17
PHYS-H406 – Nuclear Reactor Physics – Academic year 2013-2014 PHYS-H406 – Nuclear Reactor Physics – Academic year 2013-2014 1 CH.IV : CRITICALITY CALCULATIONS IN DIFFUSION THEORY CRITICALITY ONE-SPEED DIFFUSION MODERATION KERNELS REFLECTORS INTRODUCTION REFLECTOR SAVINGS TWO-GROUP MODEL

CH.IV : CRITICALITY CALCULATIONS IN DIFFUSION THEORY

  • Upload
    magee

  • View
    93

  • Download
    2

Embed Size (px)

DESCRIPTION

CH.IV : CRITICALITY CALCULATIONS IN DIFFUSION THEORY. CRITICALITY ONE-SPEED DIFFUSION MODERATION KERNELS REFLECTORS INTRODUCTION REFLECTOR SAVINGS TWO-GROUP MODEL. IV.1 CRITICALITY. criticality. Objective solutions of the diffusion eq. in a finite homogeneous - PowerPoint PPT Presentation

Citation preview

Page 1: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4P

HY

S-H

40

6 –

Nu

cle

ar

Re

act

or

Ph

ysic

s –

Aca

de

mic

ye

ar

20

13

-20

14

1

CH.IV : CRITICALITY CALCULATIONS IN DIFFUSION THEORY

CRITICALITY

• ONE-SPEED DIFFUSION• MODERATION KERNELS

REFLECTORS

• INTRODUCTION• REFLECTOR SAVINGS• TWO-GROUP MODEL

Page 2: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

2

Objective solutions of the diffusion eq. in a finite homogeneous media exist without external sources

1st study case: bare homogeneous reactor (i.e. without reflector)

ONE-SPEED DIFFUSION

With fission !!

Helmholtz equation

with

and BC at the extrapolated boundary:

: solution of the corresponding eigenvalue problemcountable set of eigenvalues:

IV.1 CRITICALITY

)()()( rrrD fa

DB af

2

0)()( 2 rBr

0)( es dnr

criticality

...0 22

21

2 BBBo

A time-independent can be sustained in the reactor with no Q

Page 3: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

3

+ associated eigenfunctions: orthogonal basis

A unique solution positive everywhere fundamental mode

Flux !

Eigenvalue of the fundamental – two ways to express it:

1. = geometric buckling

= f(reactor geometry)

2. = material buckling

= f(materials)

Criticality:

Core displaying a given composition (Bm cst): determination of the size (Bg variable) making the reactor critical

Core displaying a given geometry (Bg cst): determination of the required enrichment (Bm)

o

ogB

2

DB af

m

2

22mg BB

Page 4: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4P

HY

S-H

40

6 –

Nu

cle

ar

Re

act

or

Ph

ysic

s –

Aca

de

mic

ye

ar

20

13

-20

14

4

Page 5: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

5

Time-dependent problem

Diffusion operator:

Spectrum of real eigenvalues:

s.t. with

o = maxi i associated to : min eigenvalue of (-) o associated to o: positive all over the reactor volume

Time-dependent diffusion:

Eigenfunctions i: orthogonal basis

o < 0 : subcritical state

o > 0 : supercritical state

o = 0 : critical state with

)()()()()( rrDrrKJ af

...21 o

2iafi DB )(2 iB

2oB

),()(),(1

trKJt

tr

v

)()(),( rtctr iii

vt

iii

ierctr )()0(),(

)()0(),( rctr oot

J -K

Page 6: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

6

Unique possible solution of the criticality problem whatever the IC:

Criticality and multiplication factor

keff : production / destruction ratio

Close to criticality:

o = fundamental eigenfunction associated to the eigenvalue keff of:

media:

Finite media:

Improvement: with

2iafi DB 22

gmo DBDB

)()( rr o

2DBK

Jk

a

f

o

oeff

Jk

K1

fka

f

221 BL

fkeff

thfP

221.

BL

pfPpfk theff

221

1

BLa

f

22 1

L

pfBm

and criticality for keff = 1

Page 7: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

7

Independent sources

Eigenfunctions i : orthonormal basis

Subcritical case with sources: possible steady-state solution

Weak dependence on the expression of Q, mainly if o(<0) 0

Subcritical reactor: amplifier of the fundamental mode of Q

Same flux obtainable with a slightly subcritical reactor + source as with a critical reactor without source

)()()( rQrJK )(rQ iii

)()(2

rDB

Qr i

fai

i

i

)()()(2

rDB

Qr

Qr o

fao

oo

o

o

Page 8: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

8

MODERATION KERNELS

Definitions

= moderation kernel: proba density function that 1 n due to a fission in is slowed down below energy E in

= moderation density: nb of n (/unit vol.time) slowed down below E in

with

media: translation invariance Finite media: no invariance approximation

Solution in an media: use of Fourier transform

),()()( ththath ErqrrD

),( ErrP o

),( Erq

oothftho

V

th rdrErrPErq )(),(),(

)(ˆ),(ˆ)2()(ˆ)( 2/32 BEBPBDB ftha 22

2/3 1),(ˆ)2( ma

fth B

DBEBP

or r

r

|)(|),( oo rrfErrP

Objective: improve the treatment of thedependence on E w.r.t. one-speed diffusion

