22
Department of EECS University of California, Berkeley EECS 105 Spring 2017, Module 3 Prof. Ali M. Niknejad Prof. Rikky Muller Circuits and MOS Small-Signal Models

Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

Department of EECS University of California, Berkeley

EECS 105 Spring 2017, Module 3

Prof. Ali M. Niknejad Prof. Rikky Muller

Circuits and MOS Small-Signal Models

Page 2: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

2

Announcements

l  HW 7 is last HW before Midterm l  Next HW will be posted before Spring Break and

due Friday after Spring Break (2 weeks to complete)

l  Next week: Midterm Review (Tuesday), Midterm (Thursday)

l  Syllabus after Spring Break will be updated

University of California, Berkeley

Page 3: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

3

A Simple Circuit: An MOS Amplifier

University of California, Berkeley

DSI

GSV

vgs

DR DDV

vGS =VGS + vgs

ov

Input signal

Output signal

Supply “Rail”

Page 4: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

4

Selecting the Output Bias Point l  The bias voltage VGS is selected so that the output is

mid-rail (between VDD and ground) l  For gain, the transistor is biased in saturation l  Constraint on the DC drain current:

l  All the resistor current flows into transistor:

l  Must ensure that this gives a self-consistent solution (transistor is biased in saturation)

University of California, Berkeley

DD o DD DSR

D D

V V V VIR R− −

= =

,R DS satI I=

DS GS TV V V> −

Page 5: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

5

Finding the Input Bias Voltage l  Ignoring the output impedance

l  Typical numbers: W = 40 µm, L = 2 µm, RD = 25kΩ, µnCox = 100 µA/V2, VTn = 1 V, VDD = 5 V

University of California, Berkeley

2,

1 ( )2DS sat n ox GS Tn

WI C V VLµ= −

2,

1 ( )2 2D

DDR DS sat n ox GS Tn

D

V WI I C V VR L

µ= = = −

22

5V µA 1100µA 20 100 ( 1)50k V 2 GSV= = ⋅ ⋅ −

Ω

.1= (VGS −1V )2 VGS =1.32V VGS −VT = .32V <VDS = 2.5Vü

Page 6: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

6

Applying the Small-Signal Voltage

University of California, Berkeley

Approach I. Just use vGS in the equation for the total drain current iD and find vo

vGS =VGS + vgs

ˆ coss sv v tω=

vO =VDD − RDiDS =VDD − RDµnCoxWL12(VGS + vgs −VT )

2

Note: Neglecting charge storage effects. Ignoring device output impedance.

Page 7: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

7

Solving for the Output Voltage vO

University of California, Berkeley

vO =VDD − RDiDS =VDD − RDµnCoxWL12(VGS + vgs −VT )

2

vO =VDD − RDiDS =VDD − RDµnCoxWL12(VGS −VT )

2 1+vgs

VGS −VT

⎝⎜⎜

⎠⎟⎟

2

DSI

vO =VDD − RDIDS 1+vgs

VGS −VT

⎝⎜⎜

⎠⎟⎟

2

2DDV

Page 8: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

8

Small-Signal Case l  Linearize the output voltage for the s.s. case l  Expand (1 + x)2 = 1 + 2x + x2 … last term can be

dropped when x << 1

University of California, Berkeley

Neglect

vO ≈VDD − RDIDS 1+2vgs

VGS −VT

⎝⎜⎜

⎠⎟⎟

1+2vgs

VGS −VT

⎝⎜⎜

⎠⎟⎟

2

=1+2vgs

VGS −VT+

vgsVGS −VT

⎝⎜⎜

⎠⎟⎟

2

Page 9: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

9

Linearized Output Voltage For this case, the total output voltage is: The small-signal output voltage:

University of California, Berkeley

vO ≈VDD − IDRDS 1+2vgs

VGS −VT

⎝⎜⎜

⎠⎟⎟

vO ≈ (VDD − IDRDS )−2IDRDSvgsVGS −VT

=VDD2−VDDvgsVGS −VT

“DC” Small-signal output

vo ≈ −2IDRDSvgsVGS −VT

= −VDDvgsVGS −VT

Avvgs

Voltage gain

Page 10: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

10

Plot of Output Waveform (Gain!)

