Civil Engineering Reviewer.docx

Embed Size (px)

Citation preview

  • 8/17/2019 Civil Engineering Reviewer.docx

    1/97

    MATHEMATICS, SURVEYING & TRANSPORTATION ENGINIRING

    (NOVEMBER 2011)

    Situation 1 – The probability of event A happening is 3/5 and the probability of

    event B happening is 2/3

    1. What is the probability of both A and B happening?

    A. 3/5

    B. 1/5

    C. 2/5

    . !/5

    2. What is the probability of only event A happening i.e. event A happening and

    event B not happening?

    A. !/5

    B. 1/5

    C. 3/5

    . 2/5

    3. What is the probability of either A" or B" or A and B happening?

    A. 11/15B. 1!/15

    C. 3/5. 13/15

    #.

    Situation 2 – Ans$er the follo$ing proble%s&

    !. 'i( )ongr*ent )ir)les are arranged in a )ir)le $ay that ea)h )ir)le is tangent

    to at least t$o other )ir)les. +f the radi*s of ea)h )ir)le is 2 )%" find the

    peri%eter of the polygon for%ed by )onne)ting the )enters of ea)h )ir)les.

    A. 12 )%

    B. 2! )%

    C. 3, )%

    . 32 )%

    5. Whi)h of the follo$ing is/are )orre)t?

    +. sin-A 0 sin-A

    ++. )os-A 0 )os-A+++. tan-A 0 tan-A

    A. + only

    B. ++ only

    C. + +++ only

    . + ++ only

    . A solid re)tang*lar blo) has a vol*%e of 3, )%3

    . +f all side %eas*re areintegers" $hi)h of the follo$ing is the least possible s*rfa)e area?

    A. 42

    B. 2

    C.

    . 2

    #.

    Situation – Ans$er the follo$ing proble%s&

    6. What is the distan)e bet$een the inter)epts of the line ( 7 2y – 0 ,?

  • 8/17/2019 Civil Engineering Reviewer.docx

    2/97

    A. .231B. .6,

    C. .34. 5.!!4

    . +f 8(3 – 8 9 5" find the range of val*es of (.

    A. ∛3 9 ( 9 ∛13B. ∛3 : ( 9 ∛13

    C. ∛3 : ( : ∛13. ∛3 9 ( : ∛13

    #.

    ;.

    G! STRUCTURA" ENGINIRING & CONSTRUCTION

    (NOVEMBER 2011)

    $ith theverti)al. =egle)t the $eight

    of the boo% and for this

    proble%" 1 0 2 0 2%. The

    p*lley at is fri)tionless.

    +.

    1. eter%ine the angle α.

    A. !,>

    B. 35>

    C. !5>

    . 3,>

    2. What is the tension in )able AC in =?

    A. 51.4

    B. 25.3

    C. 3!.4

    . !3.21

    3. What is the total rea)tion at B in =?

    A. 5!.66

    B. !3.21

    C. 16.32

    . 51.4

    #.Situation 2 – The str*t sho$n in the fig*re )arries an a(ial load of @ 0

    1! =.

    ;.

  • 8/17/2019 Civil Engineering Reviewer.docx

    3/97

    !.

    !.

    !.

    !.

    !.

    !.

    eter%ine the bearing stress bet$een the

    pin and the str*t&

    A. !3 @a

    B. 3!5 @a

    C. 25 @a

    . 53 @a

    5. eter%ine the shearing stress in the pin.

    A. 2 @aB. 3 @a

    C. 321 @a. 3!1 @a

    . eter%ine the shearing stress in the bolts

    A. 154.! @a

    B. 14.! @a

    C. 123.4 @a

    . 16.3 @a

    #.

    Situation  – The )ol*%n sho$n in

    the fig*re is loaded $ith a verti)al

    load @ 0 3 = and a lateral load < 0,.!5 =. The )ol*%n is 3 % high

    and is %ade of steel $ith 3,, %%

    o*ter dia%eter" %% thi) and

    $eighs 15, =/%.

    ;.

    6. What is the %a(i%*% stress at the base

    d*e to the load @?

    A. 1.6 @aB. 1.36 @a

    C. 2.5! @a

    . ,.6 @a

    . What is the %a(i%*% stress at the base

    d*e to the lateral load?

    A. !.6 @aB. 5.2 @a

    C. 3.! @a. 2.4 @a

  • 8/17/2019 Civil Engineering Reviewer.docx

    4/97

    4. +f the )ol*%n is a solid ti%ber $ith a dia%eter of 25, %%" $hat is the

    %a(i%*% shearing stress at the base?A. ,.,4 @a

    B. ,.1! @a

    C. ,.,!5 @a

    . ,.,12 @a

    #.

    Situation # – The fra%e sho$n in the fig*re is a)ted *pon by $ind

    load press*re of 1.!! @a. These fra%es are spa)ed % apart nor%al

    to paper. Consider the roller s*pport at B and the oint at as pin.

    1,. eter%ine the horiontal )o%ponent of the rea)tion at A.

    A. 35.6 =

    B. 2.5 =

    C. 1.3 =

    . 12.6 =

    11. eter%ine the verti)al )o%ponent of the rea)tion at A.

    A. 23.4 =

    B. 2,.2 =

    C. 1.5 =

    . 1.3 =

    12. eter%ine the horiontal )o%ponent of the rea)tion at B.

    A. 2.5 =

    B. 1.3 =

    C. 12.6 =

    . 35.6 =

    E!

  • 8/17/2019 Civil Engineering Reviewer.docx

    5/97

    ;. Situation $ – The

    sheet pile sho$n in the

    fig*re is provided $ith

    tension rods spa)ed 3

    %eters apart. The

    $ooden stringers has d

    0 3,, %% and )an be

    )onsidered si%plys*pported at ea)h

    )onne)tion to the

    tension rod. Allo$able

    bending and shearing

    stresses of the stringer

    are 1!.6 @a and 1.!

    @a" respe)tively.

    D.

  • 8/17/2019 Civil Engineering Reviewer.docx

    6/97

    A. 75.! @aB. 7.3 @a

    C. 7.1 @a. 73. @a

    1. What is the reH*ired e))entri)ity e s*)h that the stress in the top fiber

    of the bea% at the fi(ed end is ero?

    A. 23, %%

    B. 1, %%

    C. 2,, %%

    . 2, %%

    E!

    ;. Situation – Ieinfor)ed )on)rete bea%s having $idths of !,, %%

    and overall depths of ,, %% are spa)ed 3 %eters on the )enters as

    sho$n in the fig*re. These bea%s s*pport a 1,, %% thi) slab. The

    s*peri%posed loads on these bea%s are as follo$s&

    D. ead load -in)l. floor finish" )eiling" et).JJJJJJJJJ.3.2 @a

    ive load JJJJJJJJJJJJJJJJJJJJJJJJJ.JJJ.3. @a

  • 8/17/2019 Civil Engineering Reviewer.docx

    7/97

    E!

    ;. Situation ' – Channel se)tions are *sed as p*rlin. The top )hords of

    the tr*ss are sloped !< to 1L. The tr*sses are spa)ed % on )enter

    and the p*rlins are spa)ed 1.2 % on )enters.

    D. oads&

    ead load 0 62, @a

    ive load 0 1,,, @a

    Wind load 0 1!,, @a

      Wind Coeffi)ients&

    Wind$ard 0 7 ,.2ee$ard 0 ,.

  • 8/17/2019 Civil Engineering Reviewer.docx

    8/97

    2!. eter%ine the val*e of the intera)tion eH*ation *sing the load

    )o%bination of ,.65 - 7 7W at the $ind$ard side.A. ,.6

    B. 1.54

    C. 1.25

    . 1.6

    #.

    Situation The )ol*%n sho$n in the fig*re is s*be)ted to shear

    for)e parallel to the ,, %% side. Allo$able )on)rete shear stress for

    shear parallel to the ,, %% side is ,.1 @a. Con)rete strength fM ) 

    0 21 @a and steel strength for both longit*dinal and )onfining

    reinfor)e%ents is !15 @a. The ties are all 12 %% in dia%eter $ith

    )lear )over of !,%%.

    25. eter%ine the fa)tored shear for)e L* that the )ol*%n )an resist if the

    no%inal shear strength provided by the ties is 365 =.

    A. 36

    B. !2

    C. !6

    . 532

    2. +f the ties are spa)ed at 225 %% on )enters" $hat is the %a(i%*%

    val*e of L* in =?

    A. !62

    B. !21

    C. 335

    . 34

    26. +f the fa)tored shear for)e parallel to the ,, %% side is !,, ="

    deter%ine the reH*ired spa)ing of transverse reinfor)e%ent in a))ordan)e

    $ith the provision for seis%i) design.

    A. 12 %%

    B. 1! %%

    C. 2!1 %%

    . 1,, %%

    E!

    *! $!21!# S+-ia. P/oiion o/ Si3i- 4i5n

    D. $!21!#!# T/an/ Rino/-3nt

    $!21!#!#!1 Transverse reinfor)e%ent as spe)ified belo$ shall be

    provided *nless a large a%o*nt is reH*ired by 'e). 5.21.6

  • 8/17/2019 Civil Engineering Reviewer.docx

    9/97

  • 8/17/2019 Civil Engineering Reviewer.docx

    10/97

    W. f yh 0 spe)ified yield strength of transverse reinfor)e%ent" @a

    R. h) 0 )rossse)tional di%ension of )ol*%n )ore %eas*red )enterto

    )enter of o*ter legs of the transverse reinfor)e%ent )o%prising area Ash"

    %%

    S. h( 0 %a(i%*% horiontal spa)ing of hoop of )rosstie legs on all fa)es of

    )ol*%n" %%

    . s 0 spa)ing of transverse reinfor)e%ent %eas*red along the longit*dinal

    a(is of the str*)t*ral %e%ber" %%

    AA.

    Situation 10 – The girder AB sho$n in the fig*re is s*be)ted to

    torsional %o%ent fro% the loads on the )antilever fra%e. The follo$ing

    fa)tored for)es are )o%p*ted fro% this bea%&

    ;a)tored %o%ent" * 0 !!, =%

    ;a)tored shear" L* 0 2, =

    ;a)tored torH*e" T* 0 1, =%

    AB. The girder has a $idth of !,, %% and an overall depth of 5,,

    %%. Con)rete )over is !, %%. The )entroid of longit*dinal bars of the

    girder are pla)ed 5 %% fro% the e(tre%e )on)rete fibers. Con)rete

    strength fM )  0 2,.6 @a and steel yield strength for longit*dinal bars is

    f y 0 !15 @a. Gse 12 %% Gstirr*ps $ith f yt 0 265 @a. Allo$able

    shear stress in )on)rete is ,.6 @a.

