16
Chemistry Course Code: CHM315114 2014 Assessment Report Page 1 of 10 As in previous years, there are a number of key points that need to be reemphasised, especially for the 'calculation' section where candidates lost marks due to poor answering technique or errors in expressing their answers. - 'Significant figure' misuse was frequently encountered. As a general rule expressing final answers to 3 significant figures is usually sufficient. Many gave answers to 1 or sometimes 9 significant figures! - Candidates must take more care with setting out calculations. All calculations should be labelled (e.g. n(HCl) = ... rather than n = ...) and calculation steps should follow sequentially. - Candidates should avoid rounding off numerical answers prematurely; e.g. in 250.0 mL of 0.400 mol L –1 X (aq) the n(X (aq) ) = 0.100 mol not 0.1 mol - For most chemical equations, the reactant and product states should be indicated as subscripts. - Candidates would be advised to write in pen (not pencil) and not to cross out any answer part until they are sure it has been replaced by a preferred answer. In some cases we saw correct answers that had been crossed out but not replaced by anything else. - Candidates need to be reminded to consider whether their answer is within the limits of possibility; i.e. ‘does my answer sound reasonable?’ PART 1 – CRITERION 5 Question 1 (a) Most candidates correctly identified that Cd (s) was being oxidised but many then said that Ni was being reduced rather than more correctly saying that ox(Ni) = 4+ changes to ox(Ni) = 2+. A number of candidates gave the correct answers but lost part marks because they did not include reasons for their selections. (b) Those who had Ni as the oxidising agent rather than NiO 2 lost half a mark. Question 2 A pleasing number of candidates established the equation: Br 2(g) + 2NaOH (aq) NaBr (aq) + NaOBr (aq) + H 2 O (l) and by correctly using oxidation numbers established that bromine was being reduced from ox(Br) = 0 to ox(Br) = –1. This was necessary to gain 1.5 marks. A very significant number of candidates then assumed that NaOH was undergoing oxidation and came up with extraordinary products such as H 2+ , Na 2+ and Na 3+ .

CHM315114 - Assessment Report 2014 - tqa.tas.gov.au€¦ · Chemistry Course Code: CHM315114 2014 Assessment Report ... 'calculation'% section% where%candidates% lost marks% due%

Embed Size (px)

Citation preview

Chemistry

Course Code: CHM315114

2014 Assessment Report

Page  1  of  10  

As  in  previous  years,  there  are  a  number  of  key  points  that  need  to  be  re-­‐emphasised,  especially  for  the  'calculation'   section   where   candidates   lost   marks   due   to   poor   answering   technique   or   errors   in  expressing  their  answers.      - 'Significant  figure'  misuse  was  frequently  encountered.  As  a  general  rule  expressing  final  answers  

to   3   significant   figures   is   usually   sufficient.  Many   gave   answers   to   1   or   sometimes   9   significant  figures!  

- Candidates  must  take  more  care  with  setting  out  calculations.    All  calculations  should  be  labelled  (e.g.  n(HCl)  =  ...  rather  than  n  =  ...)  and  calculation  steps  should  follow  sequentially.    

- Candidates  should  avoid  rounding  off  numerical  answers  prematurely;       e.g.  in  250.0  mL  of  0.400  mol  L–1  X(aq)  the  n(X(aq))  =  0.100  mol  not  0.1  mol  - For  most  chemical  equations,  the  reactant  and  product  states  should  be  indicated  as  subscripts.    - Candidates  would  be  advised   to  write   in  pen   (not  pencil)   and  not   to   cross  out   any  answer  part  

until   they   are   sure   it   has   been   replaced   by   a   preferred   answer.   In   some   cases  we   saw   correct  answers  that  had  been  crossed  out  but  not  replaced  by  anything  else.  

- Candidates   need   to   be   reminded   to   consider   whether   their   answer   is   within   the   limits   of  possibility;  i.e.  ‘does  my  answer  sound  reasonable?’  