Page 9: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

9

Inverting the previous expression:

solution of

Solution in finite media

Additional condition: B2 {eigenvalues} of (-) with BC on the extrapolated boundary

Criticality condition:

with solution of

: fast non-leakage proba

0)()( 2 rBr m

222go BBB

22gm BB

2mB 1

1),(ˆ)2(

222/3

mthm BL

fEBP

),(),(ˆ)2( 2/3thth EBPEBP

udeuAr ruiBm .).()(

Page 10: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

10

Examples of moderation kernels

Two-group diffusion

Fast group:

Criticality eq.:

G-group diffusion

Criticality eq.:

Age-diffusion (see Chap.VII)

Criticality eq.:

rD

eErP

r

rth1

1 4),(

1

22

122

11

1

1

11),(

BLBDEBP r

th

11

1.

1 221

222

BLBL

f

1)(1 22

1

BL

f

i

G

i

22

1

1 1

1),(

BLEBP

i

G

ith

221

1

1

)(1

122

BLi

G

i

BLi

2/3

)(/

))(4(),(

2

E

eErP

Er

2

),( Bth eEBP

11 22

2

BL

fe B (E) = age of n at en. E emitted at the fission en.

= age of thermal n emitted at the fission en.

Page 11: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

11

INTRODUCTIONNo bare reactor

Thermal reactors

Reflector backscatters n into the core Slows down fast n (composition similar to the moderator)

Reduction of the quantity of fissile material necessary to reach criticality reflector savings

Fast reactors

n backscattered into the core? Degraded spectrum in E

Fertile blanket (U238) but leakage from neutronics standpoint

Not considered here

IV.2 REFLECTORS

Page 12: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

12

REFLECTOR SAVINGS

One-speed diffusion model

In the core:

with

In the reflector:

Solution of the diffusion eq. in each of the m zones solution depending on 2.m constants to be determined

Use of continuity relations, boundary conditions, symmetry constraints… to obtain 2.m constraints on these constants

Homogeneous system of algebraic equations: non-trivial solution iff the determinant vanishes

Criticality condition

0)(1

)(2

rL

rR

)()()( rrrD fa

0)()( 2 rBr c 222 11

L

k

L

f

DB afc

0)()( rrD aRR

Page 13: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

13

Solution in planar geometry

Consider a core of thickness 2a and reflector of thickness b (extrapolated limit)

Problem symmetry

Flux continuity + BC:

Current continuity:

criticality eq.

Q: A = ?

baxaL

xbaaBAx

axxBAx

RLb

c

c

R

||

sinhsinh

cos)(

0cos)(

RR

Rcc L

b

L

DaBDB cothtan

baxaL

xE

L

xCx

axxBAx

RR

c

sinhcosh)(

0cos)(

Page 14: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

14

Criticality reached for a thickness 2a satisfying this condition

For a bare reactor:

Reflector savings:

In the criticality condition:

As Bc << 1 :

If same material for both reflector and moderator, with a D little affected by the proportion of fuel D DR

Criticality: possible calculation with bare reactor accounting for

aB

aac

o 2

c

o Ba

2

RR

R

cc L

bL

D

DBB tanhtan

RR

R L

bL

D

Dtanh

RR L

bL tanh

bLb R :

RR LLb :

Page 15: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4

15

TWO-GROUP MODELCore

Reflector

Planar geometry: solutions s.t. ?

Solution iff determinant = 0

2nd-degree eq. in B2

(one positive and one negative roots)

For each root:

)()()()()( 2211111111 rrrrrD ffsa

)()()( 112222 rrrD sa

)()()( 112222 rrrD RRR

0)()( 1111 rrD RR

ii B 2

0

0

2

1

22

21

21112

1

as

ffsa

BD

BD

22,1B

1

22

2

2

1

s

aBD

Page 16: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4P

HY

S-H

40

6 –

Nu

cle

ar

Re

act

or

Ph

ysic

s –

Aca

de

mic

ye

ar

20

13

-20

14

16

Solution in the core for [-a, a]:

Solution in the reflector for a x a+b:

4 constants + 4 continuity equations (flux and current in each group)

Homogeneous linear system Annulation of the determinant to obtain a solution

Criticality condition

xBAxBAx 22111 coshcos)(

xBBD

AxBBD

Axa

s

a

s2

2222

121

2212

112 coshcos)(

RL

xbaAx

131 sinh)(

RRLL

RR

L

xbaA

L

xbaDAx

RR2

41

11

2132 sinhsinh

/)(

21

22

Q: the flux is then given to a constant. Why?

Page 17: CH.IV :  CRITICALITY  CALCULATIONS IN DIFFUSION THEORY

PH

YS

-H4

06

– N

ucl

ea

r R

ea

cto

r P

hys

ics

– A

cad

em

ic y

ea

r 2

01

3-2

01

4P

HY

S-H

40

6 –

Nu

cle

ar

Re

act

or

Ph

ysic

s –

Aca

de

mic

ye

ar

20

13

-20

14

17

core reflector

fast fluxthermal flux