    2. eter%ine the reH*ired area of tension reinfor)e%ent of the girder" in

    %%2.

    A. !"15!B. 2"632

    C. 3"63. 3"313

    24. eter%ine the spa)ing of transverse reinfor)e%ent d*e to L*.

    A. 136 %%

    B. 16 %%

    C. 4 %%

    . 15 %%

    3,. eter%ine the additional area of longit*dinal reinfor)e%ent to resist

    torsion" in %%2.

    A. 3"5,B. 3"!2,

    C. 2"5,. !"12,

  • 8/17/2019 Civil Engineering Reviewer.docx

    11/97

    #.

    ;.

    D. Co67

    1. T8/8o.6 to/ion7 ;or =onprestressed %e%bers" it shall be per%itted to

    negle)t torsion effe)ts if the fa)tored torsional %o%ent T* is less than&H!

    I! T* U112

    ∅√ f  ' 

    c ( Acp

    2

     Pcp )2. To/iona. 3o3nt t/n5t87 The adeH*a)y of solid se)tions *nder )o%bined

    shear and torsion shall be s*)h that&

    O. √(  V u

    bw d)

    2

    +(  T u P h

    1.7 Aoh)

    2

     9∅(   V cbw d +

    2

    3 √ f 

    c)

    3. Where T* e()eeds the threshold torsion" design of )rossse)tion shall be basedon&K.

    . ∅ Tn : T*

    . T* 0 2 Ao A t  f  yt 

    s   )ot V

    =.P. Where Ao shall be deter%ined by analysis e()ept that is shall be

    per%itted to tae Ao eH*al to ,.5Aoh V shall not be taen s%aller than 3,

    degrees nor larger than , degrees. +t shall be per%itted to tae V eH*al to&

    @.-a !5 degrees for nonprestressed %e%bers or %e%bers $ith less prestress than

    in -b or

    Q.

    -b 36.5 degrees for prestressed %e%bers $ith an effe)tive prestress for)e not

    less than !, per)ent of the tensile strength of the longit*dinal reinfor)e%ent.

    I.

    !. The additional area of longit*dinal reinfor)e%ent to resist torsion" Al" shall not

    be less than&

  • 8/17/2019 Civil Engineering Reviewer.docx

    12/97

    '.

    Al 0

     A t 

    s  ph( f  yt f  y ) )ot2 V

    5. Mini3u3 to/ion /ino/-3nt7 Where torsional reinfor)e%ent is reH*ired"

    the %ini%*% area of transverse )losed stirr*ps shall be )o%p*ted by&

    T.

    G. Av 7 2At 0 ,.,2   √ f ' c b

    w sf  yt 

    L. b*t shall not be less than -,.35b$s/f yt. Where torsional reinfor)e%ent is reH*ired" the %ini%*% total area of

    longit*dinal torsional reinfor)e%ent" Al %in" shall be )o%p*ted by&

    W.

    Al %in 0

    5√ f ' c Acp12 f  y

    − A t 

    s  ph( f  yt f  y )

    6. S+a-in5 o to/ion /ino/-3nt7 The spa)ing or transverse torsion

    reinfor)e%ent shall not e()eed the s%aller of ph / or 3,, %%.

    R. The longit*dinal reinfor)e%ent reH*ired for torsion shall be distrib*ted

    aro*nd the peri%eter of the )losed stirr*ps $ith a %a(i%*% spa)ing of 3,,

    %%. The longit*dinal bars or tendons shall be inside the stirr*ps. There shall

    be at least one longit*dinal bar or tendon in ea)h )orner of the stirr*ps.

    ongit*dinal bars shall have a dia%eter at least ,.,!2 ti%es the stirr*p

    spa)ing" b*t not less than a =o. 1,.

    S. Where&

    . A)p area en)losed by o*tside peri%eter of )on)rete )ross se)tion" %%2

    AA. Al total area of longit*dinal reinfor)e%ent to resist torsion" %%2

    AB. Ao gross area en)losed by shear flo$ path" %%2

    AC. Aoh area en)losed by )enterline of the o*ter%ost )losed transverse

    torsionalA.  reinfor)e%ent" %%2

    A#. At area of one leg of a )losed stirr*p resisting torsion $ithin spa)ing s"

    %%2

    A;. f  yt spe)ified yield strength fy of transverse reinfor)e%ent" @aAD. @)p o*tside peri%eter of )on)rete )ross se)tion" %%

    A

  • 8/17/2019 Civil Engineering Reviewer.docx

    13/97

    AP. Ans$er Key&

    [email protected]

    AQ.

    2 B

    AI.3 A

    A'.

    ! A

    AT.5

    B

    AG.

    A

    AL.6

    B

    AW.

    C

    AR.4

    AS.1

    ,

    A

    A.

    11 B

    BA.

    12 C

    BB.

    13

    BC.

    1! C

    B.

    15 C

    B#.

    1 C

    B;.1

    6

    BD.

    1

    B

  • 8/17/2019 Civil Engineering Reviewer.docx

    14/97

    CK.

    C"! So.ution

    CM!  

    Situation 1

    CN!

    CP.

    C@.

    CQ.

    CI.

    C'.

    CT.

    CG.

    CL.

    CW. 'in)e p*lley is fri)tionless" the tensions at sla) and tight sides are

    eH*al.

    CR. T 0 W 0 3, =

    CS. By inspe)tion" α 0 09

    C. a 0 2 se) 3,> 0 2.3,4 % d 0 ! tan 3,> 0 2.3,4 %

    A. Considering the ;B of the boo%&

    YB 0 , T) sin,> ( a 7 T ( d 0 T ( !

    T) 0 2$!$ :N

    B. Y;

  • 8/17/2019 Civil Engineering Reviewer.docx

    15/97

    4H!  Situation 2

    +. @ 0 1! =

    O. Pa/t 17 Bearing stress bet$een the pin and str*t&

      Bearing area Ap 0 2 ( -pin-tstr*t

      Ap 0 2 ( -1-1,

      Ap 0 32, %%2

    4;!   f p 0  P

     A p f p 0148,000

    320

    f p 0 #%2!$ MPa

    . Pa/t 27 'hearing stress in pin& -do*ble shear

      'hearing area" AL 0 2 (π 

    4  -12 0 ,!.2! %%2

      'hear for)e" @L 0 @ 0 1! =

    . f  L 0

     PV 

     A V  f p 0148,000

    402.124

    f p 0 %'!0$ MPa

    =. Pa/t 7 'hearing stress in bolts&

      'hearing area" AL 0 2 (π 

    4  -12 0 ,!.2! %%2

      'hear for)e" @L 0 @ )os 3,>  @v 0 1! )os 3,>

      @v 012.162 =

    P. f L 0

     PV 

     A V  f p 0128,172

    804.248

    f p 01$!# MPa

    4P!  Situation

    Q. Pa/t I an6 II7

    P*ter dia%eter" o 0 3,, %%

    +nner dia%eter" i 0 2 %%

    I. Area" A 0 π 

    4 -3,,2 – 22 0 5"5!1.66 %%2

  • 8/17/2019 Civil Engineering Reviewer.docx

    16/97

    '. o%ent of inertia" + 0 π 

    64 -3,,! – 2! 0 54.4,1 ( 1,

    %%!

    o%ent d*e to @" p 0 @ ( e 0 3 ( ,.1 0 ,.3 =%

      o%ent at base d*e to

  • 8/17/2019 Civil Engineering Reviewer.docx

    17/97

    E4!

    ##. Bay" s 0 %

    $ 0 ) ( p ( s

    #;. $1 0 ,.,-1.!!-

    $1 0 .412 =/%

    $2 0 ,.1-1.!!-

      $2 0 ,.! =/%

    #D. $3 0

    ,.5-1.!!-

    $3 0 !.32 =/%

    $! 0 ,.!-1.!!-

    $! 0 3.!5 =/%

    #

    #+. ;1 0 $1 ( ! 026.! =

    #O. ;2 0 $2 ( .325 0

    5.!! =

    ;2( 0 ;2 sin V

    0 1.62 =

    ;2y 0 ;2 )os

    V 0 5.1! =

    ;3 0 $3 ( .325 0

    26.322 =

    ;3( 0 ;3 sin V

    0 .! =

    ;3y 0 ;3 )os

    V 0 25.42 =

    #K. ;! 0 $! ( ! 0 13.2! =

    #. YA 0 , ;1-2 7 ;!-2 7 ;3(-5 0 BL-12 7 ;2(-5 7 ;2y-37;3y-4

    26.!-2 7 13.2!-2 7 .!-5 0 12BL 7 1.62-5

      7 5.1!-37 25.42-4

    BL 0 1,.4!! = -do$n$ard

    #. Y;L 0 , AL 7 BL 7 ;2y 7 ;3y 0 ,

    AL 0 < 20!1% :N -do$n$ard

    #=. Y right 0 , -'ee fig*re belo$

    ;3-3.12 7 ;!-! 7 B

  • 8/17/2019 Civil Engineering Reviewer.docx

    18/97

    26.322-3.12 7 13.2!-! 7 B

  • 8/17/2019 Civil Engineering Reviewer.docx

    19/97

    ER!

    ER!

    ES!

    #T. ;1 0

    1

    2  K a γ soil  

  • 8/17/2019 Civil Engineering Reviewer.docx

    20/97

    *A!

    f b 0 6 M 

    b d2  9 ;b 

    6 (63.853 x106)

    b(300)2  0 1!.6

    b 0 2'!% 3

    *B! f L 0

    3 V 

    2 bd  9 ;L 

    3 (85,137)

    2b (300)  0 1.!

    b 0 2'!% 3

    *C!  Situation %

    ;. $ 0γ 

    ) ( bh $ 0 2, ( -,.!-,.

    $ 0 !. =/%

    ;#. o%ent at fi(ed end 0 1- 7 !.--3

    0 14!.! =%

    ;;. A(ial stress d*e to prestressing for)e" f  pa 0

    − Psbh  

    f pa 0

    −540,000400(600)

    ;D. ;pa 0 2.25 @a

    ;

  • 8/17/2019 Civil Engineering Reviewer.docx

    21/97

    ;=. f  top 0 2.25 ,.,225e 7

    6 M 

    b h2  

    ;P. f  top 0 2.25 – ,.,225-1,, 76 (194.4 x 106)

    400(600)2

    ;@. f  top 0 > !% MPa 

    ;Q. Pa/t 7 Lal*e of EeF s*)h that the stress in the top fiber

    at fi(ed end is ero&

    ;I. f top 0 2.25 – ,.,225e 7

    6 M 

    b h2

    ;'. , 0 2.25 – ,.,225e 76 (194.4 x 106)

    400(600)2  

    ;T. e 0 2%0 33

    *U! Situation

    ;L. Gnit $eight of )on)rete"γ 

    ) 0 2! =/%3

    ead load press*re 0 3.2 @a

    ive load @ress*re 0 3. @a

    ;W. Weight of bea%&

    $b 0γ 

    ) A) $b 0 2!-,.!-,.