   PART  1    –  CRITERION  5    Question  1    (a)     Most  candidates  correctly  identified  that  Cd(s)  was  being  oxidised  but  many  then  said  that  Ni  was  

being  reduced  rather  than  more  correctly  saying  that  ox(Ni)  =  4+  changes  to  ox(Ni)  =  2+.  A  number  of  candidates  gave  the  correct  answers  but  lost  part  marks  because  they  did  not  include  reasons  for  their  selections.  

 (b)     Those  who  had  Ni  as  the  oxidising  agent  rather  than  NiO2  lost  half  a  mark.      Question  2      A  pleasing  number  of  candidates  established  the  equation:    

Br2(g)            +            2NaOH(aq)          →            NaBr(aq)          +        NaOBr(aq)          +        H2O(l)    and  by  correctly  using  oxidation  numbers  established  that  bromine  was  being  reduced  from  ox(Br)  =  0  to  ox(Br)  =  –1.  This  was  necessary  to  gain  1.5  marks.    A  very  significant  number  of  candidates  then  assumed  that  NaOH  was  undergoing  oxidation  and  came  up  with  extraordinary  products  such  as  H2+,  Na2+  and  Na3+.      

2014  Assessment  Report  

Page  2  of  10  

Few  realised  that  Br2  was  being  oxidised  from  ox(Br)  =  0  to  ox(Br)  =  +1  in  NaOBr.    A  few  recognised  that  this  type  of  redox  reaction  is  called  ‘disproportionation’  although  the  examiners  were  not  expecting  this  in  the  answer  for  full  marks.      Question  3      (a)     Well  done  with  most  establishing  ox(Ti)  =  +4.    (b)     Even  though  this  half-­‐equation  is  on  the  information  sheet,  a  surprising  number  of  candidates  had  

errors  which  were  often  caused  by  the  inclusion  of  the  spectator  K+   ion.  A  number  had  MnO2  as  the  oxidising  agent  rather  than  acidified  MnO4

–.        (c)     This   was   not   well   done   with   a   number   confusing   TiO2+   with   TiO2

+.   Some   had   parts   (b)   and   (c)  interchanged.    

 (d)     In  the  majority  of  cases,  those  who  had  parts  (b)  and  (c)  correct  managed  to  get  this  part  correct.  

The  use  of  ‘error  carried  forward’  meant  that  a  mark  was  awarded  for  an  incorrect  answer  as  long  as  it  was  an  appropriate  redox  combination  of  parts  (b)  and  (c).    

 (e)     This   part   was   surprisingly   poorly   done.   To   gain   one  mark,   candidates   had   to  mention   that   the  

colour  change  was  associated  with  the  reduction  of  purple  MnO4–   ions  to  form  pale  pink  or  near  

colourless  Mn2+(aq)   ions.   Because   the   permanganate   solution  was   ‘acidified’,   a   number   assumed  that  this  was  an  acid/base  reaction  occurring.  

   Question  4    (a)     A   generally   easy   question   and   yet   serious   weaknesses   in   the   understanding   of   corrosion   were  

encountered.  Examples  of  common  errors  included:  − incorrect  statements  such  as  ‘copper  is  a  stronger  oxidiser  than  iron’.  − steel  is  the  element  Sn  or  Al  or  Cr.  − the  cathode  half-­‐equation  is  Cu2+(aq)        +            2e–            →            Cu(s)      or  − the  cathode  half-­‐equation  is            2H2O(l)      +        2e–      →            2OH–

 (aq)          +        H2(g)      

It  was  acceptable  to  show  the  anode  half-­‐equation  producing  Fe2+  or  Fe3+    so  long  as  the  electron  number  was  consistent.  

 The  main  inadequacies  in  the  corrosion  answers  were  the  failure  to  use  the  correct  half-­‐equations  and  the  omission  of   reasons   for   the  pipe   to  corrode   ‘so  quickly’.  Those  who  gave  good  answers  included  comments  about   the  corrosion   system  being  an  electrochemical   cell   and   that   the  EMF  thus   generated   accelerated   the   corrosion   process.   Also,   the   fact   that   the   copper   became   the  cathode  site  meant  that  there  was  a  greater  surface  area  and  rate  for  the  cathode  half  reaction:  

 2H2O(l)      +        O2(g)          +        4e  –      →            4OH–

 (aq)    

A  pleasing  number  discussed  the  ‘hot’  water  causing  and  increased  corrosion  rate  too.    

