29
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus (ETH Zürich) A. Kashuba (Landau Inst. Moscow) D. Weller, G. Ju (Seagate Technologies) G. Woltersdorf, B. Heinrich (S.F.U. Vancouver) Magnetization dynamics with picosecond magnetic field pulses

Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Embed Size (px)

Citation preview

Page 1: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Christian Stamm

Stanford Synchrotron Radiation LaboratoryStanford Linear Accelerator Center

I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL)

A. Vaterlaus (ETH Zürich)

A. Kashuba (Landau Inst. Moscow)

D. Weller, G. Ju (Seagate Technologies)

G. Woltersdorf, B. Heinrich (S.F.U. Vancouver)

Magnetization dynamics with picosecond

magnetic field pulses

Magnetization dynamics with picosecond

magnetic field pulses

Page 2: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Why Magnetization Dynamics?

constant current

alignment parallel to field

pulsed current (5 ps)

precessional switching

Page 3: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Magnetic Field Pulse

Relativistic electron bunches from the Stanford Linear Accelerator are focused to ~10 m

peak field of ~7 Tesla 10 m from center, falling off with 1/R

-20 0 20 40 60 80 100

0

2

4

6

8

B [T

esla

]

t [ps]

FWHM = 5 ps

Page 4: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

dt

d

dt

d MM

M

HMM

1

- 1

Precession torque

Gilbert damping torque

change in angular momentum

Direction of torques

Motion of M for constant H

Dynamic equation for M

Landau-Lifshitz-Gilbert

Page 5: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

CoCrPt

granular media

Image of M:

Polar Kerr Microscopy

(size 150 m)

After Magnetic Field Pulse

50 m

perpendicular magnetization

Page 6: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

1 pulse 3 pulses 5 pulses

2 pulses

7 pulses

4 pulses 6 pulses

Multiple Field Pulses

50 m

Page 7: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Transition Region

Observed: wide transition region

Calculated: sharp transitions

Model assuming distribution of initial direction for M

0 20 40 60 80 100

-1

0

1

exp. data LLG calculation distribution

M [n

orm

]

R [m]

Page 8: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Initial Distributions of M

Look identical at one point in time

Differences appear with multiple pulses

• Static: angle of anisotropy axes x-ray diffraction: ±4º

• Dynamic:thermal motion, random fields

2sinVKE U 10ºV=(6.5 nm)3

Page 9: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

2 Field Pulses

• static distribution isdeterministic2 pulses should reverse

not observed

• dynamic distribution is stochasticindependent switching probability for each pulse

YES

50 m

0 20 40 60 80 100

-1

0

1

Re

lativ

e M

R [m]

Page 10: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Stochastic Switching

Independent stochastic events:

calculate switching by successive multiplication

M2 = M1 · M1

M3 = M2 · M1

:

Mn = (M1)n

-1

0

1

-1

0

1

-1

0

1

0 20 40 60 80

-1

0

1

0 20 40 60 80 100

M1(R)

2 3

4

6 7

5

1

Rel

ativ

e M

agne

tizat

ion

R[m]

Page 11: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Conclusions

• A picosecond fast magnetic field pulse causes the magnetization to precess and - if strong enough - switch its direction

• In granular perpendicular magnetic media, switching on the ps time scale is influenced by stochastic processes

• Possible cause is the excitation of the spin system due to inhomogeneous precession in the large applied field

Page 12: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Epitaxial Fe / GaAs

SEMPA images of M(SEM with Polarization Analysis)

one magnetic field pulse 50 m

50 m

M0

GaAs (001)

Fe 10 or 15 layers

Au 10 layers

Page 13: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Epitaxial Fe layer

GaAs (001)

Fe 10 or 15 layers

Au 10 layers

Fe / GaAs (001)

FMR characterization:

damping = 0.004

and anisotropies

(G. Woltersdorf, B. Heinrich)

Kerr hysteresis loopHC = 12 Oe

Page 14: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Images of Fe / GaAs

SEMPA images of M(SEM with Polarization Analysis)one magnetic field pulse10 ML Fe / GaAs (001)

50 m

50 m50 m

M0

Page 15: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Thermal Stability

Important aspect in recording media

Néel-Brown model (uniform rotation)

Probability that grainhas not switched:

with and

for long-term stability:

/e)( ttP

kTVuK /

e0 s10 100

years10

Page 16: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Comparison of Patterns

Observed (SEMPA)

Calculated (fit using LLG)

Anisitropies same as FMR

Damping = 0.017

4x larger than FMR

WHY?100 m

Page 17: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

0 1 2 3 40

2

4

6

E/K

u

Number of precessions

10 ML Fe 15 ML Fe

Energy Dissipation

After field pulse:

Damping causes dissipation of energy during precession

(energy barrier for switching: KU)

Page 18: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Enhanced Damping

Precessing spins in ferromagnet: Tserkovnyak, Brataas, BauerPhys Rev Lett 88, 117601 (2002)Phys Rev B 66, 060404 (2002)

source of spin current

pumped across interface into paramagnet

causes additional damping

spin accumulation

1º in FMR, but 110º in our experiment

)01.0(sin

sin2

2

Page 19: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Effective Field H

3 components of H act on M

HD = -MS

demagnetizing field

HK = 2K/0MS

crystalline anisotropy

HE

externally applied field

MHE

HD

HK

Page 20: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Magnetic Field Strength

1010 electrons:B * r =50 Tesla * m

duration of magnetic field pulse: 5 ps

Page 21: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Perpendicular Magnetization

perpendicular anisotropy

M0=(0, 0, -MS)

5 ps field pulse2.6 Tesla

precession and relaxation towards (0, 0, +MS)

00

0

Time evolution

Page 22: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Granular CoCrPt Sample

Size of grains 8.5 nm

Paramag. envelope 1 nm

1 bit 100 grains

TEM of magnetic grains

Page 23: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Radial Dependence of M

Perpendicular magnetized sample (CoCrPt alloy)

0 20 40 60 80 100

-1

0

1

1 Pulse 2 Pulses 3 Pulses 4 Pulses 5 Pulses 6 Pulses 7 Pulses

M

agne

tizat

ion

[a.u

.]

Distance from Center [m]

Page 24: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

In-Plane Magnetization

switching by precession around demagnetizing field

after excitation by 5 ps field pulse0.27 Tesla(finished at *)

(uniaxial in-plane)

Time evolution of M

0

0

0

M0

Page 25: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Precessional Torque: MxH

in-plane magnetized sample: figure-8 pattern

circular in-plane magnetic field H

M

lines of constant (initial) torque

MxH

Page 26: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Magnetization Reversal

Magnetization is Angular Momentum

Applying torque changes its direction

immediate response to field

Fastest way to reversethe magnetization:

initiate precession around magnetic field

patented by IBM

H

M0

M(t)

Page 27: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Picosecond Field Pulse

Generated by electron bunch from the

Stanford Linear Accelerator

data from: C.H. Back et al. Science 285, 864 (1999)

Page 28: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Outline

• Magnetization Dynamics: What is precessional switching?

• How do we generate a picosecond magnetic field pulse?

• Magnetization reversal in granular perpendicular media

• Enhanced Gilbert damping in epitaxial Fe / GaAs films

Page 29: Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus

Co/Pt multilayer

magnetized perpendicular

Domain pattern after field pulse

from: C.H. Back et al.,PRL 81, 3251 (1998):

MOKE – line scan through center

switching at 2.6 Tesla

Previously: Strong Coupling