    $b 0 5.6 =/%

    ;R. Weight of slab&

    ps 0γ 

    ) t ps 0 2!-,.1

    ps 0 2.! @a

    ;S. ;a)tored floor press*re&

    p* 0 1.!-3.272.! 7 1.6-3.

    p* 0 13.4 @a

    ;. #H*ivalent load on bea% d*e to fa)tored press*re&

  • 8/17/2019 Civil Engineering Reviewer.docx

    22/97

    DA. $*1 0

     pu s

    6  3−( s ! )

    2

     x 2$*1 0

    (13.96 ) (3 )6   [3−(   37.5 )

    2

    ] x 2$*1 0 34.! =/%

    DB. Total fa)tored *nifor% load -in)l*ding bea% $eight

    $* 0 1.!-5.6 7 34.!

    $* 0 #!1 :N?3 → Pa/t 1

    DC.

    D. o%ent at D" D 0−wu !

    2

    12 D 0

    −47.71(7.5)2

    12

    D 0 223.!3 =%

    D#. Iea)tion at D" ID 01

    2  $*  ID 01

    2  -!6.61-6.5

    ID 0 16.41 =

    G*! a(i%*% fa)tored shear in bea% D

  • 8/17/2019 Civil Engineering Reviewer.docx

    23/97

    DK. ead load press*re 0 62, @a

    ive load press*re 0 1,,, @a

    Wind 0

    1!,, @a

    Bea%

    $eight 0 64 =/%

    ;b( 0 2,6

    @a;by 0 2,6

    @a

    V 0 ar)tan

    -1/!

    V 0 1!.,3>

    D.

    D. Wind )oeffi)ient&

    Wind$ard )oeffi)ient 0 ,.2

    ee$ard )oeffi)ient 0 ,.

    D=. ead load $ 0 62,-1.2 764

    $ 0 4!3 =/%

    DP. ive load $ 0 1,,,-1.2

    $ 0 12,, =/%

    D@. Wing& $$$ 0 1!,,-1.2-,.2

    $$$ 0 33 =/%

    DQ. $l$ 0 1!,,-1.2-,.$l$ 0 1,, =/%

    DI. Pa/t 17 *e to dead and live load only

    D'. $= 0 -$ 7 $ )os V $= 0 -4!3 712,, )os 1!.,3>

    $= 0 2,64.,15 =/%

    DT. $T 0 -$ 7 $ sin V $T 0 -4!3 712,, sin 1!.,3>

    $T 0 514.65! =/%

    DG. ( 0 w "  !

    2

    8 ( 02079.015 (6)

    2

    8  

    ( 0 4.35 =%

    DL. f  b( 0

     M  x

    # x f b( 09.356 x 10

    6

    6.19 x104

    f b( 0 151.1!.@a

  • 8/17/2019 Civil Engineering Reviewer.docx

    24/97

    DW. y 0wT  !

    2

    8 y 0519.754 (6)2

    8

    y 0 2.334 =%

    DR. f  by 0

     M  y

    # y f by 02.339 x 10

    6

    1.38 x 104

      f by 0 1%!#'$ MPa

    DS. Pa/t 27 ead 7 ive 7 Wind on $ind$ard side

      $=2 0 ,.65-$= 7 $$$ $= 0 ,.65-2,64.,15 7

    33

    $= 0 111.22 =/%

    D. $T2 0 ,.65-$T $T 0 ,.65-514.65!

    $T 0 34.15 =/%

  • 8/17/2019 Civil Engineering Reviewer.docx

    25/97

    ,.1 @a

    fM ) 0 21 @a

  • 8/17/2019 Civil Engineering Reviewer.docx

    26/97

  • 8/17/2019 Civil Engineering Reviewer.docx

    27/97

    ) 1,, 7

    350−h x3  

    h( 0 [ -,, – 2 ( !, – [-12 7 [-25 7[-12

    h( 0 262.5 %%

      1,, 7

    350−h x3  0 12 %%

    +C. Therefore" *ses s 0 1,, %%

    I4!  Situation 10

    +#. * 0 !!, =% )over 0 !, %%

    L* 0 2, = fM  ) 0 2,.6 @a

    T* 0 1, =% f  y 0 !15 @a

    b 0 !,, %% f  yt 0 265 @a

    h 0 5,, %% Bar dia%eter" d 0 12 %%

    Allo$able shear stress in )on)rete" ;v) 0 ,.6 @a

    +;. #ffe)tive depth" d 0 5,, – 5 0 !35 %%

    +D. Pa/t 17

    * 0 !!, =%

    +

  • 8/17/2019 Civil Engineering Reviewer.docx

    28/97

    +P. *1 0 * %a( 0 !,6 =%

    +@. * 0 *1 7 *2  !!, 0 3.32 7 *2

    *2 0 63. =%

    +Q. Tension steel area" As 0 As1 7 As2 

    +I. As1 0 N%a( bd As1 0,.,154-!,,-!35

    As1 0 2"6, %%2

    +'. *2 0 T2 -d – dM 63.6 ( 1, 0 As2 -!15-!35

    5

    As2 0 533 %%2

    +T. As 0 2"6, 7 533 0 , 1 332 

    +G. Pa/t 27

    L* 0 2, =

    +L. Av 0 2 (π 

    4  -122 0 22.2 %%2

    +W. Ln 0

    V u

    ϕ   Ln 0280

    0.85  

    Ln 0 324.!12 =

    +R. L) 0 ;v) b$ d L) 0 ,.6-!,,-!35

    L) 0 132.2! =

    +S. Ls 0 Ln – L) Ls 0 324.2! – 132.2!

    Ls 0 146.16 = U 1/3 √ f c' 

    bw d

    +. ' 0

     A % f  yh d

    V s   s 0226.2 (275 ) (435 )

    197,170  

    s 0 136.2 %%

    OA. a(i%*% spa)ing -d/2 0 216.5 %% or ,, %%

    OB. Therefore" s 0 136 %%

    OC. Pa/t 7

    Al 0

     A t 

    s  ph( f  yt f  y )cot

    2)  

    V 0 !5>

    ( 0 !,, – ! ( 2 0 3, %%

    y 0 5,, – ! ( 2 0 !, %%

    Aoh 0 ( y 0 3,-!, 0 125"! %%2

  • 8/17/2019 Civil Engineering Reviewer.docx

    29/97

    Ao 0 ,.5Aoh 0 1,"1!

    %%2

    ph 0 2 -( 7y 0 1!32

    %%

    O. Tn 0 T u

    ϕ  0

    180

    0.85  0

    211.66 =%

    O#. Tn 0

    2 Ao A t  f  yt 

    s  cot )  

    211.66 ( 1, 0

    2 (106,814 ) At (275)

    s  cot 45*

    O;.

     A t 

    s  0 3.,5 %%

    OD. Al 0

     A t 

    s  ph( f  yt f  y )cot

    2)

    Al 0 3.,5-1"!32  (

    275

    415)

     )ot2 

    !5>

    Al 0 3" !2, %%2

    @H!

    @I!

    @@!

    @;!

    @"!

    O. MATHEMATICS, SURVEYING & TRANSPORTATION

    ENGINIRING

    (MAY 2012)

    1. R and S are inversely proportional $ith ea)h other. Diven that R 0 15",,, $hen

    S 0 12"5,,. ;ind R $hen S 0 32"!,,.

    A. 6"!22.35

    B. "56.!5

    C. 6"!4.5

    . "45.32

    2. The s*% of seven )onse)*tive integers is ero. What is the s%allest integer?

    A. !

    B. 1

    C. 3

    . 2

  • 8/17/2019 Civil Engineering Reviewer.docx

    30/97

    3. The s*% and prod*)t of three distin)t positive integers are 15 and !5"

    respe)tively. What is the largest integer?

    A. 5

    B. 4

    C. 15

    . 6

    !. What is the )*rved s*rfa)e area of a spheri)al seg%ent -$ith t$o bases if the

    dia%eters of the bases" $hi)h are 25 )% apart" are 1,, )% and 1!, )%"

    respe)tively.

    A. 11"63.!3 )%2

    B. 1,"56.43 )%2C. 13"63.3! )%2

    . 12"32.65 )%2

    5. The area of a par on a %ap is 5,, %%2. +f the s)ale of the %ap is 1 to !,",,,"

    deter%ine the tr*e area of the par in he)tares -1 he)tare 0 1,!%2

    A. !,

    B. ,

    C. 1,

    . 12

    . #val*ate the interal&   ∫π 

    3

    2 π 

    3

    cscx cot x dx  

    A. 1

    B. ,

    C. [

    . 1

    6. ;ind the general sol*tion of the follo$ing differential eH*ation&

    . yF 7 3yM !y 0 ,

    A. y 0 C1 e!( 7 C2 ( e(

    B. y 0 C1 e!( 7 C2 ( e

    (C. y 0 C1 e!( 7 C2 e(

    . y 0 C1 e!( 7 C2 e

    (

    #.

    ;.

    D.

  • 8/17/2019 Civil Engineering Reviewer.docx

    31/97

    A. 3!.!=B. 3 =

    C. 32.12 =

    . !2 =

    2. 'i( - steel )ables are *sed

    to s*pport a )ir)*lar

    %o*lding having a dia%eter

    of 2 % and $eighing 3.=/%. The )ables are eH*ally

    spa)ed aro*nd the %o*lding

    and atta)hed to a single hoo

    3 % above the %o*lding. +f 

    the allo$able stress in the

    )able is 1,5 @a" $hat is the

    reH*ired dia%eter?

    A. %%

    B. 6 %%C. 4 %% . 1, %%

    3. A verti)al steel rod is fi(ed at the top and s*pports an = load at the lo$er

    end. The rod is 1,%% n dia%eter and 25 %% long. Gnit $eight of steel is 66

    =/%3. What is the total elongation of the rod?

    A. 12.632 %%

    B. 12.53 %%

    C. 12.463 %%

    . 12.12 %%

    !. A hallo$ )ir)*lar t*be has an o*tside dia%eter of 5 %% and is 5 %% thi). The

    t*be is fi(ed -)antilever at one end and s*be)ted to a torH*e of ! =% at its

    free end. What is the %a(i%*% shearing stress in the t*be?

    A. 6.5 @a

    B. 4.6 @a

    C. 42.3 @a

    . !.2 @a

    5. A de)orative )on)rete bea% is si%ply s*pported over a span of %. The bea%

    $eighs ! =/% and the )ra)ing %o%ent is 3 =%. What is the safe *nifor%

    load of the bea%?

