32
Christina Dimopoulou Max-Planck-Institut für Kernphysik, Heidelberg IPHE, Université de Lausanne, 26.05.2003 Exploring atomic fragmentation with COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy)

Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg

  • Upload
    elu

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

Exploring atomic fragmentation with COLTRIMS (Cold Target Re coil Ion Momentum Spectroscopy). Christina Dimopoulou Max-Planck-Institut f ür Kernphysik, Heidelberg. IPHE, Université de Lausanne, 26.05.2003. Experiment - The “Reaction-Microscope”. - PowerPoint PPT Presentation

Citation preview

  • Christina DimopoulouMax-Planck-Institut fr Kernphysik, Heidelberg

    IPHE, Universit de Lausanne, 26.05.2003

    Exploring atomic fragmentation with COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy)

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Momentum Spectroscopy: Principlelanding zone(detector)velocity,angletime-of-flight and landing position => initial velocity and angle i.e. initial momentum vector

  • electrons position sensitive multi-hitProjectile:Cold Target: supersonic atomic jet molecules clustersDetectors:recoilionsE-fieldRecoil Ion Momentum Spectroscopy single photons intense lasers charged particles t;x,y,z) ~ eVB-field ~ meVReaction Microscope

  • Ion Time-of-flight Ex. Multi-photonionisation of Ar

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Single Photons . . . Intense LaserTarget JetLaserIon DetectorElectron DetectorTi:Sa Laserphoton energy: 1.5 eV (T=2.7 fs)pulse length (FWHM): 30 fsintensity: Imax~1016 W/cm2repetition rate: 3 kHz

  • e1

    Ee

    Ee

    Weak Field:

    Photo Absorption(Einstein 1905)

    Ee ~

    Stronger Field:

    Multi-PhotonIonisation(Gppert-Meier 1931)

    Strong Field:

    Tunnel -Ionisation

  • Multi-photon Single Ionisationelectrons

  • Intense Laser: Single Ionisation =30 fs Ey(t)tI 1015 W/cm2 pulseT=2/=2.7 fs Drift momentum2.1.

  • Intense Laser : Double IonisationsequentialLarochelle et. al J. Phys. B31 (1998)Orders of magnitude difference due to e-e correlation1.1015 W/cm2non-sequential3.1015 W/cm2Moshammer et al. PRL 2000

  • Ne1+

    Ne2+

    1014

    Ion Signal (arb. units)

    Intensity W/cm2

    1015

    1016

  • Non-sequential Double IonisationKuchiev 1987Schafer et al. 1993Ne2+

  • shake - off

    Fittinghoff et al 1992

  • coll. tunnelling

    Eichmann et al 1999

  • e1,e2

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Ion Induced femtosec FieldsExample: Electron Capture

  • Electron Capture: Precision Spectr.

  • Electron Capture: Precision Spectr.capture into n=4excellent resolution: 0.7eV FWHM excellent precision: 3-100 meVmany states resolved simultaneouslyno selection rules

  • 10

    20

    30

    40

    50

    60

    70

    0,0

    0,1

    0,2

    0,3

    0,4

    Q-value / eV

    scattering angle

    Q

    / mrad

    10

    20

    30

    40

    50

    60

    70

    0

    500

    1000

    1500

    Projectile excitation

    x10

    2s 3

    l

    2p 3

    l

    2s 4

    l

    1,3

    L

    counts

    Q value / eV

    Scattering angle / mrad

    Q-value / eV

    counts

    Q-value / eV

  • FWHM 0.72 eV

    2s4d

    1

    D

    2s4d

    3

    D

    2s4p

    1

    P

    2s4s

    1

    S

    2s4s

    3

    S

    counts

    Q value / eV

    Q-value / eV

    counts

  • Atomic & Molecular Break-Up - Intense femtosec laser pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Studies with Highly Charged IonsPrecision Spectroscopy Dynamics of formation: many-electron flux (correlated?)3. Rearrangement processesQuestions:Formation of hollow atomst 1 fs

  • The HITRAP Reaction Microscope Increased Acceptance and Q-Value Resolution Coincident detection of ions, electrons and photons

  • Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Laser Assisted Electron CaptureLaser & ion induced fields combinedLaserI ~ 1013 W/cm2, ~ ns

  • -03 0 0.3Laser Assisted Electron CaptureIntensity1013 W/cm2Ion Longitudinal MomentumImpact ParameterIon Longitudinal Momentum+ pdrift (t0)

  • 10

    20

    30

    40

    50

    60

    70

    0,0

    0,1

    0,2

    0,3

    0,4

    Q-value / eV

    scattering angle

    Q

    / mrad

    Scattering angle / mrad

    Q-value / eV

  • -03 0 0.3Laser Assisted Electron CaptureImpact ParameterIon Longitudinal MomentumT.Kirchner PRL 2002+ pdrift (t0)-03 0 0.3Intensity1013 W/cm2Ion Longitudinal Momentum-0.3 0 0.3

  • 10

    20

    30

    40

    50

    60

    70

    0,0

    0,1

    0,2

    0,3

    0,4

    Q-value / eV

    scattering angle

    Q

    / mrad

    Scattering angle / mrad

    Q-value / eV

  • -03 0 0.3Laser Assisted Electron CaptureImpact ParameterIon Longitudinal MomentumT.Kirchner PRL 2002-03 0 0.3Intensity1013 W/cm2Ion Longitudinal Momentum-0.3 0 0.3

  • Scattering angle / mrad

    Q-value / eV

    counts

    Q-value / eV

  • Atomic & Molecular Break-Up - Intense femtosec Laser Pulses - Ion induced femtosec fieldsExperiment - The Reaction-Microscope

    Future - Studies with HCI : HITRAP - Laser assisted collisions - Sub-attosec ion induced fields

  • Sub-attosecond Ion Induced FieldsHeisenbergs as microscopeInstantan of the initial two (many)-electronwave function

  • Sub-attosecond Ion Induced FieldsHeisenbergs as microscope

  • R. Moshammer, H. Kollmus, D. Fischer, B. Feuerstein, C. Hhr, A. Dorn, C.D. Schrter, A. Rudenko, C. Dimopoulou, K. Zrost, V. Jesus, J. R. Crespo Lopez-Urrutia, A. Voitkiv, T. Kirchner, J. UllrichMax-Planck Institut, HeidelbergH. Rottke, C. Trump, B. BapatE. Eremina, W. SandnerUMR, RollaM. Schulz, R.E. Olson, D. MadisonMax-Born Institut, Berlin Navrangpura, IndiaGSI, DarmstadtS. Hagmann, R. Mann

  • Electron Capture: Precision Spectr.

  • Curve Crossing Model

    c = Q / 2E Half coulomb angle

  • Ne7+ + He

    Ne6+(2s4) + He+

    Ne6+(2p3) + He+

    Ne6+(2s3) + He+

    r

    E

    Q-value / eV

    E

  • Q-value / eV

    c

    way in

    way out

    Scattering angle / mrad

  • Curve Crossing Model

    c = Q / 2E Half coulomb angle

  • Ne7+ + He

    Ne6+(2s4) + He+

    Ne6+(2p3) + He+

    Ne6+(2s3) + He+

    r

    E

    Q-value / eV

    E

  • Recoil Ion Momentum Spectroscopy

  • Reaction Microscope

  • Intense Laser: Single Ionisation =30 fs Ey(t)tI 1015 W/cm2 pulseT=2/=2.7 fs Drift momentum1.2.

  • tunnelling

    Pion =-Pe 0

    e1

  • Rescattering: DynamicstEy(t)y(t)e1Ne1+e2e1Ne2+time delayt0