21
1/12/2011 1 Chapter 8 (and some of 6) Fracture and Failure Analysis LEARNING OBJECTIVES… Define fracture toughness in terms of a brief statement and an equation. Define the conditions for fracture. El b t th l ti hi bt i t it Elaborate upon the relationship between impact resistance, tensile strength, tensile ductility, and fracture toughness. Define hardness and relate it to strength. FRACTURE The separation or fragmentation of a solid body into two or more pieces under an applied stress Figure 8.1 (a) Highly ductile fracture in which the specimen necks down to a “Fracture is when something breaks into pieces!” which the specimen necks down to a point. (b) Moderately ductile fracture after some necking. (c) Brittle fracture without any plastic deformation. [Callister, 7 th Ed.] Steps in fracture: Crack initiation (formation) Crack propagation (growth)

Chp 8 & 6 Fracture and Failure Analysis

  • Upload
    elodom

  • View
    101

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

1

Chapter 8 (and some of 6)Fracture and Failure Analysis

LEARNING OBJECTIVES…

• Define fracture toughness in terms  of a brief statement and an equation.

• Define the conditions for fracture.

El b t th l ti hi b t i t i t• Elaborate upon the relationship between impact resistance, tensile strength, tensile ductility, and fracture toughness.

• Define hardness and relate it to strength.

FRACTUREThe separation or fragmentation of a solid body into two or more pieces under an applied stress

Figure 8.1 (a) Highly ductile fracture in which the specimen necks down to a

“Fracture is when something breaks into pieces!”

which the specimen necks down to a point.  (b) Moderately ductile fracture after some necking.  (c) Brittle fracture without any plastic deformation.  [Callister, 7th Ed.]

• Steps in fracture:– Crack initiation (formation)– Crack propagation (growth)

Page 2: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

2

Modes of Fracture• Depends upon the ability of the material to undergo plastic deformation prior 

to fracture.

• Fracture modes:

– DUCTILE: most metallic materials, polymers• Extensive plastic deformation in front of crack• Extensive plastic deformation in front of crack.• This allows the crack to resist further extension unless applied stress is

increased.

– BRITTLE: ceramics, ice, cold steel• Very little plastic deformation• Cracks move rapidly without an increase in applied stress.

No fracture is most desirable.When fracture does occur, a ductile fracture is generally better.

With a ductile fracture, the component may maintain some structural capacity before catastrophic failure.

• Ductile Materials:

– Undergo extensive plastic deformation prior to failure

• Brittle Materials:

– Undergo little or no plastic deformation prior to failure.

Figure 6.13 Schematic representations of tensile stress‐strain behavior for brittle and ductile materials loaded to fracture.  [Callister, 7th Ed.]

Page 3: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

3

Brittle vs. Ductile Fracture

a) Very ductile, soft metals (e.g., Au and Pb) at room temperature.  Other metals, polymers, and glasses at high temperatures.

b) Moderately ductile fracture, typical for ductile metals (e.g., Al, Ni).

c) Brittle fracture, typical of cold ferrous metals and ceramics.

Ductile FractureCrack grows 90° to applied stress

Figure 8.2 Stages in the cup‐and‐cone fracture.  (a) Initial necking.  (b) Small cavity formation.  (c) Coalescence of cavities to form a crack.  (d) Crack propagation.  (e) Final shear fracture at a 45° angle relative to the tensile direction (From Ralls Courtney and

a) Necking

b) Cavity formation

tensile direction.  (From Ralls, Courtney and Wulff, Introduction to Materials Science and Engineering, p. 468, Copyright 1976, Wiley, New York).  [Callister, 7th Ed.]

) y

c) Cavity coalescence to form cracks

d) Crack propagation (growth)

e) Fracture

Maximum shear stress

Page 4: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

4

DUCTILE FRACTURE

• Dimples on fracture surface correspond to microcavities that initiate crack formation.

• Picture at left is a typical “cup and cone” fracture. 

BRITTLE FRACTURE

• No appreciable plastic deformation.

• Crack propagates very fast; nearly perpendicular to applied stress.

• Cracks often propagate along • Cracks often propagate along specific crystal planes or boundaries.