    A. !.!! =/%

    B. !.! =/%

    C. 5.2! =/%

    . 3.! =/%

    . A 2. % )antilever bea% )arries a *nifor%ly distrib*ted load of 2, =/%

    thro*gho*t its length and a )on)entrated load of 3, = at a point 2 %eters fro%

    the fi(ed end. What is the bending %o%ent at the fi(ed end?

    A. 41.3 =%

    B. 6.6 =%

    C. 123.4 =%

    . 44.2 =%

    6. A 12 % long bea% is si%ply s*pported at the left end and at 3 % fro% the right

    end. The bea% $ill be s*be)ted to a *nifor%ly distrib*ted %oving load. What

  • 8/17/2019 Civil Engineering Reviewer.docx

    32/97

    total length of the bea% %*st be s*be)ted to this load to prod*)e %a(i%*%

    negative %o%ent at %idspan?A. 4 %

    B. 3 %

    C. 6.5 %

    . !.5 %

    E!

    ;. Situation 1 – The

    hoo is s*be)ted to

    three for)es @" Qand ' as sho$n. @ 0

    35 = and Q 0 !5

    =.

    . eter%ine the angle α

    s*)h that the res*ltant of 

    the three for)es is , =

    a)ting horiontally to the

    right.

    A 22.5>B 21.6>

    C 2!.4> 23.12>

    1. +f angle α 0 ,>" find the %agnit*de of the for)e ' s*)h that the res*ltant

    for)e is horiontal to the right.

    A ! =

    B 51 =

    C !2 =

    !5 =

    2. ;ind the %agnit*de of the for)e ' s*)h that the three for)es are in eH*ilibri*%.

    A. !3.6 =

    B. !,.43 =

    C. !5.4 =

    . 3.5 =

    E!

    ;. Situation 2 –

    The horiontal

    distan)e fro%

    A at one end of 

    the river to

    fra%e C at theother end is 2,

    %. The )able

    )arries a load

    of W 0 5, =. The sag EdF of the )able is 1 %.

    D.

    3. ;ind the distan)e (1 s*)h that the tension in seg%ent AB of the )able is eH*al

    to that seg%ent BC.

  • 8/17/2019 Civil Engineering Reviewer.docx

    33/97

    A. 4 %B. 1, %

    C. 12 %. 11 %

    !. Cal)*late the tension in seg%ent BC $hen (1 05 %.

    A. 2,.5 =B. 16!.4 =

    C. 15.!3 =. 16.42 =

    5. What is the total length of the )able $hen (1 0 5 %?

    A. 2,.13 %

    B. 2,.6 %

    C. 21.12 %

    . 14.6 %

    E!

    ;. Situation – The 1.%

    dia%eter )ir)*lar plate

    sho$n is s*pported by

    eH*ally spa)ed posts along

    its )ir)*%feren)e. A load @

    0 115, = is pla)ed at

    distan)e ( 0 ,.!5 % fro%

    post A.

    . =egle)ting the $eight of the

    plate" $hat is the rea)tion at post

    A?

    A. 3!.2 =B. 6.6 =

    C. 141.6 =

    . 14!. =

    6. =egle)ting the $eight of the plate" $hat is the rea)tion at post B?

    A. 6.6 =

    B. 3!.2 =

    C. 14!. =

    . 141.6 =

    . Considering the $eight of the plate" $hat is the rea)tion at C? the plate is !5

    %% thi) and the *nit $eight of steel is 66 =/%3.

  • 8/17/2019 Civil Engineering Reviewer.docx

    34/97

    A. 14!. =B. 141.6 =

    C. 3!.2 =

    . 6.6 =

    #. Situation # – The

    billboard" 3 % high by ! %

    $ide" is s*pported as sho$

    in the fig*re. The total$eight of the billboard is 3,

    =. < 0 1.5 %" V 0 ,>.

      Wind press*re" H 0

    1. @a

      Wind press*re

    )oeffi)ient" ) 0 1.,

    4. The horiontal )o%ponent of the rea)tion at A is nearest to&

    A. 14.5! =

    B. 21.4 =

    C. 1.3 =

    . 12.!5 =

    1,. What is the a(ial stress str*t BC $hose )ross se)tional di%ension is %% (

    6 %%?

    A. 4!.1 @a

    B. 6.3 @a

    C. 6.5 @a

    . 1,2. @a

    11. +f the str*t AB $ere repla)ed by a 1 %% ∅ steel )able" deter%ine thenor%al stress -in @a in the )able.

    A. .5 @aB. 4,.1 @a

    C. 4.3 @a. 44.1 @a

    #. Situation $ –

    A girder

    $eighing 1

    =/% is

    s*spended on

    a paraboli)

    )able by a

    series of 

    verti)al

    hanger. The length of the bea% is 2! % and the sag of the )able is 3

    %.

    12. What is the verti)al )o%ponent of the rea)tion at A?

    A. 2!, =B. 25, =

    C. 21 =. 265 =

    13. What is the tension in the )able at the )enter?

  • 8/17/2019 Civil Engineering Reviewer.docx

    35/97

    A. !6 =B. !12 =

    C. !32 =. 521 =

    1!. +f the allo$able )able tension is 3, =" $hat is the %ini%*% sag?

    A. !.5 %B. 3.5 %

    C. 5 %. 5.5 %

    #. Situation % – 'teel tan $ith an o*tside dia%eter of ,, %% has a

    $all thi)ness of %%. The tan is *sed as storage of gas *nder a

    press*re of 2.2 @a.

    15. eter%ine the val*e of the tangential stress in the tan $all.

    A. 3.2 @a

    B. ,.3 @a

    C. 4.! @a

    . 4,.2 @a

    1. eter%ine the val*e of the longit*dinal stress in the tan $all.

    A. 3.5 @a

    B. !3.1 @a

    C. 3!.6 @a

    . !,.2 @a

    16. +f the allo$able tensile stress in the $all is 12! @a" to $hat val*e %ay the

    gas press*re be in)reased?

    A. 3.65 @aB. 2.63 @a

    C. !.123 @a. 3.346 @a

    #. Situation  – The solid pole

    sho$n in the fig*re is loaded $ith

    verti)al load @ 0 3= and lateral

    load < 0 ,.!5 =. The pole is 3 %high 2, %% dia%eter and

    $eighs 22 =/%3.

    1. What is the %a(i%*% )o%pressive

    stress at the base?

    A. ,.65 @a

    B. ,. @aC. ,.5 @a

    . ,.52 @a

    14. What is the %a(i%*% tensile stress at

    the base?

    A. ,. @a

    B. ,.52 @aC. ,.65 @a

    . ,.5 @a

    2,. What is the %a(i%*% shearing stress in the pole?

    A. ,.,,46 @a B. ,.,,5! @a

  • 8/17/2019 Civil Engineering Reviewer.docx

    36/97

    C. ,.,132 @a . ,.,115 @a

    #. Situation ' –

    The barge

    sho$n in the

    fig*re s*pports

    the load $1 and

    $2. ;or this

    proble%" $1 0

    1!5 =/%" $2

    0 24, =/%" 1

    0 3 %" 2 0

    %" 3 0 3 %.

    21. What is the length of barge EF so that the *p$ard press*re is *nifor%?

    A. 15 %

    B. 12 %

    C. 2, %

    . 1 %

    22. What is the shear at 3 % fro% the left end?

    A. 12 =

    B. 151 =

    C. 14! =

    . 16! =

    23. At $hat distan)e fro% the left end $ill the shear in the barge be ero?

    A. ! %

    B. 5.5 %

    C. 5 %

    . !.5 %

    #. Situation  – A )on)rete pad s*pports t$o distrib*ted loads of 112

    =/%" as sho$n in the fig*re. +t reH*ired to deter%ine the %a(i%*%shear ad %o%ent in the pad d*e to these loads.

    2!. What *nifor% base press*re EHF is ind*)ed by these loads?

    A. 2! =/%

    B. 32 =/%

    C. ! =/%

    . !2 =/%

    25. What is the %a(i%*% shear a)ting on the )on)rete pad?

    A. 2! =B. !2 =

    C. 32 =. ! =

    2. What is the %a(i%*% %o%ent on the pad?

    A. !2 =%B. 2! =%

    C. 32 =%. ! =%

  • 8/17/2019 Civil Engineering Reviewer.docx

    37/97

    E!

    ;. Situation 10 – A 1,% long bea% is si%ply s*pported at the left end

    and at 2 % fro% the right end. The bea% $ill be analyed for

    %a(i%*% shear at the %idspan that )an be ind*)ed by a %oving load.

    26. What is the ordinate of the infl*en)e diagra% at the %idspan?

    A. ,.3

    B. ,.!5

    C. ,.25

    . ,.5

    2. What is the ordinate of the infl*en)e diagra% at the free end?

    A. ,.3

    B. ,.!5

    C. ,.25

    . ,.5

    24. The bea% $ill be s*be)ted to a *nifor%ly distrib*ted %oving load. What

    total length of this bea% %*st be s*be)ted to this load to prod*)e %a(i%*%

    shear at the %idspan?

    A. ! %

    B. %

    C. 3 %

    . 5 %

    #. Situation 11 –

    The tr*ssed

    bea% sho$n is

    5.! % long. A

    %an of $eight

     EWF is standing

    at the %iddle of the bea%. =egle)t the $eight of the bea%.

    3,. The )apa)ity of the rod is 2=" $hat is the safe %a(i%*% $eight of the %an

    in g?

    A. 132 gB. 124 g

    C. 15 g. 16 g

    31. +f the %an $eighs 5 g" $hat is the tensile stress in the rod if its dia%eter

    is 1,%%?

  • 8/17/2019 Civil Engineering Reviewer.docx

    38/97

    A. 12.4 @aB. 1!.35 @a

    C. 16.6 @a. 1.6 @a

    32. What is the total length of the rod?

    A. .12 %B. 5.4 %

    C. 5.3! %. 6.32 %

    #. Situation 12 – The tr*ss sho$n is %ade fro% D*io 1,, %% ( 15,

    %%. The load on the tr*ss is 2, =. =egle)t fri)tion.

    ;.

    D. Allo$able stresses for D*io&

      Co%pression parallel to grain 0 11 @a

      Co%pression perpendi)*lar to grain 0 5 @a

      'hear parallel to grain 0 1 @a

      'hear longit*dinal for oints 0 1.!5 @a

    33. eter%ine the %ini%*% val*e of (.

    A. 1, %%

    B. 15, %%

    C. 1, %%

    . 1!, %%

    #.

    3!. eter%ine the %ini%*% val*e of y in %%.

    A. 3!.4

    B. 2.

    C. 13.2

    . 14.5

  • 8/17/2019 Civil Engineering Reviewer.docx

    39/97

    35. What is the a(ial stress in %e%ber AC in @a?

    A. 1.2

    B. 1.4

    C. ,.6

    . 2.6

    #. Situation 1 – The lap oint of a tension %e%ber is sho$n in the

    fig*re. The plate is 252 %% $ide and 12 %% thi). The bolts are 2,

    %% in dia%eter and the holes are 3 %% larger than the bolt dia%eter.

