21
2016-11-14 1 Interaction Mechanisms Photodisruption MD6305 LaserTissue Interactions Class 11 Jae Gwan Kim [email protected] , X 2220 Department of BioMedical Science and Engineering Gwangju Institute of Sciences and Technology Copyright. Most figures/tables/texts in this lecture are from the textbook “Laser‐Tissue Interactions by Markolf H. Niemz 2007” and this material is only for those who take this class and cannot be distributed to anyone without the permission from the lecturer. A Map of Laser‐Tissue Interactions

Class11 Interaction Mechanisms photodisruption - GISTbiophotonics.gist.ac.kr/Course Materials/Laser Tissue Interactions... · 2016-11-14 2 Optical Breakdown soft tissuesor fluids

Embed Size (px)

Citation preview

2016-11-14

1

InteractionMechanismsPhotodisruption

MD6305Laser‐TissueInteractionsClass11

JaeGwan Kim

[email protected] ,X2220

DepartmentofBioMedical Scienceand Engineering

Gwangju InstituteofSciencesandTechnology

Copyright.Mostfigures/tables/textsinthislecturearefromthetextbook“Laser‐TissueInteractionsbyMarkolf H.Niemz 2007”andthismaterialisonlyforthosewhotakethisclassandcannotbedistributedtoanyonewithoutthepermissionfromthelecturer.

AMapofLaser‐TissueInteractions

2016-11-14

2

OpticalBreakdown

soft tissues or fluids

OpticalBreakdown

• Athigherpulseenergies,shockwavesandothermechanicalsideeffectsbecomemoresignificant

• It’sbecausemechanicaleffectslinearlyincreasewiththeabsorbedenergy

• Ruptus(Latin)=ruptured• e.g.)90μmglass,ND:YLFlaserwith30ps

2016-11-14

3

Cavitation

• Thishappenswhenthelaserbeamwasfocusednotonthesurfacebutintothetissue

• Cavitationfromhumancorneaisseenbelow• ND:YLFlaserwith30psfocusingunderneaththeepithelium• Cavitationbubblesconsistofgaseousvapors,mainlywatervaporandcarbondioxide,whichwilldiffuseintothesurroundingtissue

ClinicalApplications

• Atoolofminimallyinvasivesurgery• Posteriorcapsulotomy ofthelens• Laser‐inducedlithotripsyofurinarycalculi

Intraocular lens (IOL) for Cataract surgery

2016-11-14

4

ClinicalApplications

• Posteriorcapsulotomy ofthelens• Laser‐inducedlithotripsyofurinarycalculi

Photodisruption

• Plasma‐inducedablation:spatiallyconfinedtothebreakdownregion

• However,shockwaveandcavitation:affectsadjacenttissue,notlocalized,canbe~mmorder

• Nanosecondpulsedoesnotinduceaplasma–inducedablation becausethethresholdofenergydensityofopticalbreakdownishighercomparedtopicosecondpulse

• Therefore,fornanosecondpulses,opticalbreakdownisalwaysassociatedwithshockwaveformationevenattheverythreshold

• Picoorfemtosecondpulses highpeakintensitybutlowpulseenergy reducedisruptiveeffects

2016-11-14

5

EnergyDensity

• Bothplasma‐inducedablationandphotodisruption relyonplasmageneration noteasytodistinguish

TimeScaleof4Effects

~nsec

30~50nsec

Expansion of plasma

IonizationOrdinary sound wave

50~150nsec

Vaporization

2016-11-14

6

3 EffectsfromHighEnergyDensity

• Theamountofenergyabsorbedduringphotodisruption is2ormoreordersofmagnitudehigherthanduringPIAthefreeelectrondensity&plasmatemperaturearealsohigherthanPIA

• Thiscauses3effectsinphotodisruption– Plasmashielding– Brillouin scattering– Multipleplasmageneration

PlasmaShielding

• Plasma:onceitisformed,itabsorbsandscattersthefollowingincidentlight

• Therefore,itprotects(“shields”)underlyingstructuresinthebeampath

• e.g.)retinaduringlasersurgeryofthelensorthevitreousisprotectedbythisplasmashield

• PIAalsoproducesplasmashieldingeffects,butstillpermitsthelighttobetransmittedthroughtheplasma