2014  Assessment  Report  

Page  3  of  10  

(b)     There  were  many  possible  answers  accepted  here  and  even  though  the  corrosion  problem  is  most  likely   on   the   inside   of   the   pipe,   painting,   greasing   and   polymer   coatings   were   awarded  marks.  Some  unlikely  answers  included:  − noble  coatings  (these  will  be  easily  scratched/damaged)  − enclosing  the  system  in  a  vacuum  to  exclude  air  − excluding  water  from  the  pipe  − using  gold,  silver  or  even  lead  pipes  − coating  the  Fe  pipe  with  lithium  as  a  sacrificial  anode    The  preferred  answers  involved:  − a  non-­‐electrically  conducting  junction  (polymer)  between  the  Cu  and  Fe  pipes  − Zn  (or  similar  reactivity)  sacrificial  anodes    − galvanising  the  Fe  pipe  internally  and  externally  − applied  EMF  − having  the  whole  pipeline  constructed  from  the  same  metal  (e.g.  Cu)  

   Question  5    (a)  and  (b)    

This  question  was  marred  by  the  fact  that  at   least  75%  of  candidates  assumed  that  the  cathode  half-­‐reaction  would  be  the  reduction  of  sulfate  ions  to  form  SO2  gas  rather  than:    

2H+(aq)        +            2e–            →            H2(s)  

Candidates  lost  marks  where  they  had  the  wrong  direction  for  electron  flow  in  the  external  wire  and   incorrect   ion  movement   in   the   salt   bridge.   Electrode  polarities  were   sometimes  omitted  as  were  the  labelling  of  the  electrodes  and  the  ions  present  in  each  electrolyte.  

 A  considerable  number  of  candidates  showed  the  sulfate  ion  as  having  a  charge  of  1–  rather  than  2–.  

 (c)     Very  few  candidates  realised  that  the  cell  would  cease  functioning  due  to  the  formation  of  PbSO4(s)  

precipitate  in  the  salt  bridge.    Those  who  described  the  new  system  correctly  as  if  the  salt  bridge  was  KNO3(aq)  or  NaNO3(aq)  were  given  some  credit.    

   Question  6    (a)     No  reaction  occurs  under  standard  state  conditions.  For  determining  that  the  Eo  net  was  negative  

earned  1.5  marks  but  to  get  full  marks,  candidates  had  to  compare  the  oxidising  strengths  of  Hg2+  and  Cu2+  or  the  reducing  strengths  of  Hg  and  Cu.  These  comparisons  were  frequently  presented  in  a  confused  way.  Magnesium  sometimes  appeared  in  place  of  Hg.  

 (b)     A  spontaneous  reaction  does  occur   in   this  case  and  to  get   two  marks,  a  balanced  equation   (net  

ionic   or   total)   was   expected.   A   disappointing   number   of   candidates   had   a   reaction   between  potassium  and  chlorine.  This  scored  zero.    

2014  Assessment  Report  

Page  4  of  10  

In  both  parts  of  this  question,  no  marks  were  awarded  to  candidates  who  determined  spontaneity  of  reaction  by  discussing  the  position  (above  or  below)  of  reactants  in  the  ECS.  