    'teel is A3 $ith ;y 0 2! @a and ;* 0 !,, @a. +t is reH*ired todeter%ine the )apa)ity of the oint based on gross area" net area" and

    blo) shear.

    ;.

    3. eter%ine the safe val*e of @ based on tension on gross area.

    A. !5, =

    B. !2, =

    C. 5,, =

    . !, =

    36. eter%ine the safe val*e of @ based on tension on net area.

    A. !34 =

    B. !21 =

    C. !53 =

    . ! =

    3. eter%ine the safe val*e of @ based on tension on blo) shear.

    A. !23 =B. !4 =

    C. !45 =

    . 521 =

  • 8/17/2019 Civil Engineering Reviewer.docx

    40/97

    #. Situation 1#

    – A % long

    fi(edended

    bea% )arries a

    *nifor%ly

    distrib*ted

    load of 2,

    =/%. Gse # 02,, D@a and +( 0 6.5 ( 1,

     %%!.

    ;.

    34. eter%ine the %o%ent at the fi(ed end.

    A. , =%

    B. 55 =%

    C. 5 =%

    . 5, =%

    !,. What is the %a(i%*% shear in the bea%?

    A. , =B. 55 =

    C. 5 =. 5, =

    !1. Co%p*te the verti)al defle)tion at the %idspan.

    A. ! %%

    B. 6 %%

    C. 5 %%

    . %%

    #. Situation 1$ – A fi(ed end bea% has a span of 1, % and s*pports a

    s*per i%posed *nifor%ly distrib*ted load of 2, =/%.

    ;.

    D. @roperties of W !5, ( 6,&

  • 8/17/2019 Civil Engineering Reviewer.docx

    41/97

    !3. What is the average shearing stress in the bea%?A. 2!.35 @a

    B. 2.42 @a

    C. 23.15 @a

    . 14.32 @a

    !!. eter%ine the %a(i%*% shearing stress in the bea%

    A. 2.42 @a

    B. 14.32 @a

    C. 2!35 @a

    . 23.15 @a

  • 8/17/2019 Civil Engineering Reviewer.docx

    42/97

  • 8/17/2019 Civil Engineering Reviewer.docx

    43/97

  • 8/17/2019 Civil Engineering Reviewer.docx

    44/97

    #. Situation 1% – A b*ilt *p

    se)tion )onsisting of W 35,

    ( 4, $ith t$o 12 %%

    plates $elded to for% a

    bo( se)tion as sho$n in

    the ;ig*re ',1. The se)tion

    is *sed as a )ol*%n 1,

    %eters long. The )ol*%n isfi(ed at both ends and

    bra)ed at %idheight abo*t

    the $ea a(is -Sa(is. The

    )ode provision is given in

    ;ig*re ='C@,1. Gse ;y 0 2! @a.

    ;.

    D. @roperties of W35, ( 4,&

  • 8/17/2019 Civil Engineering Reviewer.docx

    45/97

    D. ;a 0 [1−( K!

    r )2

    2 + c2 ]   $  y $ , # , ;.'. 0

    5

    3

    +3(

     K!

    r  )

    8 + c−

    ( K!r )3

    8 + c3

  • 8/17/2019 Civil Engineering Reviewer.docx

    46/97

    !4. What is the %a(i%*% bending stress in the )ol*%n d*e to a %o%ent of 6,

    =%" abo*t the (a(is of the se)tion?

    A. 11!. @a

    B. 123.4 @a

    C. 4.5 @a

    . 111.1 @a

    5,. What is the )riti)al -%a(i%*% effe)tive slenderness ratio of the )ol*%n?

    A. !.2B. 6.1 C. 5!.!. 5.2

    #. Situation 1' – The de) of a bridge )onsists of a ribbed %etal de)

    $ith 1,, %% )on)rete slab on top. The s*perstr*)t*re s*pporting the

    de) is %ade of $ide flange steel bea%s strengthened by a )over plate

    1 %% ( 2, %% one at the top and one at the botto%" and is spa)ed

    1.2 % on )enters. The bea%s are si%ply s*pported over a span of 25

    %. The loads on ea)h bea% are as follo$s&

    ;.

    D. ead load 0 12 =/% -in)l*ding bea% $eight and de)

    Wheel live loads&

    ;ront $heel 0 1 =

    Iear $heel 0 62 =

    Wheel base 0 !.3 %

  • 8/17/2019 Civil Engineering Reviewer.docx

    47/97

    A. 123 @aB. 1,6 @a

    C. 42 @a. 4 @a

    52. Cal)*late the %a(i%*% bending stress in the bea% d*e to live load pl*s

    i%pa)t.

    A. 64 @a

    B. 2 @a

    C. @a

    . 5 @a

    53. Cal)*late the %a(i%*% average $eb shear stress in the bea% d*e to live

    load pl*s i%pa)t.

    A. 6. @a

    B. .5 @a

    C. 4.1 @a

    . 12.! @a

    #. Situation 1 – The W!5,( bea% is s*pported by a )on)rete $all

    and a 13,%% $ide bearing plate as sho$n. The bea% rea)tion is

    25, =. All steel are A3 steel $ith ;y 0 2! @a. Con)rete strength fM )

    0 26.5 @a.

    ;. @roperties of W!5,( are as follo$s&

    D. d 0 !5, %%

    bf  0 14, %%

  • 8/17/2019 Civil Engineering Reviewer.docx

    48/97

    E!

    ;. Situation 20 – The floor fra%ing plan of a reinfor)ed )on)rete

    str*)t*re is sho$n in the fig*re. The bea%s are 2, %% $ide and 52,

    %% deep and the slab is 11, %% thi). Pther than )on)rete $eight"

    the floor is s*be)ted to additional -s*peri%posed dead load of 3 @a

    and live load of 5.2 @a. Gnit $eight of )on)rete is 23.5 =/%3.

    D. *e to spa)e )onsideration" the )ol*%ns # and < are to be re%oved.

    This $ill %ae girder B#

  • 8/17/2019 Civil Engineering Reviewer.docx

    49/97

    I!

    @!

    ;!

    "!

    . Situation

    21 – The

    floor

    fra%ing plan

    of a

    reinfor)ed

    )on)rete

    str*)t*re is sho$n in the fig*re. Then the )ol*%ns # and < are

    deleted" girder B#

  • 8/17/2019 Civil Engineering Reviewer.docx

    50/97

    . Situation 22 – The re)tang*lar footing sho$n is s*be)ted to a(ial

    load of @ 0 12,, = and a %o%ent of 0 3, =%. it is reH*ired to

    deter%ine the safe gross bearing )apa)ity of the soil to s*pport the

    given loads. The *nit $eights of )on)rete and soil are 23.5 =/%3 and

    1 =/%3" respe)tively.

    .

    3. What is the %a(i%*% fo*ndation press*re in @a?

    A. 25 @a

    B. 26! @a

    C. 26 @a

    . 321 @a

    !. What is the %ini%*% fo*ndation press*re in @a?

    A. ! @a

    B. 4 @a

    C. 2 @a

    . 5! @a

    5. What is the %ini%*% reH*ired gross allo$able soil bearing )apa)ity to )arry

    the given loads?

    A. 31, @aB. 2, @a

    C. 24, @a. 3,, @a

    #. Situation 2 – The T

    bea% sho$n res*lted

    fro% %onolithi)

    )onstr*)tion of the

    bea% and slab. The

    effe)tive flange $idth

    is 11,, %% and the

    *nifor% slab thi)nessis 12, %%. $idth of 

    bea% is 3!, %%" total

    depth of the Tse)tion

    is 54, %%. The

    )entroid of steel is 6,

    %% fro% e(tre%e

    )on)rete fiber. Con)rete strength fM ) 0 21 @a and streel strength f y 0

    !15 @a. Gse strength design %ethod.

  • 8/17/2019 Civil Engineering Reviewer.docx

    51/97

    ;.

    . Cal)*late the no%inal strength of the bea% for positive %o%ent negle)ting

    the )ontrib*tion of the top reinfor)e%ent.

    A. 56.2 =%

    B. 5,3.2 =%

    C. !5.1 =%

    . 52.5 =%

    6. Cal)*late the no%inal strength of the bea% for negative %o%ent.

    A. 24. =%B. 321.4 =%

    C. !32.12 =%. 23.!3 =%

    . Cal)*late the reH*ired no%inal shear strength of the bea% if it is s*be)ted

    to a fa)tored shear of 22, =.

    A. 24.! =

    B. 24.5 =

    C. 25. =

    . 231.4 =

    #. Situation 2# – A reinfor)ed )on)rete bea% has a $idth of 3,, %%

    and an overall depth of !, %%. The bea% is si%ply s*pported over aspan of 5 %. 'teel strength f y 0 !15 @a and )on)rete strength fM ) 0

    2 @a. Con)rete )over is over 6,%% fro% the )entroid of the steel

    area. Gnit $eight of )on)rete is 23.5 =/%3. Pther than the $eight of

    the bea%" the bea% )arries a s*peri%posed dead load of 1 =/% and

    live load of 1! =/%. Gse the strength design %ethod.

    4. eter%ine the %a(i%*% fa)tored %o%ent on the bea%.

    A. 135 =%

    B. 121 =%

    C. 1 =%

    . 13 =%

    6,. +f the design *lti%ate %o%ent )apa)ity of the bea% is 2,=%" deter%ine

    the reH*ired n*%ber of 2, %% tension bars.

    A.

    B.

    C. 4

    . 6

    61. +f the bea% $ill )arry an additional fa)tored load of 2!, = at %idspan"

    deter%ine the reH*ired n*%ber of 2, %% tension bars.

    A. 1!

    B. 4

    C. 1,

    . 12

  • 8/17/2019 Civil Engineering Reviewer.docx

    52/97

    #. Situation 2$ – The

    se)tion of a )ol*%n

    is sho$n in the

    fig*re. ;or this

    proble%" b1 0 3,,

    %%" b2 0 1, %%"

    d1 0 25, %%" d2 0

    35, %%. fM ) 0 2@a" f y 0 !1! @a.

    62. eter%ine the lo)ation of 

    the gross )on)rete area

    %eas*red fro% ya(is.

    A. 21 %%

    B. 22 %%

    C. 26! %%

    . 253 %%

    63. eter%ine the lo)ation of the plasti) ne*tral a(is of the )ol*%n %eas*red

    fro% the ya(is. =egle)t the area of )on)rete o))*pied by the steel.