• However,photodisruptive interactionhasmoredenserplasmaandthus,hasmorestrongerplasmashieldingeffect

2016-11-14

7

Brillouin Scattering

• Heatingprocessoftheplasma generatesacousticwaves(phonons) scatterlightwithshiftedfrequency calledasBrillouinscattering

• Withevenhigherlaserenergydensity,thelaserlightitselfcancreatesalterationsinopticaldensity causesscattering calledasstimulatedBrillouinscattering

MultiplePlasmaGeneration

• DuringPIA,onlyonesparkisinducedattheveryfocuswhentheenergydensityisclosetotheablationthreshold

• Athigherpulseenergies,severalplasmascanbeignited• Thefirstplasmawillbeignitedattheveryfocusandsucceedingradiationgenerateopticalbreakdownbeforereachingthesmallestbeamwaist

2016-11-14

8

PlasmaLength

• Plasmalength∝ pulseenergy• Plasmalength∝ 1/pulseduration• Shorterpulserequireslessenergytoproduceplasma• Withthesameenergy,psec pulseproduceslongerplasmalength largerplasmavolume requiresmoreenergyforionizationandvaporizationoftissue lessenergycontributestoproducemechanicaleffectssuchasshockwavesorcavitationlessmechanicaldamagetotissuethannsec pulse

OverallPlasmaFormationSequence

• Ifthefocussizeissame,plasmainducedbynsec pulsescontainsignificantlymoreenergythanpsec producedplasma thisadditionalamountofenergyneedstobedissipatedintothesurroundingtissuebythegenerationofshockwaves,cavitation,andjetformation

Plasma‐induced ablation Photodisruption

2016-11-14

9

ShockWaveGeneration

• Laserinducedopticalbreakdowncausesasuddenadiabaticriseintemperatureuptoafew10,000K Thehighkineticenergyoffreeelectrons

• Highkineticenergy electronsdiffuseintothesurroundingmedium inertionsfollowelectronswithacertaintimedelaymassmoves originofshockwavegeneration

• Thisshockwavesoonseparatesfromtheplasmaboundary• Initially,withahypersonicspeedandslowsdowntothespeedofsound

Adiabatic process: a process that occurs without the transfer of heat or matter between a system and its surroundings

ShockWavesinWater

• Speedofsoundinwater:~1483m/sat37oC• Laserinducedshockwaves:~5000m/satthefocus• Toderivearelationdescribingthepressuregradientattheshockfront,let’sconsideraslaboftissuewithacross‐sectionA0 whichispassedthroughbyashockfrontatspeedus

• Duringthetimeintervalofdt,theshockfrontmovesadistanceofdxs,andthusthespeedofshockwaveus is

2016-11-14

10

ShockWavesinWater

• p0,ρ0:pressureanddensityinsidethemedium,respectively• Shockwaveincreasesthepressurefromp0 top1 andofthedensityfromρ0 toρ1 atitsfront

• Toconserveamass,theleftsideparticleswillintrudetowardrightsidewithaspeedofup (< us)

• Derivationofrelationbetweenus and up,pressureandspeedarededucedinthetextbook

ShockWavesinWater

• Atp1 =0kbar,theshockspeedus approaches1483km/s,whereastheparticlespeedup remainsat0km/s.

2016-11-14

11

ShockWavesinWater

• However,theserelationshipscanalsobeusedtocalculatetheshockwavepressurep1 asafunctionofshockspeedusShockwavepressures(usuallyverydifficulttodetermine)canbederivedfrommeasuredshockspeeds

• Theinitialpressureattheboundaryofthelaserplasmawas17kbar for50μJ pulseswithadurationof30ps,whereasitwas21kbar for1mJpulseswithadurationof6ns

• Decayismuchsteeperin30ps

Plasma boundary

1

ShockWavesinWater

• Vogeletal.estimatedthatthewidthofshockwavesissmallerinthecaseofthe30ps pulse(3μm)than6nspulse(10μm)

• Thisenergyisroughlygivenby≃ Δr (3.70)

– shockwavepressurep1– shockwavesurfaceareaAs– shockwavewidthΔr

• DuetodifferentplasmalengthsasshowninFig.3.60,weobtaininitialvaluesofAs ≃ 100μm2 for30ps pulsesandAs ≃2500μm2 for6nspulses(assumingafocalspotdiameterof4μm)

