Clase 4 turbomaquinas epn 2016-a

Embed Size (px)

Citation preview

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    1/30

    Escuela Politécnica NacionalFacultad de Ingenieŕıa Mecánica

    Turbomachinery Slides

    Dr. Esteban Valencia, PhD, MSc, Eng

    Semester 2016-A

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN

    17 de mayo de 2016 1 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    2/30

    Outline of the lecture

    Velocity diagrams, design parameters and application of thermodynamic laws.

    Losses, efficiencies and preliminary axial turbine design.

    Effect of reaction on efficiency and correlation of Smith

    Efficient design points turbines

    Stresses in the rotor, cooling of the vanes and turbine flowcharacteristic

    Homework(DIFFUSION WITHIN BLADE ROWS,TURBINE BLADECOOLING)

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN

    17 de mayo de 2016 2 / 29

    http://goforward/http://find/http://goback/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    3/30

    INTRODUCTION

    Figure 1. Gas Turbin

    Gas Turbin (https://www.youtube.com/watch?v=dc00xYsXgTQ)(ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN

    17 de mayo de 2016 3 / 29

    https://www.youtube.com/watch?v=dc00xYsXgTQhttps://www.youtube.com/watch?v=dc00xYsXgTQhttp://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    4/30

    The modern axial-flow turbine developed from a long line of inventions stretching back in time

    In 1891 developed a multi-stage (15 stages) axial-flow steamturbine, which had a power output of 100 kW at 4800 rpm.

    By 1920 General Electric was supplying turbines rated at 40 MW

    for generating electricity. Now achieved 1000 MW

    Thesimplest approach to their analysis is to assume that the flowconditions at a mean radius, called the pitchline

    When ratio is large, as in the final stages of an aircraft or a steamturbine, a more elaborate three-dimensional analysis is necessary

    Combustor can be at temperatures of around  16000C or more whilstthe material used to make turbine blades melt at about 12500C 

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 4 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    5/30

    VELOCITY DIAGRAMS

    The axial turbine stage comprises a row of fixed guide vanes ornozzles (often called a stator row) and a row of moving blades orbuckets (a rotor row)

    The sign convention is such that angles and velocities as drawn in

    next Figure will be taken as positive throughout this chapter.When drawing the velocity triangles it is always worth sketching thenozzle and rotor rows beside them

    within an axial turbine, the levels of turning are very high

    flow is turned through the axial direction in both the rotors andnozzles

    ρ1Ax 1c x 1  = ρ2Ax 2c x 2  = ρ3Ax 3c x 3   continuity uniform equation

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 5 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    6/30

    VELOCITY DIAGRAMS

    Figure 1. Turbine Stage Velocity Diagrams

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 6 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    7/30

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    8/30

    TURBINE STAGE DESIGN PARAMETERS

    STAGE LOADING COEFFICIENT

    ψ = ∆h0

    U 2  ; ∆h0   Stagnattion Enthalpy 

    In adiabatic turbine    ∆h0  = U ∆c θ   ⇒   ψ = ∆c θ

    -High stage loading implies large flow turning and leads to highly“skewed” velocity triangles

    -A high stage loading is desirable because it means fewer stages areneeded to produce a required work output

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 8 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    9/30

    TURBINE STAGE DESIGN PARAMETERS

    STAGE REACTION

    R  = (h2 − h3) / (h1 − h3) ≈ (p 2 − p 3)/(p 1 − p 3)

    R  ≈ (p 2 − p 3)/(p 1 − p 3)

    -The reaction is a statement of the blade geometries

    -The reaction is more significant since it describes the asymmetry of the velocity triangles

    -50 %   turbine implies velocity triangles that are symmetrical andzero reaction turbine stage implies little pressure change through

    the rotor(ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 9 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    10/30

    THERMODYNAMICS OF THE AXIAL-TURBINE STAGE

    Figure 1. Mollier Diagram for a Turbine Stage

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 10 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    11/30