    A. 262 %%

    B. 3,2 %%

    C. 22 %%

    . 242 %%

    6!. eter%ine the fa)tored %o%ent * d*e to fa)tored load @* 0 32,, applied

    !,, %% fro% the ya(is. Ass*%e that the )ol*%n is reinfor)ed s*)h that

    plasti) ne*tral a(is is 24, %% fro% the ya(is.

    A. 352 =%B. 36 =%

    C. 32 =%. 36 =%

    #. Situation 2% – The )ol*%n

    sho$n in the fig*re is

    s*be)ted to shear for)e

    parallel to the ,, %% side.

    Allo$able )on)rete shear

    stress fir shear parallel to the

    ,, %% side is ,.1 @a.

    Con)rete strength fM ) 0 21 @a

    and steel strength for both

    longit*dinal and

    reinfor)e%ents is !15 @a.

    The ties are all 12 %% in dia%eter $ith )lear )over of !, %%. 

    65. eter%ine the fa)tored shear for)e L* that the )ol*%n )an resist if the

    no%inal shear strength provided by the ties is 365 =.

    A. !21

    B. 51!

    C. !

    . !52

  • 8/17/2019 Civil Engineering Reviewer.docx

    53/97

    6. +f the ties are spa)ed at 23, %% o )enters" $hat is the %a(i%*% val*e of

    L*" in =?

    A. !!

    B. 521

    C. 34

    . !1

    66. +f the fa)tored shear for)e parallel to the ,, %% side is !,, =" deter%ine

    the reH*ired spa)ing of transverse reinfor)e%ent in a))ordan)e $ith the

    provisions for seis%i) design.

    A. 15!. %%

    B. 112.5 %%

    C. 125. %%

    . 2,.1 %%

    #. Situation 2 – A prestressed )on)rete bea% ha a $idth of 3,, %%

    and an overall depth of ,, %%. the prestressing tendons are pla)ed

    at a distan)e EeF belo$ ne*tral a(is of the bea% and the applied

    prestressing for)e is @ 0 15,, =. There is 15` loss of prestress.

    6. eter%ine the )o%pressive stress in )on)rete $hen @ is applies at the

    )entroid of the bea%.

    A. .!3 @aB. .21 @a

    C. 6., @a. 6.5! @a

    64. What is the %a(i%*% )o%pressive stress in the bea% $hen e 0 12, %%?

    A. 1!.32 @aB. 1.62 @a

    C. 15.5 @a. 1.42 @a

    ,. eter%ine the val*e of e))entri)ity EeF s*)h that the res*lting stress at the

    top fiber of the bea% is ero.

    A. 1,, %%

    B. 12, %%

    C. 2,, %%

    . 15, %%

    #. Situation 2' – The se)tion of a prestressed do*bletee )on)rete floor

     oist is sho$n in the fig*re. The prestressing for)e in ea)h tee is 65,

    =. Gnit $eight of )on)rete is 23.5 =/%3.

    ;.

  • 8/17/2019 Civil Engineering Reviewer.docx

    54/97

    D. The properties of the do*ble tee se)tion are&

    Area 0 22,",,, %%2

    + 0 14, ( 1, %%!

    y1 0 4, %%

    y2 0 26, %%

    y3 0 65 %%

    'i%ple span" 0 %

  • 8/17/2019 Civil Engineering Reviewer.docx

    55/97

    E!

    *!

    G!

    H!

    +. Situation 0 –

    Ans$er the

    follo$ing H*estions&

    6. Whi)h of the follo$ing deals $ith for)es at rest?

    A. +%pa)tB. Kineti)

    C. 'tati). yna%i)

    . Whi)h of the follo$ing for)es deter%ines $hether a body $ill be at rest or in

    %otion?

    A. Ies*ltantB. #H*ilibrant

    C. Wor. o%ent*%

    4. #nergy by virt*e of velo)ity

    A. @otential

    B. Kineti)

    C. Wor

    . %o%ent*%

    #.

    ;. Situation 1 – Ans$er the follo$ing H*estions on a(ial defor%ation of 

    rigid bodies&

    4,. Within proportional li%it" the stress is dire)tly proportional to strain.

    A. #lasti) li%it

    B. So*ngMs od*l*s

    C. @oissonMs Iatio

    .

  • 8/17/2019 Civil Engineering Reviewer.docx

    56/97

  • 8/17/2019 Civil Engineering Reviewer.docx

    57/97

    CS.

    C.

    1

    A.

    2

    B.

    3

    C.

    !

    .

    5

    #.

    ;.

    D.

    6

  • 8/17/2019 Civil Engineering Reviewer.docx

    58/97

    E;! 1

    #. A 0

    √ 1.82+2.42+0.92 ππ 

    A 03.1321 %

    AB 0 A 0

    3.1321 %

    AC 0   √ 2.42+1.82

    0 3%

    #. ;ACy 0

    2.4

    3  ;AC 0 ,. ;AC

    #=. ;ABy 0

    2.4

    3.1321  ;AB 0 ,.62 ;AB

    #P. By sy%%etry" ;AB 0 ;A

    #@. YB 0 ,

    ;ACy-2.6 0 W-,.4 ,.;AC-2.6 0 -,.4

      ;AC 0 ,.!16 W

    #Q. 'et ;AC 0 15 = W 0 3 =

    #I. YC# 0 ,

    2-;ABy-2.6 0 W-1. 5.!-,.62;AB0 W-1.

    ;AB 0 ,.!35,1 W 0 ;A

    #'. 'et ;AB 0 15 Kn

      #!#'2 :N (5o/n)

    ET! 2

  • 8/17/2019 Civil Engineering Reviewer.docx

    59/97

    EU!

    #L. V 0 ar)tan-3/1 0 61.55>

    #W. Total $eight" W 0 3. (π 

    -2 0 22.14 =

    #R. Y;L 0 , ( T sin V 0 22.14

    T 0 3.46! =

    #S. ;t 0 T ( A)  1,5 0 3"46! (π 

    4  -d) 2

    d) 0 .4 say 33

    E!

    ;A.

    0 1, %%

    0

    25 %

      @ 0

    =

     γ 

    0 66

    =/%3

    # 0 2,,

    D@a -for

    steel

    ;B.

    Area" A 0π 

    4 -1,2 0 6.5! %%2

  • 8/17/2019 Civil Engineering Reviewer.docx

    60/97

    ;C. Weight of rod" W 0γ 

    s Ls 0

    66",,,]6.5!/1,,,2^-25

      W 0 15!.14 =

    ;. #longation d*e to )on)entrated load @&

    ;#.

      . 1 0

     P!

     A-

      . 1 0

    8,000(25,000)78.54 (200,000)

    . 1 0 12.632 %%

    ;;. #longation d*e to o$n $eight&

    ;D.   .  2 0

    1

    2

    W!

     A- . 2 0

    1

    2(151,189)(25,000)

    78.54(200,000)

    . 2 0 ,.12,3 %%

    ;

  • 8/17/2019 Civil Engineering Reviewer.docx

    61/97

    ;P. 0w !

    2

    8 3 0w(6)2

    8

    $ 0 .!!! =/%

    ;@. 'afe *nifor% load 0 .!!! – ! 0 #!### :N?3

    *=! %

    *R! A 0 3,-27

    1,-2.-1.!

    A 0 !2 :N<

    3

    *S!

    *T!

    ;G.

    *V!

    *!

    *D!

    ;S. o%ent 0 $ ( Area *nder the infl*en)e diagra%

    ;. a(i%*% negative %o%ent at B $ill o))*r $hen the *nifor% load is

    $ithin C only. Total length 0 3

    GA! Situation 1

  • 8/17/2019 Civil Engineering Reviewer.docx

    62/97

    DB. Diven&

    @ 0 35i

    Q 0 -!5 )os ,>i –

    -!5 sin ,>

    Q 0 22.5i – 3.46

    GC! Pa/t 17

    D. Ies*ltant" I 0

    ,i

    D#. I 0 @ 7 Q 7 '

    ,i 0 35i 7 -22.5i3.4 7 '

    ' 0 42.5i 7 3.46

    '( 0 42.5 = " 'y 0 3.46 =

    D;.  1 

     0 ar)tan

    # y

    # x  1 

     0 ar)tan38.91

    92.5

    0 22!'$9

    Pa/t 27

    DD. Ies*ltant is

    horiontal

    to the right $ith1 

     0

    ,>

    D i 7 sin ,>

    I(i 7 , 0 -12.5 ,.5'+ 7

      -3.467,.'

    D+. , 0 3.46 7 ,.'

    ' 0 #$ :N

    G@! Pa/t 7

  • 8/17/2019 Civil Engineering Reviewer.docx

    63/97

    DK. @ 7 Q 7 ' 0

    ,

    35i 7 -22.5i –

    3.46 7 ' 0 ,

    ' 0 12.5i 7 3.46

    '( 0 12.5

    =

    'y 0 3.46=

    G"! ' 0

    √ 12.52+38.972

    ' 0 #0!2 :N

    D.

    GN! Situation 2

    DP. Pa/t 17

    The tensions in the )ables are eH*al $hen their angles of

    in)lination

    are eH*al. 'in)e A and C are on the sa%e elevation" therefore (1

    0 (2 0 1,.

    GP! Pa/t 2 & 7

    G=!

    DI.  )

     0 ar)tan -5/1 0 6.4>

    1  0 ar)tan -15/1 0 .14>

     & 0 1, >

      1  –

      & 0 15.12>

  • 8/17/2019 Civil Engineering Reviewer.docx

    64/97

    D'. ;ro% the for)e

    polygon&

    DT.

    T 1

    sin 1   0T 2

    sin)  0

    sin &

    DG. T1 0

    50

    sin15.12 * sin86.19 *

     0 11!21

    :N Pa/t 2→

    DL. T2 0

    50

    sin15.12 *

     sin78.69 * 0 16.42

    =

    DW. ength of )able&

    0 (1 se) V 7 (2 se)

    0 5 se) 6.4> 7 15 se) .14>

    0 20!1 3 Pa/t →

    GD! Situation

    DS. Pa/t 1 & 27

    =egle)ting the $eight of the plate&

    D. YA 0 ,

    2IB -1.35 0 115, -,.!5

    IB 0 11!%% :N 0 IC

  • 8/17/2019 Civil Engineering Reviewer.docx

    65/97

  • 8/17/2019 Civil Engineering Reviewer.docx

    66/97

    HO! Situation $

  • 8/17/2019 Civil Engineering Reviewer.docx

    67/97

    +D.  2 

    l 0 p0

    4 t   2 

    l 02.2(584)

    4 (8)

    2 l 0 #0!1$ MPa

    +

  • 8/17/2019 Civil Engineering Reviewer.docx

    68/97

    +'. 'hear" L 0 < 0 !5, =

    ia%eter" 02, %%" r 0 1!,%%

    'hear stress" f v 04 V 

    3 πr f v 0

    4(450)

    3 π (140 )2

    f v 0 0!00 MPa

    IT! Situation '

    IU!