• From(3.70),wethenfindthatEs≃ 0.5μJ for30ps pulsesandEs≃ 50μJ for6nspulses

2016-11-14

12

ShockWavesinWater

• Only1–5%oftheincidentpulseenergyisconvertedtoshockwaveenergy

• Shockwavesfrompsec pulsesaresignificantlyweakerthanthoseinducedbynsec pulseswithcomparablepeakpressures

• Fromthecorrespondingparticlespeeds,Vogeletal.(1994a)havecalculatedatissuedisplacementofapproximately1.2μm for30ps pulsesandadisplacementofroughly4μm for6nspulses

• Theserathersmalldisplacementscancausemechanicaldamageonasubcellularlevelonly,buttheymightinducefunctionalchangeswithincells

MeasurementsofShockWaves

• Twotypesofmeasurements– Opticalmeasurements– Mechanicalmeasurements

• Opticalmeasurements– Adecreaseinprobebeamintensityisdetectedwithafastphotodiodeaslongastheshockwavepassesthroughthefocusoftheprobebeam

– Bymovingthefocusoftheprobebeamwithrespecttothesiteofplasmageneration,thepropagationoftheshockwavecanbemonitoredonafastdigitaloscilloscope

– Fastphotodiodesevenenableatemporalanalysisoftherisetimeoftheshockfront

Weaker

2016-11-14

13

MeasurementsofShockWaves

• Mechanicalmeasurements– Itreliesonpiezoelectrictransducerstransformingtheshockwavepressuretoavoltagesignal

– Piezoelectrictransducer:athinpolyvinyldifluoride (PVDF) foilwhichisgoldcoatedonbothsidesformeasuringtheinducedvoltagebyattachingtwothinwires

– Thecorrespondingpressureismonitoredonafastdigitaloscilloscope

MeasurementsofShockWaves

• Source:30ps pulsefromaNd:YLF laser• Probebeam:ahelium–neonlaserfocusedatthedepthofinterest

• Detector:afastphotodiode• Duringitsoveralldurationofroughly40ns,theshockwavecanhardlycauseanygrosstissuedisplacement

• Thus,furtherevidenceisgiventhatshockwavedamageislimitedtoasubcellularlevel

Shock wavepass starts

Shock wavepassed

2016-11-14

14

MeasurementsofShockWaves

• ThevoltagesignalfromaPVDFtransducerisshown• Aplasmawasinducedatthesurfaceofatoothslicewithathicknessof0.5mm

130ns  3800m/s(sound speed in teeth)   = 0.5mm/130ns

Reflection fromopposite side

130nsx2=260ns 

MeasurementsofShockWaves

• Tracesoftheshockwaveatdifferentdistancesfromitsorigincanbemeasuredbymovingthefocusoftheprobebeamawayfromtheplasmasite

• FromFig.3.67,ashockspeed~4160m/sforthefirst10ns ~60kbar

• Theshockwavethenslowsdowntoabout1480m/s(soundspeedinwater)afteranother30ns

• Thespatialextentofshockwavesis~0.2mm(~4160m/sx40ns)

2016-11-14

15

Cavitation

• Laser‐inducedcavitations occurifplasmasaregeneratedinsidesofttissuesorfluids

• Highplasmatemperature(5,000~40,000K) vaporizingthefocalvolume kineticenergyisconvertedtopotentialenergystoredintheexpandedcavitationbubble duetoouterstaticpressure,bubbleimplodeslessthanamsec wherebythebubblecontent(watervapor,carbonoxides)iscompressed pressureandtemperatureriseclosetothoseduringopticalbreakdown reboundthebubble secondtransientisemittedandthewholesequencerepeatsafewtimesuntilallenergyisdissipatedandallgasesaresolvedbysurroundingfluids

CavitationStudyTechniques

• High‐speedphotographictechnique(~upto1millionframe/sec)

• Q‐switchedrubylaserwith100mJ~400mJpulseenergy

1st collapse2nd collapse

Brassblock

2016-11-14

16

CavitationStudyTechniques

• Collapseofsphericalcavitationbubbles(Rayleigh1917)

. ⁄(3.71)

(3.72)

– :maxradiusofcavitation– :durationofthecollapse– :thedensityofthefluid– :thestaticpressure– : thevaporpressureofthefluid

– :thebubbleenergy

CavitationStudyTechniques

• Vaporpressure:thepressureexertedbythegasinequilibriumwithasolidorliquidinaclosedcontaineratagiventemperature.