   Question  7    This  question  was  not  well  done  and  proved  to  be  one  where  ‘trial  and  error’  was  the  best  pathway  to  success.   Those   who   deduced   the   correct   answer   were   expected   to   present   the   standard   reduction  potential  in  the  form  of  a  half-­‐equation:    

i.e.     In3+(aq)        +            3e–            →            In(s)       Eo    =  –0.34  V    

Marks  were  lost  where  candidates  had  no  half  equation,  the  wrong  Eo  sign  or  omitted  the  units  for  Eo  (V).    Valid  attempts  were  awarded  at  least  one  mark.      Question  8    This   was   well   done   and   is   a   lab   experiment   that   practically   all   Chemistry   candidates   should   have  undertaken.  Many  gained  the  full  mark  of  4/4.    The   errors   that   occurred   were   surprising   and   showed   a   lack   of   familiarity   with   common   laboratory  chemicals.  Some  thought  the  brown  colour  associated  with  I2(aq)  (or  more  correctly  the  complex  ion  I3–  (aq))  was  due  to  Fe3+(aq)  even  though  there  was  no  mention  of  iron  in  the  question.  Some  said  Na+(aq)  ions  are  brown  and  a  few  even  had  sodium  metal  being  formed  at  the  cathode!    The  phenolphthalein  colour  was  usually  well  explained  but  again  some  thought  the  pink  colour  was  due  to  Mn2+(aq)  or  Co2+(aq)  as  these  are  shown  on  the  information  sheet.  A  few  candidates  reasoned  that  the  pink  colour  was  an  indication  of  acidity.    It   is   important   that   candidates   correctly   use   ‘iodide’   and   ‘iodine’   in   the   correct   context   as   this  was   a  common  error.      Question  9    This   was   well   done   by   the   majority   of   candidates.   The   biggest   difficulty   encountered   was   where  candidates  didn’t  have  a  nickel  anode  in  their  electrolytic  cell.  Although  not  expected,  this  would  have  been  a  logical  choice.  A  Ni(NO3)2(aq)  electrolyte  would  have  been  preferable  to  the  insoluble  Ni(OH)2  or  molten  nickel  compounds  that  some  had.  Other  errors  included:    − failure  to  include  a  DC  power  supply  − electrode  polarities  reversed    − no  indication  of  the  direction  of  electron  flow  − the  incorrect  spelling  of  nickel  − having  an  electrode  outside  the  electrolytic  cell    

2014  Assessment  Report  

Page  5  of  10  

A  number  of  candidates  had  C  (graphite)  or  Pt  as  the  metal  to  be  nickel  plated!        PART  2  –  CRITERION  6    Question  10    (a) Very   poorly   answered   in   general.   Candidates   did   not   recognise   that   covalent   bonds   in   the   gas  

molecules   needed   to   be   broken,   or   that   ions   in   solution   did   not   require   bonds   broken.   Many  candidates   thought   that   the   gases   would   react,   perhaps   because   the   question   states   ‘at   SLC’.  Candidates  needed  to  address  both  reactions  to  get  full  marks.  

 (b) Generally  answered  OK,  and  attempted  better  than  part  (a).  However,  many  candidates  just  gave  

very  generic  responses  not  linking  their  answer  to  the  question.  Some  candidates  were  confused  making   statements   about   energy   released   when   breaking   bonds,   and   energy   required   to   form  bonds.  Some  also  thought  that  the  increase  in  energy  was  due  to  more  bonds  forming  than  being  broken.  

   Question  11      (a) Very   poorly   attempted   and   answered.   This   question   created   a   great   deal   of   confusion   with  

candidate  responses  including  many  errors  errors.  The  units  of  mol  min–1  should  give  candidates  the   hint   that   the   answer   involved   a   quotient   with   moles   of   hydrogen   on   the   numerator   and  minutes  on  the  denominator.  

 (b) Candidates  were  able  to  draw  lines  on  the  graph,  but  many  graphs  were  not  labelled.  Experiment  

2   was   not   well   represented   with   many   candidates   drawing   the   line   to   meet   the   original  experiment  and  not  applying  the  ratio  for  the  differing  concentration.  Experiment  3  was  generally  well  drawn  in  comparison.  

 (c) This  question  was  generally  well  done.  Many  candidates  produced   the   right   type  of  distribution  

curves,   but   did   not   label   them   appropriately,   and   in   some   cases   were   too   generous   with  proportions  past  Ea.  The  written  explanation  was  much  better,  most  candidates  linking  the  change  in  reaction  rate  to  kinetic  molecular  theory.  