Transgranular fracture Intergranular fracture

Page 5: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

5

Transgranular Fracture

Transgranular fracture

Cracks pass through grains, often along specific crystal planes. Fracture surfaces have faceted texture because of

different orientation of cleavage planes in grains.

Transgranular fracture

Intergranular Fracture

Intergranular fracture

Cracks propagate along grain boundaries.

Intergranular fracture

Page 6: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

6

What is the significance of fracture?

• Many high strength materials such as ceramics fracture before yielding.

• Result is that engineering structures may fail at stresses well below the designed load 

icapacity.

• Why???

Fracture of a “perfect” solid

Fracture plane

• Simultaneous rupture of all atomic bonds

A solid that contains no defects

Fracture plane

• Theoretical strength,th E/10

E/10Material GPa psi Au 7.8 1,080,000Cu 12.1 1,680,000

Far greater than experimental values

Thus, fracture does not occur in this fashionWhy is fracture stress lower than theoretical?

Page 7: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

7

Why/How do materials fail?

Are typical loading conditions severe enough to break all interatomicbonds?

NO!

Since we know the stress that is required to break bonds, why do materials fail in service?

DEFECTS!

They concentrate stress locally to levels high enough to rupture bonds

Wh b i l h f ?What about materials that are perfect?

NO MATERIAL IS PERFECT!

There is ALWAYS some statistical distribution of flaws or defects

P

Defect free solid

PP

Defect free solidFlaws concentrate

applied stress!area = P/A

P = load

PPP

P

2a

P

2a

P

Defect in solid

PP

Defect in solid

P

2b

P

2b

b/a 0, local

A1 >> A2

1 >> 2

PPP

1

2

<<

Page 8: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

8

a

As we noted earlierFracture occurs by the nucleation and growth of cracks!

Fundamental ways that loads can operate on cracks

TENSILE SLIDING TEARING

Figure 8.10 The three modes of crack surface 

displacement.  (a) Mode I, opening; (b) mode II, sliding; and (c) mode III, 

tearing mode.[Callister, 7th Ed.]

The mode of loading (state of stress) plays a role in how/when a material will fail.

Page 9: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

9

MATERIALS DO NOT FAIL AT CERTAIN STRESS LEVELS!

All materials fail when the

FRACTURE TOUGHNESS

is exceededis exceeded

Fracture toughness is a characteristic material property that tells you when a material will fail.

K Y

Materials fail when KIC is exceeded

ICK Y a

Toughness Stress Crack Length

Depends on size of flaw and material properties NOT stress

Page 10: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

10

Values of KICMaterial KIC (MPa·m1/2)

Minerals 0.5 – 1

Concrete 0.35

Metals that exhibit high ductility, exhibit high toughness.Concrete 0.35

SLS Glass 1

Most Polymers 1 – 3

Ceramics 3 – 10

Cast Iron 10 – 40

Aluminum Alloys 20 – 50

Ceramics are very strong, but have low ductility and low toughness.

Polymers are veryAluminum Alloys 20 50

Plane Carbon Steels 30 – 100

Titanium Alloys 30 – 120

TRIP Steel ~200

Polymers are very ductile but are not generally very strong in shear (compared to metals and ceramics).  They have low toughness.

Stress–strain curves for dense, polycrystalline Al2O3.

Why are ceramics so much stronger in compression compared to  tension?

Tension CompressionTension Compression

Page 11: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

11

What is Compression?

AAo

P

hho

PA = Aoho/h = V/h

ENGINEERING: S = -P/Ao e = (ho – h)/ho = A – Ao/A

TRUE: = -P/A = ln(ho/h) = ln(A/Ao)

By convention, stress and strain are negative (forces are opposite than tension)

Compression• Friction is important!

– Friction between specimen and press causes barreling (more to come)

– Barreling is where the specimen expands laterally as the top/bottom surfaces are fixed by friction, consequently

• X’section area changes along its height

• Friction dissipates energy  

Makes it difficult to get truly indicative properties

Page 12: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

12

Compression

• In compression, shape of the engineering plastic region different than tensiledifferent than tensile

• Why is the engineering stress higher?– Barreling (x‐section increased, resulting in for more load). Recall S=F/Ao

– Would the true stress‐strain be 

S

the same for compression and tensile? Yes, instantaneous area used! e

Back to our question ‐Why are ceramics so much stronger in compression over tension?