Liquid Solid

2016-11-14

17

CavitationStudyTechniques

• Thetemporaloscillationofcavitationbubble:capturedbyprobebeamexperiment

Slope ~1/3

3 times of collapse

CavitationStudyTechniques

• Energyconversiontobubbleenergy– Picosec laser:19%– Nanosec laser:24%

• Averageenergylossofbubblesduringtheir1st cycle~84%– Among84%loss,emissionofsoundisthemajorpart

2016-11-14

18

TissueDamage

• Forshockwavegeneration– ≃ Δr (Δr:shockwavewidth) (3.70)– ∝ ∝

• Forcavitationgeneration

– (r:cavitationradius) (3.72)

– ∝

• Therefore,withthesameamountofenergygiventotissues,cavitationwillcausemoredamagethanshockwave

• Tissuedamageismainlyfromcavitationandjetformationsincecavitationcausestissuedisplacementafewmm

• Shockwavecauses1~4μmdisplacementoftissuesubcellularlevel

JetFormation

• Whencavitationbubblescollapseinthevicinityofasolidboundary,ahigh‐speedliquidjetdirectedtowardthewallisproduced

• Ifthebubbleisindirectcontactwiththesolidboundaryduringitscollapse,thejetcancausehigh‐impactpressureagainstthewall

• Thus,bubblesattachedtosolidshavethelargestdamagepotential

2016-11-14

19

JetFormation

• High‐speedphotographyisusedtostudyjetformation• Jetvelocity~156m/swasreportedbyVogeletal.(1989) thiscorrespondsto2kbar(~1974atm)pressureofwaterhammer

Brass block

d1

d2

d1 >d2

Jet

Counter jet

OriginofJetFormation

• Whenthebubblecollapsesduetoexternalpressurethesurroundingfluidisacceleratedtowardthecenterofthebubble

• However,atthesidepointingtothesolidboundarythereislessfluidavailable

• Hence,thecollapsetakesplacemoreslowlyatthissideofthebubble

• Thiseffectultimatelyleadstoanasymmetriccollapse• Atthefastercollapsingside,fluidparticlesgainadditionalkineticenergy

• Thisexplainswhyjetformationoccurstowardthesolidboundary.

2016-11-14

20

OriginofCounterJetFormation

• Ifthejetisrelativelyslow,thevelocityofthecentralpartoftheslowercollapsingsidemightevenbehigherthanthejetitselfbecausethatsideofthebubbleisaccelerateduntiltheveryendofthecollapse

• Inthiscase,acounterjet isformedpointingintheoppositedirection

• Pathline portraitsoftheflowaroundcollapsingbubbleshavebeenexperimentallyandtheoreticallydetermined

• InFigs.3.75a–b,twoofthemareshownwhichofferagoodvisualizationofthefluidflowduringthecollapse.

DamagebyJetFormation

• Thedamagingeffectofjetformationisextremelyenhancedifagasbubbleremainingfromanearlierlaserpulseishitbyacoustictransientsgeneratedbysubsequentpulses

• AccordingtoVogeletal.(1990),thedamagerangeinducedbya4mJpulsecanreachdiametersofupto2–3.5mmifgasbubblesareattachedtothecornealtissue

• Verysmallgasbubbles,however,quicklydissolveduetotheirsmallvolumeandstrongsurfacetension

• Therefore,thesemicrobubbles shouldnotcauseanyprobleminachievingacertainpredictableeffectiftherepetitionrateofthelaserpulsesisadequatelychosen.

2016-11-14

21

Summary

• Mainidea:fragmentationandcuttingoftissuebymechanicalforces

• Observations:plasmasparking,generationofshockwaves,cavitation,jetformation

• Typicallasers:solid‐statelasers,e.g.Nd:YAG,Nd:YLF,Ti:Sapphire

• Typicalpulsedurations:100fs...100ns• Typicalpowerdensities:1011 ...1016 W/cm2

• Specialapplications:lensfragmentation,lithotripsy(surgicalproceduretoremovestonesfromurinarytract,i.e.,kidney,ureter,bladder,orurethra)