 (d) Again,  generally  very  well  attempted  and  answered.  As  the  candidates  were  to  use  a  method  not  

mentioned  previously,  they  should  have  spoken  about   increasing  surface  area  of  the  zinc  (which  most   managed),   or   increasing   the   concentration   of   HCl.   Some   candidate   responses   indicated  pressure  needed  to  be  changed,  or  included  a  previously  mentioned  method.  

   Question  12    (a) Very  well  done.    (b) Mostly  well  done.  Most  candidates  scored  marks  here,  some  lost  marks  for  incorrect  labelling  and  

a  very  few  candidates  had  an  endothermic  reaction  profile  or  an  alternate  graph  type.  

2014  Assessment  Report  

Page  6  of  10  

(c) This  was  well  attempted,  but  often  poorly  executed,  especially  in  the  second  part  where  they  were  required  to  find  the  value  for  the  C–Cl  bond  energy.  There  was  a  common  error  with  candidates  getting  –171  kJ,  this  was  due  to  using  +157  kJ  rather  than  –157  kJ;  or  incorrectly  manipulating  the  algebraic  relationship.  

   Question  13    This  question  was  very  well  attempted,  and  very  well  answered  with  candidates  showing  a  very  good  understanding  of  Hess’  Law.      Question  14    (a) Very  well  done.    (b) This   was   a   mixed   response   where   most   candidates   could   state   the   equilibrium   position,   but  

wanted  to  increase  or  decrease  K.    (c) Well  attempted.  Many  candidates  again  could  explain  the  effect  on  the  equilibrium  position,  and  

some  correctly  stated  that  Kc  would  decrease.  For  full  marks  candidates  were  required  to  explain  that  the  Kc  decrease  was  due  to  the  increase  in  reactant  concentrations.  

 (d) Fairly  well  answered.  Candidates  did  need  to  make  a  link  with  increasing  volume  and  decreasing  

pressure   (some   used   concentration);   but   there   was   some   candidates   wanting   to   decrease   the  volume.  Candidates  needed  to  consider  the  ratio  of  gaseous  molecules  to  receive  full  marks.  

   Question  15    (a) Very  poorly  done.  Many   candidates  were  able   to   talk   about  equilibrium  being   reached,  but  not  

how/why  it  was  obtained.  Many  candidates  did  not  consider  that  initially  there  was  no  methanol.    (b) (i)  Most  candidates  attempted  this  question.  Some  did  not  show  the  x/2x  relationship  of  methanol  

to  hydrogen  on   their   graph,   so  ½  mark  was  deducted.   Some   candidates   also  did  not   start   their  methanol  concentration  graph  at  the  zero  point.  Many  did  not  label  the  diagram.  (ii)  Very  well  attempted.  The  most  common  issue  was  that  candidates  did  not  mention  the  effect  on  the  yield  and  thus  could  not  achieve  full  marks.  

   PART  3  –  CRITERION  7    This  section  was  generally  well  answered.  Candidates  are  advised  to  become  more  fluent  in  the  use  of  the  information  sheet,  as  this  section  relies  heavily  on  the  information  presented  there.      Candidates  are  advised  that  they  must  define  acronyms  before  using  them  in  this  section.  e.g.  effective  nuclear  charge  (ENC),  intermolecular  forces,  (IMF).    

2014  Assessment  Report  

Page  7  of  10  

Question  16    Well  answered  by   the  majority  of  candidates  who  correctly  named  the  compounds  and   identified   the  functional  groups.      Question  17    (a)     Most   candidates   explained   the   diffusion   process   well   and   recognised   that   gas   molecules   were  

involved.  Many   did   not   recognise   that   an   explanation   of   the   evaporation   process   where   liquid  molecules  gained  energy  to  form  gases  was  required.  

 (b)   (i)  Most  candidates  attempted  this  question  and  recognised  that  hydrogen  bonding  was  involved  

but  few  explained  how  differences  in  electronegativity  lead  to  this  phenomenon.  Many  candidates  correctly  related  differences  in  intermolecular  forces  to  boiling  points.  