    +L. W 0 1!5-3 7 24,-3 0 13,5 =

    +W. o)ation of W&

    W( 0 1!5-3-1.5 7 24,-3-1,.5

    ( 0 6.5 %

    +R. ;or the *nifor% press*re at the botto% of the barge" ( 0 /2.

    0 2-6.5

    0 1$ 3  Pa/t 1→

    +S. Gp$ard press*re" H 0

     !  0

    1305

    15  0 6 =/%

    +. 'hear at a point 3 % fro% the left end -B&

    LB 0 H-3 – $1-3 LB 0 6-3 1!5-3

    LB 0

  • 8/17/2019 Civil Engineering Reviewer.docx

    69/97

    @B! Situation

    @C!

    @4!

     

    @E!

    @*! Pa/t 17

    OD. H 0

     $orc

     !   H 02 x 112(1.5)

    7  

    H 0 #' :N?3

    O

  • 8/17/2019 Civil Engineering Reviewer.docx

    70/97

    @"! Situation 10

    O.

    O=. 'hear 0 $ ( Area *nder the infl*en)e diagra%.

    OP. ;ro% the infl*en)e diagra%" the *nifor% load %*st be $ithin AB and

    C to prod*)e %a(i%*% area. The total length is ! 7 2 0 % 3

    @P! Situation 11

    OQ. The bea% is ass*%ed hinged at B.

    The for)e in the str*t is W.

  • 8/17/2019 Civil Engineering Reviewer.docx

    71/97

    OI. V 0 ar)tan-,.4/2.6

    V 0 1.!35>

    O'.

    OT. Y;L 0 ,

      2T sin V 0 W

    OG. Pa/t 17 T 0 2=  W 0 2-2 sin 1.!35>

      W 0 1.25 = 0 125 =

    OL. ass" 0

    g   01265

    9.81  

    @! M 12'! :5

    @D! Pa/t 27

    OS. 0 5 g

      By ratio and proportion fro% the previo*s H*estion&

    O.

    85 4g  024" 

    128.99 4g  

    T 0 1.31 =

    KA. 'tress" f  t 0

     A r   f t 0

    1,318

    π 

    4 (10 )2  

    f t 0 1%!' MPa

    KB. Pa/t 7

      ength of rod 0 2 √ 2.72+0.92

    ength of rod 0 $!%2 3

    ;C! Situation 12

    ;4!

  • 8/17/2019 Civil Engineering Reviewer.docx

    72/97

    K#.

    K;.

    KD.

    K

    K=. At oint C& 2; sin  1   0 2,

    ; 0 1. =

    KP. A(ial stress on %e%ber AC 0

     $ 

    100 (150)  0 1!2$'

    MPa 

    K@. I1 0 ; sin  1 

     0 1,= I2 0 ; )os  1   0 1 =

    KQ. Considering I2&

    KI. Pn s*rfa)e ab& V 01   0 32>

    K'. ;ab 0

     p x 5

     p sin2

    )+5 cos2)   0 .226 @a

    KT. I2 0 f ab ( Aab  1",,, 0 .226 ( y ( 1,,

    1!#$ 33

    KG. 'hear& ;v 0 1 @a

    I2 0 ;v 7 Av 1",,, 0 1 ( -1,,(

    F  1%0 33

    ;V! Situation 1

  • 8/17/2019 Civil Engineering Reviewer.docx

    73/97

    KW. Pa/t 17 Tension on gross area&

    Ag 0 252-12 0 3,2! %%2

    Allo$able tensile stress" ;t 0 ,.;y 0 ,.-2! 0 1!.

    @a

    KR. @ 0 ;t ( A @ 0 1!.-3,2!

    @ 0 #$0 :N

    KS. Pa/t 27 Tension on net area.

    Allo$able tensile stress" ;t 0 ,.5;* 0 2,, @a

      =et area" An 0 -252 – 3 ( 23-12 0 214 %%2

    K. @ 0 ;t ( An  @ 0 2,,-214

    @ 0#!2 :N

    A. Pa/t & Blo) shear&

    B. @ath 1&

    Tension&

    At 0

    -3(2 2(23-12

    At 0 4,

    %%2

    C. AL 0

    2]3(2 73

    2.5(23^-12

    AL 0255

    %%2

    . ;t 0 ,.5;* 0 2,, @a

    ;L 0 ,.3;* 0 12, @a

    #. @ 0 ;t ( At 7 ;L ( AL  @ 0 2,,-4, 7 12,-255

      @ 0 !4.62 =

    ;. @ath 2&

    Tension&

    At 0 -3(3 2.5(23-12

    At 0 156 %%2

    D. AL 0 ]3(2 7 3

    – 2.5(23^-12

    AL 0 126 %%2

  • 8/17/2019 Civil Engineering Reviewer.docx

    74/97

  • 8/17/2019 Civil Engineering Reviewer.docx

    75/97

    T. a(i%*% %o%ent" %a( 0 A 0

    B 0 w !

    2

    12  

    G. %a( 0

    20.834 (10)2

    12  

    L. %a( 0 163.13 =%

    W. a(i%*% shear" L%a( 0 IA

    0 IB

    R. L%a( 0w!

    2

    S. L%a( 0 1,!.1 =

    . Pa/t 1& a(i%*% bending stress&

    f b %a( 0

     M + 

     I  x f b

    %a( 0

    173.613 x 106(

    450

    2  )

    274.7 x 106

    f b %a( 01#2!2 MPa

    A. Pa/t 27 Average shearing

    stress&

    f v ave 0

    d t w f v ave 0104.168 x 10

    3

    450(10)

    f v ave 0 2!1$ MPa

    B. Pa/t 7 a(i%*% shearing stress&

    f v %a( 0

    V6

     I  x t 

    C. Q 0 YAy

    Q 0 15,-15-21,76.5 7 21,-1,-1,5

    Q 0 6,4.65 ( 1,3 %%3

    . t 0 1, %

  • 8/17/2019 Civil Engineering Reviewer.docx

    76/97

    ME! f v %a( 0104.168 x 10

    3(709.875 x 103)

    274.7 x 106(10)

    f v %a( 0 2%!2 MPa

    M*! Situation 1%

    D. C) 0

    √2 π 

    2 -

     $  y  0

    √ 2π 2(200,000)

    248

    C) 0 12.16

  • 8/17/2019 Civil Engineering Reviewer.docx

    77/97

    .  1 

     0

     K!

    r

    + c

    1  0

    37.66

    126.17

    1  0 ,.24!

    =. ;' 0

    5

    3+

    3

    8 1 −

    1 3

    8 ;' 0 1.665

    P. ;a 0  (1−1 2

    2 ) $  y

     $#   ;a 0 133.!6 @a

    @. @ 0 ;a ( A @ 0 133.!6-14"45,

    @ 0 2%%2!' :N Pa/t →

    M=! Situation 1

    I. A 0 2A1

    A 0 2-!5,

    A 0 4"12, %%2

    '. +( 0 2+(1

    +( 0 2-3.1 (

    1,

    +( 0 6.2 ( 1,

    T. +y 0 2-+y1 7 A (12

      +y 0 2 ]2.41(1,

    7 !5,-42^

      +y 0 !4.2! ( 1,

    %%!

    G. r( 0 √ I  x A r( 0 √ 76.2 x 106

    9,120  0 41.!1 %%

    L. ry 0

     I  y A ry 0

     49.24 x 106

    9,120  0 63.! %%

    W. Pa/t 17

    A(ial load 0 4,, =

    A(ial )o%pressive stress&

    R. f  a 0 P

     A   f a 0900,000

    9,120

    f a 0 '!%' MPa

  • 8/17/2019 Civil Engineering Reviewer.docx

    78/97

    S. Pa/t 27

    o%ent abo*t (asis" ( 0 6, =%

    . Bending stress&

    =A. f  b 0

     M  x c

     I  x   f b 0

    70 x106(

    250

    2  )

    76.2 x 106

    f b 0 11#!' MPa

    =B. Pa/t 7 Criti)al slenderness ratio

    =C.   ( K!r ) x  01(4000)91.407  0 !3.6

    ( K!r )  y  01(4000)

    74.48  0 $#!## C/iti-a.←

    =.  Situation 1'

    =#.

    =;.

    =D.

    o%ent of inertia

    of the bea% $ith )over

    plate&

    =

  • 8/17/2019 Civil Engineering Reviewer.docx

    79/97

    =K. f  b 0

     Mc

     I  x   f b 0937.5 x 10

    6(441)

    4,222 x 106

    ) 0 !!1 %% f  b 0 !2$ MPa

    =. Pa/t 27 Bending stress d*e to live load pl*s i%pa)t

    a(i%*% %o%ent in the bea% d*e to t$o %oving loads&

    =. %a( 0( P!− Pd )2

    4 P!  

    ==. @ 0 total load 0 4, = d 0 $heel

    base 0 !.3 %

    @s 0 s%aller load 0 1 = 0 bea% length 0

    25 %

    =P. %a( 0

    (90 (25 )−18 ( 4.3 ))2

    4 (90)(25)  0 52!.! =%

    =@. +%pa)t fa)tor 015

     !+37  015

    25+37  0 ,.2!14 U ,.3

    -o

    =Q. a(i%*% %o%ent $ith i%pa)t&

    0 %a(-1 7 +%pa)t fa)tor

    0 52!.!-1 7 ,.2!14 0 51.33 =%

    =I. f  b %a( 0

     Mc

     I  x   f b %a( 0

    651.33 x106(441)

    4,222 x 106

    ) 0 !!1 %% f  b %a( 0 %' MPa

    ='.

    =T. Pa/t 7 a(i%*% average shearing stress.

    =G. a(i%*% shear o))*rs at the rea)tion $here the heaviest

    load is nearest.

  • 8/17/2019 Civil Engineering Reviewer.docx

    80/97

    =L.