University of California, Berkeley

Numbers: VDD / (VGS – VT) = 5/ 0.32 = 16

output

input

mV

Page 11: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

11

There is a Better Way! l  What’s missing: didn’t include device output

impedance or charge storage effects (must solve non-linear differential equations…)

l  Approach II: Solve problem in two steps. –  1) DC voltages and currents (ignore small signals

sources): set bias point of the MOSFET ... we had to do this to pick VGS already

–  2) Substitute the small-signal model of the MOSFET and the small-signal models of the other circuit elements …

l  This constitutes small-signal analysis

University of California, Berkeley

Page 12: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

12

Total Small Signal Current

University of California, Berkeley

( )DS DS dsi t I i= +

DS DSds gs ds

gs ds

i ii v vv v∂ ∂

= +∂ ∂

1ds m gs ds

o

i g v vr

= +

Transconductance Conductance

Page 13: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

13

Changing One Variable at a Time

University of California, Berkeley

Assumption: VDS > VDS,SAT = VGS – VTn (square law)

GSV

/DSI k

3VDSV =1VTV =

Square Law Saturation

Region

Linear Triode Region

Slope of Tangent: Incremental current increase

Page 14: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

14

The Transconductance gm

University of California, Berkeley

Defined as the change in drain current due to a change in the gate-source voltage, with everything else constant

, ,

( )(1 )GS DS GS DS

D Dm ox GS T DS

GS GSV V V V

i i Wg C V V Vv v L

µ λΔ ∂

= = = − +Δ ∂

2, ( ) (1 )

2ox

DS sat GS T DSCWI V V V

λ= − +

( )m ox GS TWg C V VL

µ= −

0≈

2 2DSm ox ox DS

ox

IW Wg C C IWL LCL

µ µµ

= =

2( )

DSm

GS T

IgV V

=−

Gate Bias

Drain Current Bias

Drain Current Bias and Gate Bias

Page 15: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

15

Output Resistance ro

University of California, Berkeley

Defined as the inverse of the change in drain current due to a change in the drain-source voltage, with everything else constant

Non-Zero Slope

DSVδ

DSIδ

IDS / K

VDS (V )

Page 16: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

16

Evaluating ro

University of California, Berkeley

1

,GS DS

Do

DS V V

irv

−⎛ ⎞∂⎜ ⎟=⎜ ⎟∂⎝ ⎠

2( ) (1 )2ox

D GS T DSCWi V V V

λ= − +

02

1

( )2ox

GS T

r CW V VLµ

λ=

01

DS

rIλ

Page 17: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

17

Three-Terminal Small-Signal Model

University of California, Berkeley

ids = gmvgs +

1ro

vds

Page 18: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

18

P-Channel MOSFET

University of California, Berkeley

Everything is flipped around compared to an NMOS. Currents are negative of NMOS.

Page 19: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

19

Square-Law PMOS Characteristics

University of California, Berkeley

/DSI k

VDS (V)

VGS = −2V

VGS = −3V

VGS = −4V

VGS = −1V

Page 20: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

20

Right Side Up!

University of California, Berkeley

VSG = 2V

VSG = 3V

VSG = 4V

VSG = 1V

ISD / k

VSD (V)

Page 21: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

21

Small-Signal PMOS Model

University of California, Berkeley

Page 22: Circuits and MOS Small-Signal Models Prof. Ali M. Niknejad Prof. …rfic.eecs.berkeley.edu/105/pdf/module3-3_SSM.pdf · – 2) Substitute the small-signal model of the MOSFET and

EE 105 Spring 2017 Prof. A. M. Niknejad Prof. Rikky Muller

22

What we’re ignoring for now…

l  The fourth terminal of the MOSFET is the body of the transistor… it can act like a second gate, or “back gate”

l  The junctions of the transistor form pn-junction diodes with body, this introduces parasitic capacitance

l  Modern transistors are very short channel lengths, and there are many “short channel” effects that we’re ignoring, most prominently velocity saturation

l  Subthreshold conduction l  Capacitance!

University of California, Berkeley