 (b)   (ii)   This   was   a   more   difficult   question   and   related   to   success   in   (b)(i).   There   was   a   poor  

understanding   of   polarity   with   many   candidates   thinking   that   the   solvent   was   responsible   for  breaking  covalent  bonds  in  the  polar  group.  A  few  candidates  used  pentane  instead  of  pentanal.  Common  errors  included:    ‘C=O  bonds  are  non-­‐polar  and  insoluble’,  ‘pentanal  is  non-­‐polar’.  

   Question  18    (a)     This  question  was  well  answered  by  most  candidates.    (b)     This   question   was   generally   well   answered   although   some   did   not   recognise   that   it   was   a  

substitution  reaction.    (c)     Whilst   most   candidates   recognised   that   an   alkene   was   required,   many   struggled   with   correct  

nomenclature  for  the  monomer  involved.    (d)     There  were   a   large   number   of   possible   correct   answers   to   this   question.   It   was   surprising   that  

many  overlooked  the  ‘standard’  sodium  test  for  alcohols.  Those  that  used  a  redox  reaction  did  not  recognise  that  a  carboxylic  acid  could  be  produced  for  both  the  alcohol  and  the  aldehyde.  

   Question  19    Most   candidates   answered   this   question   well   identifying   possible   compounds   and   naming   them  correctly.   It   was   pleasing   that   candidates   correctly   recognised   the   hydrolysis   products   of   the   chosen  ester.  The  most  common  omission  was  not  to  interpret  the  result  of  the  acidified  permanganate  test.          

2014  Assessment  Report  

Page  8  of  10  

Question  20    (a)     A  minority  of  candidates  recognised  that  a  tertiary  alcohol  was  involved.    (b)     Most   candidates   correctly   recognised   that   an   alcohol   was   involved.   Of   concern  was   that  many  

thought  that  secondary  alcohols  cannot  be  oxidised.      Question  21    (a)     Electron  configurations  were  well  answered.  Some  candidates  struggled  with  the  transition  metal,  

Ti.    (b)   (i)  This  question  was  very  well  answered.    

(ii)  Most  candidates  were  able  to  explain  the  general  trend  of  ionisation  in  Period  3,  many  did  not  give   details   for   Al   and  Cl.   Candidates   are   advised   not   to   attribute   human   feelings/   emotions   to  atoms;  e.g  ‘sodium  wants  to  lose  an  electron’.  

   (iii)   Generally  well   answered  with   candidates   recognising   that  Na+     is   isoelectronic  with  Ne   and  thus  E2  would  remove  the  2nd  electron  from  an  inner  (2p)  sub-­‐shell.  

   Question  22    (a)     Candidates   who   received   full   marks   in   this   question   often   used   a   shielding   analogy.   Many  

confused  oxidation  with  reduction.    (b)     Most   candidates   correctly   identified  Bi   as   the  most  metallic   element   in  Group  V   (15).   Common  

errors   included   mistaking   Group   5   with   Group   V.   Perhaps   future   questions   should   consider   a  ‘double  listing’  as  per  the  information  sheet  V,  15.  

 (c)     Most  candidates  could  explain  why  hydrogen  could  be  assigned  to  group  VII  (17),  however,  many  

were   unable   to   give   an   adequate   explanation   for   its   possible   placement   in  Group   I.   The   use   of  suitable   chemical   equations   showing   the   formation   of   H+   and   H–   ions   would   have   seemed  appropriate.  

   Question  23    (a)     Well   answered   by   many   candidates   who   recognised   the   contribution   of   nuclear   charge   and  

decreasing  atomic  radius  to  a  general  increase  in  electronegativity.    (b)     Well  answered  by  most  candidates.  A  bonus  mark  was  awarded  for  recognising  the  existence  of  

the  amphoteric  oxide,  B2O3.    (c)     Few  candidates  were  able  to  correctly  identify  of  lithium  oxide,  Li2O  and  consequently  struggled  to  

balance  the  equation  correctly.  