Griffith crack modelGriffith crack model

21

2 cm

Page 13: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

13

In Class Problem:

A glass plate contains an atomic scale crack (tip radius = dia of O‐2 ion).  If crack length = 1 m & theoretical strength = 7.0 GPa, calc. the breaking strength, .  

IMPACT – Toughness• Short term dynamic stressing

– Car collisions– Bullets

Athl ti i t– Athletic equipment– Etc…

• Ability of the material to absorb energy prior to fracture.

• This is different than toughness.

• Useful in quality control.

Page 14: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

14

Influence of Loading Rate on Properties

• Increased loading rate...

-- increases y and TS-- decreases %EL

• Why? An increased rategives less time for dislocations to move pastdecreases %EL dislocations to move past obstacles.

y

TS

TS

larger

ll

27

y

smaller

Figure 8.12(a) Specimen used for Charpy and Izod impact tests.  (b) A schematic drawing of an impact testing 

hi Th

Charpy or Izod test

Strike a notched sample with an anvil.

machine. The hammer is released from a fixed height 

and strikes the specimen; the 

energy expended to break the specimen is reflected in the 

difference between the initial height of the hammer and 

Measure how far the anvil travels following impact.

Distance traveled is related to energy required to break the sample.

h h f l dthe swing height.

[adapted from Callister, 7th Ed.]

Very high rate of loading.  Makes materials more “brittle.”

Impact energy is analogous to toughness.

High impact energy means high toughness; material resists crack propagation

Page 15: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

15

Impact Data for Select Materials

No. Alloy Impact energy [J (ft-lb)]

1 1040 carbon steel 180 (133)

2 8630 low-alloy steel 55 (41)

3 410 stainless steel 34 (25)

4 L2 tool steel 26 (19)

5 Ferrous superalloy (410) 34 (25)5 Ferrous superalloy (410) 34 (25)

6 Ductile iron, quenched 9 (7)

7 2048, plate aluminum 10.3 (7.6)

8 AZ31B magnesium 0.8 (0.6)

9 Ti-5Al-2.5Sn 23 (17)

10 Aluminum bronze, 9% (copper alloy) 48 (35)

11 Monel 400 (Ni-Cu alloy) 298 (220)

12 50:50 solder (Pb alloy) 21.6 (15.9)

13 Nb 1Z 174 (128)13 Nb-1Zr 174 (128)

14 Low density polyethylene 22 (16)

15 High density polyethylene 1.4-16 (1-12)

16 PVC 1.4 (1)

17 Epoxy 1.1 (0.8)

18 Teflon 5 (4)

Impact energies can vary wildly within each class of materials

• Fatigue = failure under cyclic stress.

compression on top

countermotorbe i g

specimenAdapted from Fig. 8.16, Callister 6e (Fig 8 16

FATIGUE – its important

tension on bottom

countermotor

flex coupling

bearing bearing

• Stress varies with time.--key parameters are S and m max

i

time

mS

Callister 6e. (Fig. 8.16 is from Materials Science in Engineering, 4/E by Carl. A. Keyser, Pearson Education, Inc., Upper Saddle River, NJ.)

min time• Key points: Fatigue...

--can cause part failure, even though max < c.--causes ~ 90% of mechanical engineering failures.

Page 16: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

16

• Fatigue limit, Sfat:--no fatigue if S < Sfat

Sfat

case for steel (typ.)unsafe

S = stress amplitude

FATIGUE DESIGN PARAMETERS

• Sometimes, thefatigue limit is zero!

Sfat

N = Cycles to failure103 105 107 109

safe

case for Al (typ )f

S = stress amplitude

Adapted from Fig. 8.17(a), Callister 6e.

Al (typ.)

N = Cycles to failure103 105 107 109

unsafe

safe Adapted from Fig. 8.17(b), Callister 6e.