    =W. YI1 0 , 25 I2 0 1-2,.6 7 62-25

    I2 0 .4,! =

    =R. a(i%*% shear in)l*ding i%pa)t&

    L%a( 0 .4,! ( -1 7 +%pa)t fa)tor

    L%a( 0 4.4,!-17,.2!14

    L%a( 01,6.43 =

    NY! f v ave 0

    d t w f v ave 0

    107.93 x103

    850 (15)

    f v ave 0 '!#%$ MPa

    N! Situation 1

    PA. Pa/t 17 oad" @ 0 25, =

    Allo$able bearing stress of )on)rete" ;p 0 ,.35fM ) 0 4.25

    @a

    PB. @ 0 ;p A 25,",,, 0 ,.25 ( W (

    13,

    W 0 1!' 33 a 200 33

  • 8/17/2019 Civil Engineering Reviewer.docx

    81/97

    PC. Pa/t 27

    A)t*al

    bearing press*re&

    P.

    f p 0

     P

    130(200)  0

    4.15 @a

    P#. ( 0

    1,, – 0 2 @a

    P;. t 0 √3 f  p x

    2

     $ b 

    t 0 √3 (9.61 ) (62 )

    2

    0.75(248)  t 2#!# 33

    Pa/t 7 Web yielding stress at toe of fillet -end rea)tion&

    PD. f  a 0

     P

    ( " +2.5 4 ) t w   f a 0250,000

    [130+2.5 (38 ) ] 10

    P

  • 8/17/2019 Civil Engineering Reviewer.docx

    82/97

    OM! ive load&

    $1 0pl ( ' $1 0 5.2-2.5

    $1 0 1 :N?3 Pa/t 2→

    P=. Pa/t 7 ;a)tored )on)entrated load at #&

    ;a)tored load&

    $* 0 1.! $d 7 1.6 $l $* 0 1.!-16.3! 7 1.6-13

    $* 0 !.!3 =/%

    OO! ;a)tored )on)entrated load at #&

    I# 0 $*-.2 I# 0 !.!3-.2

    I# 0 2'! :N

    OP!

    O=!

    OR!

    P'.

    OT!  Situation 21

    OU!

    OV!

    O!

    PR. Pa/t 17 'hear at B d*e to )on)entrated and *nifor% loads&

    PS.

    P. LB 0 IB1 7 IB2 LB 0 [-5-6.5 7 [-26, 7 26,PA! LB 0 2''!$ :N

  • 8/17/2019 Civil Engineering Reviewer.docx

    83/97

    PB!PC!

    @. Pa/t 27 a(i%*% shear at # d*e to )on)entrated load

    @#.

    @;. +n ;ig*re -2&@D. L#1 0 26, =

    @

  • 8/17/2019 Civil Engineering Reviewer.docx

    84/97

    Q. #ffe)tive epth" d 0 54, 6, 0 52, %%

    Q. Balan)e" )balan)e 0

    600d

    600 + fy  0 3,6 %%

    Q=. c1 0 ,.5 sin)e fM  ) U 3, @a

    QP. Pa/t 17 'trengh of bea% for positive %o%en" negle)tingtop bar.

    Q@. As 0 2!5! %%2

    QQ.

    =R! Au3in5    7

    Q'.QT. Asf y 0 ,.5 fM ) A) 2!5!-!15 0 ,.-21A)QG. A) 0 56",2 %%

    U Af QL.QW. A) 0 bf  ( a 56",2 0 11,, ( a

    QR. a0 51.4 %%

    QS.

    Q. ) 0 a / cf  ) 0 1 %% U)balan)e  -f s 0 f y

    IA.

    IB. n 0 T-d a/2 n 0 Asf y-d a/2

    IC. n 0 2!5!-!15-52, – 51.4/2

    R4! n 0 $0!2 :N3

    RE!I;. Pa/t 27 =egative %o%entID.

    I

  • 8/17/2019 Civil Engineering Reviewer.docx

    85/97

    RP!

    IQ. T 0 C) 7 CM sII.

    I'.

    IT.IG. Asf y 0 ,.5 fM ) a b 7 AM s fM sIL.

    IW. f  s 0 ,,

    c -d

    c a 0 c1)

    IR.

    IS. 1!63-!15 0 ,.5-21-,.5)-3!, 7 2!5! ( ,,c - 70

    c

    I. ) 0 ,. %% U )balan)e -f s 0 f y

    'A.

    'B. fM  s 0 ,,80.68 - 70

    80.68  0 64.!25 @a U f y -PK

    'C.

    '. a0 c1) 0 .%%SE!

    ';. n 0 C)-d – a/2 7 CM s-d – dM

    'D. n 0 ,.5 fM ) a b -d – a/2 7 AM s fM s -d – dM

    '

  • 8/17/2019 Civil Engineering Reviewer.docx

    86/97

    T#. * 0$" L

    2

    8   * 053.738(5)

    2

    8

    T*! * 0 1%! :N3TD.

    T

  • 8/17/2019 Civil Engineering Reviewer.docx

    87/97

    G@. * 0

    P" L

    4  7 16.43 0 !6.43 =% _ * %a(

    -do*bly

    GQ. *1 0 * %a( 0 33,.1! =%GI. As1 0 As %a( 0 2"5 %%

    2

    G'.

    GT. *2 0 * – *1 0 136.64 =%

    GG.GL. *2 0 T2-d – dM 136.64 ( 1,

     0 ,.4, As2-!15

    -!1,6,

    GW. As2 0 1",5 %%2

    GR.

    GS. As 0 As1 7 As2  As 0 2"5 7 1",5G. As 0 3"6!3 %%

    2

    LA.LB.

    LC. As 0

    π

    4  db2 = 3"6!3 0π

    4 -2,2 =

    L. = 0 11.4 say 12 Ja/

    VE!

    V*!  Situation 2$

    LD. Pa/t 17

    L

  • 8/17/2019 Civil Engineering Reviewer.docx

    88/97

    VY. The plastic centroid of a column cross section is the point through

    which the resultant column load must pass to produce uniform strain in

    failure. It represents he location of h resultant force produced by the steel 

    and concrete.

    VZ.

    WA.

    WB. C)1 0 ,.5 fM ) A1 C)1 0 ,.5-2-65",,,WC. ()1 0 125 %% C)1 0 165 =

    W.

    W#. C)2 0 ,.5 fM ) A2 C)1 0 ,.5-2-3",,,

    W;. ()2 0 !25 %% C)1 0 1!44.! =WD.

    W

  • 8/17/2019 Civil Engineering Reviewer.docx

    89/97

    W'.  ́

     0 21! 33

    WT.WG. Pa/t 7

    WV. The eccentricity of a column

    load is the distance from the load to

    the plastic centroid of the column

    WW.

    WR. * 0 @* ( eWS.

    W. * 0 32,, ( ,.11

    DA! * 0 $2 :N3

    RB.DC!  Situation 2%

    R. b$ 0 !5, %% f  y 0 !15 @a

    R#. h 0 ,, %% Allo$able shear stress of )on)rete" ;v) 0

    ,.1 @a

    R;. fM  ) 0 21 @a

    RD.

    R

  • 8/17/2019 Civil Engineering Reviewer.docx

    90/97

    RW.RR. L* 0 Ln L* 0 ,.5-561.!

    DY! L* 0 #'$!' :N

    R. Pa/t 27

    SA. s 0 23, %%

    SB. Av 0 3 (π

    4 -122 0 334.24 %%2

    SC. Ls 0 f y d

    s Ls 0339.29(415)(535.5)230

    S. Ls 0 326.3 =

    S#. Ln 0 L) 7 Ls Ln 0 14.! 7 326.3

    S;. Ln 0 52!.!6 =SD.

    S

  • 8/17/2019 Civil Engineering Reviewer.docx

    91/97

    C. Ash 0 ,.,4sc fc

    f y 334.24 0 ,.,4

    s(358)(21)

    415

    . s 0 2, %%

    #. ini%*% reH*ire%ent a))ording to 'e)tion 5.21.!.!.2&

    a b/! 0 112.5 %%b -25 0 15, %%

    ) 1,, 7

    350 -

    3

    ;. h( 0 [-,, – 2 ( !, – [-12 7 [-25 7 [-12

    D. h( 0 262.5 %%

  • 8/17/2019 Civil Engineering Reviewer.docx

    92/97

    Q.I. Pa/t 17

    '. When e 0 ,

    T. f ) 0P

      f ) 01275 10

    3

    300(600)

    G. f  ) 0

  • 8/17/2019 Civil Engineering Reviewer.docx

    93/97

    AA=. f  top 0  P

     A +

     Pc

     I    f top 0

    2(750,000)220,000

      +(220,00 x 195)(90)

    1890 x 106  

    f top 0 6.11 @a

    AAO! f bot 0  P A − Pc

     I    f bot 0

    2(750,000)220,000

      +(220,00 x 195)(270)

    1890 x 106  

    f bot 0 < #'!%0# MPa Pa/t 1→

    AA@. 'tress at %idspan d*e to loads&

    f top 0

     Mc

     I    f top 0

    211.36 x 106(90)

    1890 x 106  

    f top 0 1,.,5 @a

    AAQ. f  bot 0 Mc

     I    f bot 0211.36 x 10

    6(270)

    1890 x 106  

    f bot 0 3,.14! @a

    AAI. Pa/t 27 'tress at botto%" fibers d*e to servi)e loads and

    prestress&=ote& There is a loss of prestress of 2,` at servi)e loads.

    AAS! f bot 0 3,.14! – !.,4-1 – ,.2,

    f bot 0

  • 8/17/2019 Civil Engineering Reviewer.docx

    94/97

    AA! pa 0

    w

    b   pa 07.603

    2.5

    pa 0 !0# :Pa

    AAR.  Situation 2ead load" @ 0 6!, =

    ive load" @ 0 !, =

    AAS. ;a)tored load" @G 0 1.! @ 7 1.6 @ 0 1"1 =

    AA. ;a)tored base press*re" HG 0

     Pu

     A ftg  01,818

    2.4 (2.4)  0 315.25 @a

    ABA. #ffe)tive depth" d 0 !5, 4, 0 3, %%

    ABB. Pa/t 1 & 27 ;a)tored shear on footing" L*&

    ABC.

  • 8/17/2019 Civil Engineering Reviewer.docx

    95/97

    AB. d 0 ,.3 %

    AB#. Wide bea% shear&

    ( 0 [ -2.! – ,.35 – d 0 ,.5 %

    AB;. L* 0 H* ( Area L* 0 315.25 ( -2.!-,.5

    L* 0 $0!# :N Pa/t 1→

    ABD. @*n)hing shear&(1 0 ,.! 7 d 0 ,.6 %

    (2 0 ,.35 7 d 0 ,.61 %

    AB

  • 8/17/2019 Civil Engineering Reviewer.docx

    96/97

    ABQ. = 0

     A ¿̄ A s¿

    = 0

    4663

    π 

    4 (20 )2

      = 0 1#!' a 1$ Ja/

    ABR.

    ABS!  Situation

    0

    ABT. Ans$ers&

    ABU!   @art 1& Stati-

    ABV! @art 2& Ru.tantAB! @art 3& ;inti-

    ABR.

    ABY!  Situation

    17

    AB! Ans$ers&

      @art 1& Hoo:

    "aK

    ACA!   @art 2& Poion Ratio

    ACB!   @art 3& Youn5

    Mo6u.u

  • 8/17/2019 Civil Engineering Reviewer.docx

    97/97

    ACC.

    AC.

    AC#.

    AC;.

    ACG!

    AC