    THERMODYNAMICS OF THE AXIAL-TURBINE STAGE

    ∆W    =Ẇ 

    ṁ  =   h01 − h03 = U  (c θ2 + c θ3)   Rotor Work 

    In Nozzle no work is done  ;   h01  = h02

    In axial turbin radial velocity is neligible;

    h02 − h03  = (h2 − h3) + 1

    2

    c 2θ2 − c 

    2θ3

     +

     1

    2

    c 2x 2 − c 

    2x 3

     =  U  (c θ2 + c θ3)

    h2 + 12

    w 22   = h3 + 12

    w 23   or h02,real   = h03,real 

    h2 + 1

    2w 22  −

    1

    2U 22   = h3 +

     1

    2w 23  −

    1

    2U 23   or I 2  = I 3; radial considered 

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 11 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    12/30

    REPEATING STAGE TURBINES

    -Applications require turbines with high power output and highefficiency

    -To allow for the reduction in fluid density that arises as the flowexpands through the turbine

    -The blade height must be continuously increasing between blade

    rows(ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 12 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    13/30

    REPEATING STAGE TURBINES

    Requirements for a repeating stage

    c x   = Constant ,   r  =  constant , α1  = α1

    Starting with the definition of reaction

    R  = (h2 − h3) / (h1 − h3) = 1 − (h1 − h2) / (h01 − h03)

    Development:

    R  = 1 −  φ2

    tan2 α2 − tan

    2 α1

      If     α1  = α3   or If      α1  = α3

    R  =  φ

    2 (tan β3 − tan β2)   If     α1  = α3

    -The choice of (φ,  ψ, and R) are largely determined by best practice and previous experience

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 13 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    14/30

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    15/30

    STAGE LOSSES AND EFFICIENCY

    Loss coeficients of energy can be defined:

    h2 − h2s  = 12

    c 22ζ N ;   Nozzle Row 

    h3 − h3s  = 1

    2w 23 ζ R ;   Rotor Row 

    Combining Equations

    ηtt  =

    1 +

    ζ R w 23  + ζ N c 

    22

    T 3T 2

    2 (h1 − h3)

    −1

    When the exit velocity is not recovered,totalto-static efficiency forthe stage is:

    ηts  = (h01 − h03) / (h01 − h3ss ) =

    1 +

    ζ R w 23  + ζ N c 

    22

    T 3T 2

    + c 212 (h1 − h3)

    −1

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 15 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    16/30

    STAGE LOSSES AND EFFICIENCY

    Cosidering the static temperature drop through the rotor is notlarge,  T 3  = T 2

    ηtt  =

    1 +  ζ R w 

    2

    3  + ζ N c 

    2

    22 (h1 − h3)

    −1

    ηts  = 1 +  ζ R w 23  + ζ N c 

    22  + c 

    21

    2 (h1 − h3)−1

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 16 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    17/30

    STAGE LOSSES AND EFFICIENCY

    Remembered that loss coefficients in cascade testing is on twodimensional, however three effects are significant when can contributemore than 50 % of total losses

    So these estimates can be made of the efficiency of a proposed

    turbine by Semi-empirical methods such us: Soderberg(1949),Horlock(1966) and Mathieson(1951)

    Although CFD can often accurately predict trends in efficiency

    CFD can be applied only once, detailed turbine rotor and stator

    geometries have been createdFor a design use preliminary design methods before carrying out thefinal design refinements using computational fluid dynamics.

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 17 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    18/30

    PRELIMINARY AXIAL TURBINE DESIGN

    Either fix the shapes of the velocity triangles or choosing values for

    the three dimensionless design parameters,  φ,  ψ   , and  R 

    Number of Stages:

    nsttage  ≥Ẇ 

    ˙mψU 2Blade Height and Mean Radius:Given that the axial velocity remains constant throughout each stage.