• Crack grows incrementally

da

dN K m

typ. 1 to 6

FATIGUE MECHANISM

dN

~ a

increase in crack length per loading cycle

• Failed rotating shaft--crack grew even though

Kmax < Kc--crack grows faster if

crack origin

crack grows faster if• increases• crack gets longer• loading freq. increases.

Adapted fromFig. 8.19, Callister 6e. (Fig. 8.19 is from D.J. Wulpi, Understanding How Components Fail, American Society for Metals, Materials Park, OH, 1985.)

Page 17: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

17

1. Impose a compressivesurface stress(to suppress surface

k f i )

S = stress amplitude

near zero or compressive m

Adapted fromFig. 8.22, Callister 6e.

IMPROVING FATIGUE LIFE

cracks from growing)

--Method 1: shot peening --Method 2: carburizing

C-rich gasput

surface into

i

shot

N = Cycles to failure

moderate tensile mlarger tensile m

p m

2. Remove stressconcentrators.

bad

bad

better

better

compression

Adapted fromFig. 8.23, Callister 6e.

Ductile‐to‐Brittle Transition(DBTT)

DuctileBrittle

Figure 8.16 Influence of carbon content on the 

Charpy V‐notch energy‐

Low toughness

High toughness

Charpy V notch energyversus‐temperature behavior for steel.

[from Callister, 7th Ed.]

Dramatic change in impact energy is associated with a change in fracture mode from brittle to ductile.

DBTT occurs in bcc metals but not in fcc metals

Page 18: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

18

• Increasing temperature...

--increases %EL and Kc

• Ductile-to-Brittle Transition Temperature (DBTT)...

Temperature

BCC metals (e.g., iron at T < 914°C)

pact

Ene

rgy

High strength materials ( > E/150)

polymers

More DuctileBrittle

FCC metals (e.g., Cu, Ni)

Imp

Temperature

High strength materials (y > E/150)

Ductile-to-brittle transition temperature

Adapted from Fig. 8.15, Callister 7e.

• Pre-WWII: The Titanic • WWII: Liberty ships

Design Strategy:Stay Above The DBTT!

Reprinted w/ permission from R.W. Hertzberg, Reprinted w/ permission from R.W. Hertzberg,

• Problem: Used a type of steel with a DBTT ~ Room temp.

"Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(a), p. 262, John Wiley and Sons, Inc., 1996. (Orig. source: Dr. Robert D. Ballard, The Discovery of the Titanic.)

"Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 262, John Wiley and Sons, Inc., 1996. (Orig. source: Earl R. Parker, "Behavior of Engineering Structures", Nat. Acad. Sci., Nat. Res. Council, John Wiley and Sons, Inc., NY, 1957.)

Page 19: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

19

HARDNESSHARDNESS• The resistance of a 

material to deformation by indentation.

• Hardness can provide a qualitative assessment of strength.

• Hardness cannot be used to quantitatively infer strength or ductility.

• Useful in quality control

Hardness• Resistance to permanently indenting the surface.• Large hardness means:

--resistance to plastic deformation or cracking incompression.

--better wear properties.

e.g., 10 mm sphere

apply known force measure size of indent after removing load

dDSmaller indents mean larger hardnesshardness.

increasing hardness

most plastics

brasses Al alloys

easy to machine steels file hard

cutting tools

nitrided steels diamond

Page 20: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

20

HARDNESSHARDNESSHardness is the resistance of a material to deformation by indentation.

Hardness can provide a qualitative assessment of strength.

Table 6.5 Hardness testing techniques

Early hardness tests were based on scratching materials with minerals

Figure 6.18 Comparison of several hardness 

scales.[from Callister, 7th Ed.]

Page 21: Chp 8 & 6 Fracture and Failure Analysis

1/12/2011

21

Hardness: Measurement

• RockwellNo major sample damage– No major sample damage

– Each scale runs to 130 but only useful in range 20‐100.  

– Minor load     10 kg

– Major load     60 (A), 100 (B) & 150 (C) kg• A = diamond,  B = 1/16 in. ball,  C = diamond

HB B i ll H d• HB = Brinell Hardness– TS (psi) = 500 x HB

– TS (MPa) = 3.45 x HB