from polymeric to plasma state )

-

This new form of pressure ionization (from polymeric to plasma state ) seems to be

general universal and interesting phenomenon

- It is promising to continue and extend experimental investigation of pressure ionization of polymeric state

- It is promising to study pressure ionization of polymeric state in directnumerical simulations (ldquonumerical experimentrdquo) DFT_MD PIMC WP_MD

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39
Page 39: Chernogolovka, EMMI GSI, Shock compression of liquid nitrogen · measurements in shock compressed ... Shock compression of liquid nitrogen ... boundary in solid nitrogen (L.Yakub

Thank youThank you

Support ISTC 3755 CRDF MO-011-0and by RAS Scientific Programs ldquoPhysics and Chemistry of Extreme States of Matterrdquo

and by

MIPT Education Center ldquoPhysics of High Energy Density Matterrdquo

and by

Extreme Matter Institute (EMMI)

15 20 25 30 35 400

50

100

150

200

250

300

350

33

2

1

gcm3

Р GPa

Annual Moscow Workshop

Non‐ideal Plasma PhysicsRussian Academy of Science

November 23‐24

2011

Sarov 2011 Chernogolovka 2010EMMI GSI 2011

  • Слайд номер 1
  • Слайд номер 2
  • Слайд номер 3
  • Слайд номер 4
  • Слайд номер 5
  • Слайд номер 6
  • Слайд номер 7
  • Слайд номер 8
  • Слайд номер 9
  • Слайд номер 10
  • Слайд номер 11
  • Слайд номер 12
  • Слайд номер 13
  • Слайд номер 14
  • Слайд номер 15
  • Слайд номер 16
  • Слайд номер 17
  • Слайд номер 18
  • Слайд номер 19
  • Слайд номер 20
  • Слайд номер 21
  • Слайд номер 22
  • Слайд номер 23
  • Слайд номер 24
  • Слайд номер 27
  • Слайд номер 28
  • Слайд номер 29
  • Слайд номер 30
  • Слайд номер 31
  • Слайд номер 32
  • Слайд номер 33
  • Слайд номер 34
  • Слайд номер 35
  • Слайд номер 36
  • Слайд номер 37
  • Слайд номер 38
  • Слайд номер 39