    ρ1Ax 1  = ρ2Ax 2  = ρ3Ax 3  = constant 

    Ax  =  ṁ

    ρφU   ≈ 2π × r mH ;   m = mean

    Ax  = π × r 2t  1− (r h/r t )2 ;   h = hub and t   = tip 

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 18 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    19/30

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    20/30

    STYLES OF TURBINE

    Zero Reaction Turbine

    Figure 5. Velocity Diagram and Mollier Diagram for a Zero Reaction Turbine Stage

    R  =  φ

    2 (tan β3 − tan β2) =⇒   β2  = β3; If R  = 0   and h2  =  h3

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 20 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    21/30

    STYLES OF TURBINE

    50   %  Reaction Turbine

    Figure 6. Velocity Diagram and Mollier Diagram for a 50 % Reaction Turbine Stage

    R  = 1 − φ

    2 (tan α2 − tan α1) =⇒ 1 =   φ

    tan β2 +

      1

    φ − tan α1

      ⇒   β2  = α1  = α3

    Check Example 4.1, Dixon; Six Edition

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 21 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    22/30

    EFFECT OF REACTION ON EFFICIENCY

    To more than preliminary parameters is considered, Reaction is consideres like a preliminarydessign parameter:

    Figure 7. Velocity Diagram and Mollier Diagram for a 50 % Reaction Turbine Stage

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 22 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    23/30

    THE EFFICIENCY CORRELATION OF SMITH (1965)

    Figure 8. Smith Chart for Turbine Stage Efficiency.(ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 23 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    24/30

    THE EFFICIENCY CORRELATION OF SMITH

    Dimensionless Velocity Triangles for a 50 % Reaction Turbine Stage:

    f  s   = ∆h0/ c 21  + c 

    22

     =  ∆h0/U 2

    c 21 /U 2 + c 22 /U 2Solving Velocities Triangle:

    f  s   =  ψ

    φ2 +ψ+1

    2

    2+ φ2 +

    ψ−1

    2

    2   =   2Ψ4φ2 + ψ2 + 1

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 24 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    25/30

    Dimensionless Velocity Triangles for a 50 % Reaction Turbine Stage:

    f  s   = ∆h0/

    c 21  + c 22

     =

      ∆h0/U 2

    c 21 /U 

    2

    +

    c 22 /U 2

    Solving Velocities Triangle:

    f  s   =  ψ

    φ2 + ψ+12

    2+ φ2 + ψ−1

    2

    2  =

      2Ψ

    4φ2 + ψ2 + 1

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 25 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    26/30

    THE EFFICIENCY CORRELATION OF SMITH

    Figure 8. Smith’s Kinetic Energy Coefficient fs and the Optimum Stage Loading

    For optimum stage:

    ∂ f  s ∂ψ

      = 2

    4φ2 − ψ2 + 1

    (4φ2 + ψ2 + 1)

    ψopt  = 

    4φ2 + 1

    ψopt .exp  = 0,65 4φ2 + 1(ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 25 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    27/30

    STRESSES IN TURBINE ROTOR BLADES

    Centrifugal Stresses

    Figure  9. Centrifugal Forces Acting on Rotor Blade Element(ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 26 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    28/30

    STRESSES IN TURBINE ROTOR BLADES

    dF c  = −Ω2 rdm

    d σc ρm

    =  dF c 

    ρmA = −Ω2 rdr 

    σc 

    ρm= Ω2

       rt rh

    rdr  =  U 2t 

    2

    1−

    r h

    r t 

    2

    K  =  stress at root of tapered blade  

    stress at root of untapered blade 

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 27 / 29

    http://find/

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    29/30

  • 8/15/2019 Clase 4 turbomaquinas epn 2016-a

    30/30

    STRESSES IN TURBINE ROTOR BLADES

    Figure 11. Effect of Tapering on Centrifugal Stress at Blade Root

    T b  = T 2 + 0,85 w 22/ (2 C p ) ;   Blade Temperature Estimate 

    (ESCUELA POLITÉCNICA NACIONAL)   AXIAL-FLOW TURBINES: MEAN-LINE ANALYSIS AND DESIGN17 de mayo de 2016 29 / 29

    http://find/