2014  Assessment  Report  

Page  9  of  10  

PART  4  –  CRITERION  8    Question  24    a) Generally  well  answered.    Common  errors  were  not  giving  answers  to  correct  significant  figures,  

using  oC  rather  than  K  and  using  poor  algebraic  manipulation  skills.    b) Generally  well  answered.    It  was  possible  to  use  the  answer  from  part  a)  or  the  information  given  

in  the  question.    Most  candidates  used  N  =  n.NA  but  many  did  not  calculate  n  correctly,  using  n  =  m/M  rather  than  the  gas  laws.    Some  candidates  cannot  calculate  percentages.  

   Question  25    Generally  well  answered.    A  common  error  was  to  assume  that  the  empirical  formula  was  the  same  as  the  molecular  formula.      Question  26    a) Some  candidates  failed  to  recognise  that  this  was  a  limiting  reagent  question.    Others  incorrectly  

identified  the  limiting  reagent  or  failed  to  provide  enough  evidence  to  support  answers.    b) Poorly  answered  by  many  candidates.    Many  candidates  did  not  recognise  that  the  concentration  

of   the   iron(II)   chloride   is   zero   because   it   is   the   limiting   reagent.     Candidates   seemed   confused  about  the  definition  of  ‘filtrate’.  

   Question  27    a) Generally  well  done.    The  most  common  errors  were  the  miscalculation  of  the  M(glucose).    b) Well  answered.      Question  28    Generally  well  answered.    The  most  common  mistake  was  failing  to  recognise  that  the  number  of  moles  of  the  metal  was  a  third  of  the  number  of  moles  of  electrons.    Rounding  off  answers  early  could  give  a  different  answer  for  the  identity  of  metal  M  which  was  gold..      Question  29    a) Some  failed  to  recognise  that  this  question  was  a  limiting  reagent  question,  causing  similar  errors  

to  Q26.    Note  that   it  would  have  been  simpler  to  find  the  volume  of  chlorine  using  the  fact  that  1.00  mole  of  gas  at  STP  occupies  22.4  L  rather  than  applying  PV  =  nRT.  

 

2014  Assessment  Report  

Page  10  of  10  

b) Some  confusion  arose  with  regards  the  identity  of  the  excess  reagent  even  if  it  was  correct  in  part  a).    Some  candidates  failed  to  use  mole  ratios  from  the  given  equation.  

   Question  30    a) Generally  well  done.    Note  that  the  data  in  this  question  are  given  to  4  significant  figures.    b) Many  assumed  that  [HLa]  at  equilibrium  was  0.1000  and  did  not  construct  an  ICE  table.    Rounding  

off   early   made   an   impact   on   the   accuracy   of   the   answer,   which   should   have   been   given   to   4  significant   figures.     Some   were   not   able   to   give   the   equilibrium   expression,   or   identify   that  [H3O+

(aq)]  =  [La–(aq)].      Question  31    Many  candidates  used  the  sulfite   ion  rather  than  the  sodium  sulfite  to  calculate  mass  and  percentage  purity.     Some   confusion   arose  between   the   sulfite   and   sulfate   ions,   and   some  attempted   to   turn   the  question  into  a  limiting  reagent  question.    A  few  candidates  solved  by  finding  the  concentration  of  the  sulfite  ion  in  the  original  solution  and  carried  on  with  value  from  titration.        

TASMANIAN QUALIFICATIONS AUTHORITY

ASSESSMENT PANEL REPORT

CHM315114 Chemistry

19% (106) 27% (149) 20% (108) 34% (188) 551

20% (105) 24% (124) 20% (101) 36% (186) 516

10 % 19 % 39 % 32 %

22 % 28 % 22 % 28 %

11 % 19 % 39 % 30 %

50% (276) 50% (275) 0% (1) 100% (550)

51% (265) 49% (251) 0% (1) 100% (515)

54% 46% 0% 100%

This year!

Last year!

Previous 5 years!

EA HA CA SA Total

Previous 5 years (all examined subjects)!

Last year (all examined subjects)!

Award Distribution

Student Distribution (SA or better)

This year!

Last year!

Previous 5 years!

Male Female Year 11 Year 12